author | wenzelm |
Mon, 11 Sep 2006 21:35:19 +0200 | |
changeset 20503 | 503ac4c5ef91 |
parent 20453 | 855f07fabd76 |
child 20523 | 36a59e5d0039 |
permissions | -rw-r--r-- |
17632 | 1 |
(* Title: HOL/Library/ExecutableSet.thy |
2 |
ID: $Id$ |
|
3 |
Author: Stefan Berghofer, TU Muenchen |
|
4 |
*) |
|
5 |
||
6 |
header {* Implementation of finite sets by lists *} |
|
7 |
||
8 |
theory ExecutableSet |
|
9 |
imports Main |
|
10 |
begin |
|
11 |
||
19791 | 12 |
section {* Definitional rewrites *} |
13 |
||
14 |
lemma [code target: Set]: |
|
15 |
"(A = B) = (A \<subseteq> B \<and> B \<subseteq> A)" |
|
17632 | 16 |
by blast |
17 |
||
18 |
declare bex_triv_one_point1 [symmetric, standard, code] |
|
19 |
||
19791 | 20 |
section {* HOL definitions *} |
21 |
||
22 |
subsection {* Basic definitions *} |
|
23 |
||
24 |
definition |
|
25 |
flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" |
|
26 |
"flip f a b = f b a" |
|
27 |
member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" |
|
28 |
"member xs x = (x \<in> set xs)" |
|
29 |
insertl :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
30 |
"insertl x xs = (if member xs x then xs else x#xs)" |
|
31 |
||
32 |
lemma |
|
33 |
[code target: List]: "member [] y = False" |
|
34 |
and [code target: List]: "member (x#xs) y = (y = x \<or> member xs y)" |
|
35 |
unfolding member_def by (induct xs) simp_all |
|
36 |
||
37 |
consts |
|
38 |
drop_first :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
39 |
||
40 |
primrec |
|
41 |
"drop_first f [] = []" |
|
42 |
"drop_first f (x#xs) = (if f x then xs else x # drop_first f xs)" |
|
43 |
declare drop_first.simps [code del] |
|
44 |
declare drop_first.simps [code target: List] |
|
45 |
||
46 |
declare remove1.simps [code del] |
|
47 |
lemma [code target: List]: |
|
48 |
"remove1 x xs = (if member xs x then drop_first (\<lambda>y. y = x) xs else xs)" |
|
49 |
proof (cases "member xs x") |
|
50 |
case False thus ?thesis unfolding member_def by (induct xs) auto |
|
51 |
next |
|
52 |
case True |
|
53 |
have "remove1 x xs = drop_first (\<lambda>y. y = x) xs" by (induct xs) simp_all |
|
54 |
with True show ?thesis by simp |
|
55 |
qed |
|
56 |
||
57 |
lemma member_nil [simp]: |
|
58 |
"member [] = (\<lambda>x. False)" |
|
59 |
proof |
|
60 |
fix x |
|
61 |
show "member [] x = False" unfolding member_def by simp |
|
62 |
qed |
|
63 |
||
64 |
lemma member_insertl [simp]: |
|
65 |
"x \<in> set (insertl x xs)" |
|
66 |
unfolding insertl_def member_def mem_iff by simp |
|
67 |
||
68 |
lemma insertl_member [simp]: |
|
69 |
fixes xs x |
|
70 |
assumes member: "member xs x" |
|
71 |
shows "insertl x xs = xs" |
|
72 |
using member unfolding insertl_def by simp |
|
73 |
||
74 |
lemma insertl_not_member [simp]: |
|
75 |
fixes xs x |
|
76 |
assumes member: "\<not> (member xs x)" |
|
77 |
shows "insertl x xs = x # xs" |
|
78 |
using member unfolding insertl_def by simp |
|
79 |
||
80 |
lemma foldr_remove1_empty [simp]: |
|
81 |
"foldr remove1 xs [] = []" |
|
82 |
by (induct xs) simp_all |
|
83 |
||
84 |
||
85 |
subsection {* Derived definitions *} |
|
86 |
||
87 |
consts |
|
88 |
unionl :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
89 |
intersect :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
90 |
subtract :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
91 |
map_distinct :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" |
|
92 |
unions :: "'a list list \<Rightarrow> 'a list" |
|
93 |
intersects :: "'a list list \<Rightarrow> 'a list" |
|
94 |
||
95 |
function |
|
96 |
"unionl [] ys = ys" |
|
97 |
"unionl xs ys = foldr insertl xs ys" |
|
98 |
by pat_completeness auto |
|
99 |
termination unionl by (auto_term "{}") |
|
100 |
lemmas unionl_def = unionl.simps(2) |
|
101 |
||
102 |
function |
|
103 |
"intersect [] ys = []" |
|
104 |
"intersect xs [] = []" |
|
105 |
"intersect xs ys = filter (member xs) ys" |
|
106 |
by pat_completeness simp_all |
|
107 |
termination intersect by (auto_term "{}") |
|
108 |
lemmas intersect_def = intersect.simps(3) |
|
109 |
||
110 |
function |
|
111 |
"subtract [] ys = ys" |
|
112 |
"subtract xs [] = []" |
|
113 |
"subtract xs ys = foldr remove1 xs ys" |
|
114 |
by pat_completeness simp_all |
|
115 |
termination subtract by (auto_term "{}") |
|
116 |
lemmas subtract_def = subtract.simps(3) |
|
117 |
||
118 |
function |
|
119 |
"map_distinct f [] = []" |
|
120 |
"map_distinct f xs = foldr (insertl o f) xs []" |
|
121 |
by pat_completeness simp_all |
|
122 |
termination map_distinct by (auto_term "{}") |
|
123 |
lemmas map_distinct_def = map_distinct.simps(2) |
|
124 |
||
125 |
function |
|
126 |
