author | wenzelm |
Mon, 26 Jun 2023 23:20:32 +0200 | |
changeset 78209 | 50c5be88ad59 |
parent 69850 | 5f993636ac07 |
permissions | -rw-r--r-- |
58128 | 1 |
(* Title: HOL/BNF_Fixpoint_Base.thy |
53311 | 2 |
Author: Lorenz Panny, TU Muenchen |
49308
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
3 |
Author: Dmitriy Traytel, TU Muenchen |
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
4 |
Author: Jasmin Blanchette, TU Muenchen |
57698 | 5 |
Author: Martin Desharnais, TU Muenchen |
6 |
Copyright 2012, 2013, 2014 |
|
49308
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
7 |
|
58352
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
blanchet
parents:
58179
diff
changeset
|
8 |
Shared fixpoint operations on bounded natural functors. |
49308
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
9 |
*) |
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
10 |
|
60758 | 11 |
section \<open>Shared Fixpoint Operations on Bounded Natural Functors\<close> |
49308
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
12 |
|
58128 | 13 |
theory BNF_Fixpoint_Base |
14 |
imports BNF_Composition Basic_BNFs |
|
49308
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
15 |
begin |
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
16 |
|
57525 | 17 |
lemma conj_imp_eq_imp_imp: "(P \<and> Q \<Longrightarrow> PROP R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> PROP R)" |
61169 | 18 |
by standard simp_all |
57525 | 19 |
|
62158
c25c62055180
generate stronger 'rel_(co)induct' and 'coinduct' principles for mutually (co)recursive (co)datatypes
blanchet
parents:
61551
diff
changeset
|
20 |
lemma predicate2D_conj: "P \<le> Q \<and> R \<Longrightarrow> R \<and> (P x y \<longrightarrow> Q x y)" |
c25c62055180
generate stronger 'rel_(co)induct' and 'coinduct' principles for mutually (co)recursive (co)datatypes
blanchet
parents:
61551
diff
changeset
|
21 |
by blast |
57302 | 22 |
|
49591
91b228e26348
generate high-level "coinduct" and "strong_coinduct" properties
blanchet
parents:
49590
diff
changeset
|
23 |
lemma eq_sym_Unity_conv: "(x = (() = ())) = x" |
58159 | 24 |
by blast |
49585
5c4a12550491
generate high-level "maps", "sets", and "rels" properties
blanchet
parents:
49539
diff
changeset
|
25 |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
55083
diff
changeset
|
26 |
lemma case_unit_Unity: "(case u of () \<Rightarrow> f) = f" |
58159 | 27 |
by (cases u) (hypsubst, rule unit.case) |
49312 | 28 |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
55083
diff
changeset
|
29 |
lemma case_prod_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p" |
58159 | 30 |
by simp |
49539
be6cbf960aa7
fixed bug in "fold" tactic with nested products (beyond the sum of product corresponding to constructors)
blanchet
parents:
49510
diff
changeset
|
31 |
|
49335 | 32 |
lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x" |
58159 | 33 |
by simp |
49335 | 34 |
|
49683 | 35 |
lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x" |
58159 | 36 |
unfolding comp_def fun_eq_iff by simp |
49312 | 37 |
|
38 |
lemma o_bij: |
|
49683 | 39 |
assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id" |
49312 | 40 |
shows "bij f" |
41 |
unfolding bij_def inj_on_def surj_def proof safe |
|
42 |
fix a1 a2 assume "f a1 = f a2" |
|
43 |
hence "g ( f a1) = g (f a2)" by simp |
|
44 |
thus "a1 = a2" using gf unfolding fun_eq_iff by simp |
|
45 |
next |
|
46 |
fix b |
|
47 |
have "b = f (g b)" |
|
48 |
using fg unfolding fun_eq_iff by simp |
|
67091 | 49 |
thus "\<exists>a. b = f a" by blast |
49312 | 50 |
qed |
51 |
||
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
55083
diff
changeset
|
52 |
lemma case_sum_step: |
58159 | 53 |
"case_sum (case_sum f' g') g (Inl p) = case_sum f' g' p" |
54 |
"case_sum f (case_sum f' g') (Inr p) = case_sum f' g' p" |
|
55 |
by auto |
|
49312 | 56 |
|
57 |
lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P" |
|
58159 | 58 |
by blast |
49312 | 59 |
|
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
60 |
lemma type_copy_obj_one_point_absE: |
55811 | 61 |
assumes "type_definition Rep Abs UNIV" "\<forall>x. s = Abs x \<longrightarrow> P" shows P |
62 |