"unions [] = []" |
|
127 |
"unions xs = foldr unionl xs []" |
|
128 |
by pat_completeness simp_all |
|
129 |
termination unions by (auto_term "{}") |
|
130 |
lemmas unions_def = unions.simps(2) |
|
131 |
||
132 |
primrec |
|
133 |
"intersects (x#xs) = foldr intersect xs x" |
|
134 |
||
135 |
definition |
|
136 |
map_union :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" |
|
137 |
"map_union xs f = unions (map f xs)" |
|
138 |
map_inter :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" |
|
139 |
"map_inter xs f = intersects (map f xs)" |
|
140 |
||
141 |
||
142 |
section {* Isomorphism proofs *} |
|
143 |
||
144 |
lemma iso_member: |
|
145 |
"member xs x = (x \<in> set xs)" |
|
146 |
unfolding member_def mem_iff .. |
|
147 |
||
148 |
lemma iso_insert: |
|
149 |
"set (insertl x xs) = insert x (set xs)" |
|
150 |
unfolding insertl_def iso_member by (simp add: Set.insert_absorb) |
|
151 |
||
152 |
lemma iso_remove1: |
|
153 |
assumes distnct: "distinct xs" |
|
154 |
shows "set (remove1 x xs) = set xs - {x}" |
|
155 |
using distnct set_remove1_eq by auto |
|
156 |
||
157 |
lemma iso_union: |
|
158 |
"set (unionl xs ys) = set xs \<union> set ys" |
|
20503 | 159 |
unfolding unionl_def by (induct xs arbitrary: ys) (simp_all add: iso_insert) |
19791 | 160 |
|
161 |
lemma iso_intersect: |
|
162 |
"set (intersect xs ys) = set xs \<inter> set ys" |
|
163 |
unfolding intersect_def Int_def by (simp add: Int_def iso_member) auto |
|
164 |
||
165 |
lemma iso_subtract: |
|
166 |
fixes ys |
|
167 |
assumes distnct: "distinct ys" |
|
168 |
shows "set (subtract xs ys) = set ys - set xs" |
|
169 |
and "distinct (subtract xs ys)" |
|
20503 | 170 |
unfolding subtract_def using distnct by (induct xs arbitrary: ys) (simp_all, auto) |
19791 | 171 |
|
172 |
corollary iso_subtract': |
|
173 |
fixes xs ys |
|
174 |
assumes distnct: "distinct xs" |
|
175 |
shows "set ((flip subtract) xs ys) = set xs - set ys" |
|
176 |
proof - |
|
177 |
from distnct iso_subtract have "set (subtract ys xs) = set xs - set ys" by auto |
|
178 |
thus ?thesis unfolding flip_def by auto |
|
179 |
qed |
|
180 |
||
181 |
lemma iso_map_distinct: |
|
182 |
"set (map_distinct f xs) = image f (set xs)" |
|
183 |
unfolding map_distinct_def by (induct xs) (simp_all add: iso_insert) |
|
184 |
||
185 |
lemma iso_unions: |
|
186 |
"set (unions xss) = \<Union> set (map set xss)" |
|
187 |
unfolding unions_def proof (induct xss) |
|
188 |
case Nil show ?case by simp |
|
189 |
next |
|
190 |
case (Cons xs xss) thus ?case by (induct xs) (simp_all add: iso_insert) |
|
191 |
qed |
|
192 |
||
193 |
lemma iso_intersects: |
|
194 |
"set (intersects (xs#xss)) = \<Inter> set (map set (xs#xss))" |
|
195 |
by (induct xss) (simp_all add: Int_def iso_member, auto) |
|
196 |
||
197 |
lemma iso_UNION: |
|
198 |
"set (map_union xs f) = UNION (set xs) (set o f)" |
|
199 |
unfolding map_union_def iso_unions by simp |
|
200 |
||
201 |
lemma iso_INTER: |
|
202 |
"set (map_inter (x#xs) f) = INTER (set (x#xs)) (set o f)" |
|
203 |
unfolding map_inter_def iso_intersects by (induct xs) (simp_all add: iso_member, auto) |
|
204 |
||
205 |
definition |
|
206 |
Blall :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" |
|
207 |
"Blall = flip list_all" |
|
208 |
Blex :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" |
|
209 |
"Blex = flip list_ex" |
|
210 |
||
211 |
lemma iso_Ball: |
|
212 |
"Blall xs f = Ball (set xs) f" |
|
213 |
unfolding Blall_def flip_def by (induct xs) simp_all |
|
214 |
||
215 |
lemma iso_Bex: |
|
216 |
"Blex xs f = Bex (set xs) f" |
|
217 |
unfolding Blex_def flip_def by (induct xs) simp_all |
|
218 |
||
219 |
||
220 |
section {* code generator setup *} |
|
221 |
||
222 |
subsection {* type serializations *} |
|
223 |
||
17632 | 224 |
types_code |
225 |
set ("_ list") |
|
226 |
attach (term_of) {* |
|
227 |
fun term_of_set f T [] = Const ("{}", Type ("set", [T])) |
|
228 |
| term_of_set f T (x :: xs) = Const ("insert", |
|
229 |
T --> Type ("set", [T]) --> Type ("set", [T])) $ f x $ term_of_set f T xs; |
|
230 |
*} |
|
231 |
attach (test) {* |
|
232 |
fun gen_set' aG i j = frequency |
|
233 |
[(i, fn () => aG j :: gen_set' aG (i-1) j), (1, fn () => [])] () |
|
234 |
and gen_set aG i = gen_set' aG i i; |
|
235 |
*} |
|
236 |
||
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
237 |
code_type set |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
238 |
(SML "_ list") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
239 |
(Haskell target_atom "[_]") |
18702 | 240 |
|
19791 | 241 |
|
242 |
subsection {* const serializations *} |
|
18702 | 243 |
|
17632 | 244 |