using type_definition.Rep_inverse[OF assms(1)] |
|
63 |
by (intro mp[OF spec[OF assms(2), of "Rep s"]]) simp |
|
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
64 |
|
49312 | 65 |
lemma obj_sumE_f: |
55811 | 66 |
assumes "\<forall>x. s = f (Inl x) \<longrightarrow> P" "\<forall>x. s = f (Inr x) \<longrightarrow> P" |
67 |
shows "\<forall>x. s = f x \<longrightarrow> P" |
|
68 |
proof |
|
69 |
fix x from assms show "s = f x \<longrightarrow> P" by (cases x) auto |
|
70 |
qed |
|
49312 | 71 |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
55083
diff
changeset
|
72 |
lemma case_sum_if: |
58159 | 73 |
"case_sum f g (if p then Inl x else Inr y) = (if p then f x else g y)" |
74 |
by simp |
|
49312 | 75 |
|
62325 | 76 |
lemma prod_set_simps[simp]: |
58159 | 77 |
"fsts (x, y) = {x}" |
78 |
"snds (x, y) = {y}" |
|
58916 | 79 |
unfolding prod_set_defs by simp+ |
49429
64ac3471005a
cleaner way of dealing with the set functions of sums and products
blanchet
parents:
49428
diff
changeset
|
80 |
|
62325 | 81 |
lemma sum_set_simps[simp]: |
58159 | 82 |
"setl (Inl x) = {x}" |
83 |
"setl (Inr x) = {}" |
|
84 |
"setr (Inl x) = {}" |
|
85 |
"setr (Inr x) = {x}" |
|
86 |
unfolding sum_set_defs by simp+ |
|
49429
64ac3471005a
cleaner way of dealing with the set functions of sums and products
blanchet
parents:
49428
diff
changeset
|
87 |
|
57301
7b997028aaac
generate 'rel_coinduct0' theorem for codatatypes
desharna
parents:
57279
diff
changeset
|
88 |
lemma Inl_Inr_False: "(Inl x = Inr y) = False" |
7b997028aaac
generate 'rel_coinduct0' theorem for codatatypes
desharna
parents:
57279
diff
changeset
|
89 |
by simp |
7b997028aaac
generate 'rel_coinduct0' theorem for codatatypes
desharna
parents:
57279
diff
changeset
|
90 |
|
57471 | 91 |
lemma Inr_Inl_False: "(Inr x = Inl y) = False" |
92 |
by simp |
|
93 |
||
52505
e62f3fd2035e
share some code between codatatypes, datatypes and eventually prim(co)rec
traytel
parents:
52349
diff
changeset
|
94 |
lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y" |
58159 | 95 |
by blast |
52505
e62f3fd2035e
share some code between codatatypes, datatypes and eventually prim(co)rec
traytel
parents:
52349
diff
changeset
|
96 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
97 |
lemma rewriteR_comp_comp: "\<lbrakk>g \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = f \<circ> r" |
55066 | 98 |
unfolding comp_def fun_eq_iff by auto |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
99 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
100 |
lemma rewriteR_comp_comp2: "\<lbrakk>g \<circ> h = r1 \<circ> r2; f \<circ> r1 = l\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = l \<circ> r2" |
55066 | 101 |
unfolding comp_def fun_eq_iff by auto |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
102 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
103 |
lemma rewriteL_comp_comp: "\<lbrakk>f \<circ> g = l\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l \<circ> h" |
55066 | 104 |
unfolding comp_def fun_eq_iff by auto |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
105 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
106 |
lemma rewriteL_comp_comp2: "\<lbrakk>f \<circ> g = l1 \<circ> l2; l2 \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l1 \<circ> r" |
55066 | 107 |
unfolding comp_def fun_eq_iff by auto |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
108 |
|
57641
dc59f147b27d
more robust notation BNF_Def.convol, which is private to main HOL, but may cause syntax ambiguities nonetheless (e.g. List.thy);
wenzelm
parents:
57525
diff
changeset
|
109 |
lemma convol_o: "\<langle>f, g\<rangle> \<circ> h = \<langle>f \<circ> h, g \<circ> h\<rangle>" |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
110 |
unfolding convol_def by auto |
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
111 |
|
57641
dc59f147b27d
more robust notation BNF_Def.convol, which is private to main HOL, but may cause syntax ambiguities nonetheless (e.g. List.thy);
wenzelm
parents:
57525
diff
changeset
|
112 |
lemma map_prod_o_convol: "map_prod h1 h2 \<circ> \<langle>f, g\<rangle> = \<langle>h1 \<circ> f, h2 \<circ> g\<rangle>" |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
113 |
unfolding convol_def by auto |
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
114 |
|
57641
dc59f147b27d
more robust notation BNF_Def.convol, which is private to main HOL, but may cause syntax ambiguities nonetheless (e.g. List.thy);
wenzelm
parents:
57525
diff
changeset
|
115 |
lemma map_prod_o_convol_id: "(map_prod f id \<circ> \<langle>id, g\<rangle>) x = \<langle>id \<circ> f, g\<rangle> x" |
55932 | 116 |
unfolding map_prod_o_convol id_comp comp_id .. |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
117 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
118 |
lemma o_case_sum: "h \<circ> case_sum f g = case_sum (h \<circ> f) (h \<circ> g)" |
55066 | 119 |
unfolding comp_def by (auto split: sum.splits) |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
120 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
121 |
lemma case_sum_o_map_sum: "case_sum f g \<circ> map_sum h1 h2 = case_sum (f \<circ> h1) (g \<circ> h2)" |
55066 | 122 |
unfolding comp_def by (auto split: sum.splits) |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
123 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
124 |
lemma case_sum_o_map_sum_id: "(case_sum id g \<circ> map_sum f id) x = case_sum (f \<circ> id) g x" |
55931 | 125 |
unfolding case_sum_o_map_sum id_comp comp_id .. |
52913
2d2d9d1de1a9
theorems relating {c,d}tor_(un)fold/(co)rec and {c,d}tor_map
traytel
parents:
52731
diff
changeset
|
126 |
|
55945 | 127 |
lemma rel_fun_def_butlast: |
128 |
"rel_fun R (rel_fun S T) f g = (\<forall>x y. R x y \<longrightarrow> (rel_fun S T) (f x) (g y))" |
|
129 |
unfolding rel_fun_def .. |
|
52731 | 130 |
|
53105
ec38e9f4352f
simpler (forward) derivation of strong (up-to equality) coinduction properties
traytel
parents:
52913
diff
changeset
|
131 |
lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)" |
ec38e9f4352f
simpler (forward) derivation of strong (up-to equality) coinduction properties
traytel
parents:
52913
diff
changeset
|
132 |
by auto |
ec38e9f4352f
simpler (forward) derivation of strong (up-to equality) coinduction properties
traytel
parents:
52913
diff
changeset
|
133 |
|
67399 | 134 |
lemma eq_subset: "(=) \<le> (\<lambda>a b. P a b \<or> a = b)" |
53105
ec38e9f4352f
simpler (forward) derivation of strong (up-to equality) coinduction properties
traytel
parents:
52913
diff
changeset
|
135 |
by auto |
ec38e9f4352f
simpler (forward) derivation of strong (up-to equality) coinduction properties
traytel
parents:
52913
diff
changeset
|
136 |
|
67399 | 137 |
lemma eq_le_Grp_id_iff: "((=) \<le> Grp (Collect R) id) = (All R)" |
53308 | 138 |
unfolding Grp_def id_apply by blast |
139 |
||
140 |
lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv> |
|
141 |
(\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)" |
|
142 |
unfolding Grp_def by rule auto |
|
143 |
||
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
144 |
lemma vimage2p_mono: "vimage2p f g R x y \<Longrightarrow> R \<le> S \<Longrightarrow> vimage2p f g S x y" |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
145 |
unfolding vimage2p_def by blast |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
146 |
|
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
147 |
lemma vimage2p_refl: "(\<And>x. R x x) \<Longrightarrow> vimage2p f f R x x" |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
148 |
unfolding vimage2p_def by auto |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
149 |
|
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
150 |
lemma |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
151 |
assumes "type_definition Rep Abs UNIV" |
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
152 |
shows type_copy_Rep_o_Abs: "Rep \<circ> Abs = id" and type_copy_Abs_o_Rep: "Abs \<circ> Rep = id" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
153 |
unfolding fun_eq_iff comp_apply id_apply |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
154 |
type_definition.Abs_inverse[OF assms UNIV_I] type_definition.Rep_inverse[OF assms] by simp_all |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
155 |
|
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
156 |