consts_code |
245 |
"{}" ("[]") |
|
19791 | 246 |
"insert" ("{*insertl*}") |
247 |
"op Un" ("{*unionl*}") |
|
248 |
"op Int" ("{*intersect*}") |
|
249 |
"HOL.minus" :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" |
|
250 |
("{*flip subtract*}") |
|
251 |
"image" ("{*map_distinct*}") |
|
252 |
"Union" ("{*unions*}") |
|
253 |
"Inter" ("{*intersects*}") |
|
254 |
"UNION" ("{*map_union*}") |
|
255 |
"INTER" ("{*map_inter*}") |
|
256 |
"Ball" ("{*Blall*}") |
|
257 |
"Bex" ("{*Blex*}") |
|
17632 | 258 |
|
20380 | 259 |
code_constname |
19791 | 260 |
"ExecutableSet.member" "List.member" |
261 |
"ExecutableSet.insertl" "List.insertl" |
|
262 |
"ExecutableSet.drop_first" "List.drop_first" |
|
18963 | 263 |
|
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
264 |
code_gen |
19889 | 265 |
insertl unionl intersect flip subtract map_distinct |
266 |
unions intersects map_union map_inter Blall Blex |
|
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
267 |
(SML) (Haskell) |
19889 | 268 |
|
20453
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
269 |
code_const "{}" |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
270 |
(SML target_atom "[]") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
271 |
(Haskell target_atom "[]") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
272 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
273 |
code_const insert |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
274 |
(SML "{*insertl*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
275 |
(Haskell "{*insertl*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
276 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
277 |
code_const "op \<union>" |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
278 |
(SML "{*unionl*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
279 |
(Haskell "{*unionl*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
280 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
281 |
code_const "op \<inter>" |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
282 |
(SML "{*intersect*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
283 |
(Haskell "{*intersect*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
284 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
285 |
code_const "op - :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
286 |
(SML "{*flip subtract*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
287 |
(Haskell "{*flip subtract*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
288 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
289 |
code_const image |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
290 |
(SML "{*map_distinct*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
291 |
(Haskell "{*map_distinct*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
292 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
293 |
code_const "Union" |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
294 |
(SML "{*unions*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
295 |
(Haskell "{*unions*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
296 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
297 |
code_const "Inter" |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
298 |
(SML "{*intersects*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
299 |
(Haskell "{*intersects*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
300 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
301 |
code_const UNION |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
302 |
(SML "{*map_union*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
303 |
(Haskell "{*map_union*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
304 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
305 |
code_const INTER |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
306 |
(SML "{*map_inter*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
307 |
(Haskell "{*map_inter*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
308 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
309 |
code_const Ball |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
310 |
(SML "{*Blall*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
311 |
(Haskell "{*Blall*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
312 |
|
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
313 |
code_const Bex |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
314 |
(SML "{*Blex*}") |
855f07fabd76
final syntax for some Isar code generator keywords
haftmann
parents:
20380
diff
changeset
|
315 |
(Haskell "{*Blex*}") |
18702 | 316 |
|
17632 | 317 |
end |