lemma type_copy_map_comp0_undo: |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
157 |
assumes "type_definition Rep Abs UNIV" |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
158 |
"type_definition Rep' Abs' UNIV" |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
159 |
"type_definition Rep'' Abs'' UNIV" |
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
160 |
shows "Abs' \<circ> M \<circ> Rep'' = (Abs' \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> Rep'') \<Longrightarrow> M1 \<circ> M2 = M" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
161 |
by (rule sym) (auto simp: fun_eq_iff type_definition.Abs_inject[OF assms(2) UNIV_I UNIV_I] |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
162 |
type_definition.Abs_inverse[OF assms(1) UNIV_I] |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
163 |
type_definition.Abs_inverse[OF assms(3) UNIV_I] dest: spec[of _ "Abs'' x" for x]) |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
164 |
|
55854
ee270328a781
make 'typedef' optional, depending on size of original type
blanchet
parents:
55811
diff
changeset
|
165 |
lemma vimage2p_id: "vimage2p id id R = R" |
ee270328a781
make 'typedef' optional, depending on size of original type
blanchet
parents:
55811
diff
changeset
|
166 |
unfolding vimage2p_def by auto |
ee270328a781
make 'typedef' optional, depending on size of original type
blanchet
parents:
55811
diff
changeset
|
167 |
|
56640
0a35354137a5
generate 'rec_o_map' and 'size_o_map' in size extension
blanchet
parents:
55966
diff
changeset
|
168 |
lemma vimage2p_comp: "vimage2p (f1 \<circ> f2) (g1 \<circ> g2) = vimage2p f2 g2 \<circ> vimage2p f1 g1" |
55803
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
169 |
unfolding fun_eq_iff vimage2p_def o_apply by simp |
74d3fe9031d8
joint work with blanchet: intermediate typedef for the input to fp-operations
traytel
parents:
55702
diff
changeset
|
170 |
|
58446 | 171 |
lemma vimage2p_rel_fun: "rel_fun (vimage2p f g R) R f g" |
172 |
unfolding rel_fun_def vimage2p_def by auto |
|
173 |
||
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
174 |
lemma fun_cong_unused_0: "f = (\<lambda>x. g) \<Longrightarrow> f (\<lambda>x. 0) = g" |
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
175 |
by (erule arg_cong) |
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
176 |
|
56684
d8f32f55e463
more unfolding and more folding in size equations, to look more natural in the nested case
blanchet
parents:
56651
diff
changeset
|
177 |
lemma inj_on_convol_ident: "inj_on (\<lambda>x. (x, f x)) X" |
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
178 |
unfolding inj_on_def by simp |
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
179 |
|
58734 | 180 |
lemma map_sum_if_distrib_then: |
181 |
"\<And>f g e x y. map_sum f g (if e then Inl x else y) = (if e then Inl (f x) else map_sum f g y)" |
|
182 |
"\<And>f g e x y. map_sum f g (if e then Inr x else y) = (if e then Inr (g x) else map_sum f g y)" |
|
183 |
by simp_all |
|
184 |
||
185 |
lemma map_sum_if_distrib_else: |
|
186 |
"\<And>f g e x y. map_sum f g (if e then x else Inl y) = (if e then map_sum f g x else Inl (f y))" |
|
187 |
"\<And>f g e x y. map_sum f g (if e then x else Inr y) = (if e then map_sum f g x else Inr (g y))" |
|
188 |
by simp_all |
|
189 |
||
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
190 |
lemma case_prod_app: "case_prod f x y = case_prod (\<lambda>l r. f l r y) x" |
69850 | 191 |
by (cases x) simp |
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
192 |
|
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
193 |
lemma case_sum_map_sum: "case_sum l r (map_sum f g x) = case_sum (l \<circ> f) (r \<circ> g) x" |
69850 | 194 |
by (cases x) simp_all |
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
195 |
|
58446 | 196 |
lemma case_sum_transfer: |
197 |
"rel_fun (rel_fun R T) (rel_fun (rel_fun S T) (rel_fun (rel_sum R S) T)) case_sum case_sum" |
|
58916 | 198 |
unfolding rel_fun_def by (auto split: sum.splits) |
58446 | 199 |
|
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
200 |
lemma case_prod_map_prod: "case_prod h (map_prod f g x) = case_prod (\<lambda>l r. h (f l) (g r)) x" |
69850 | 201 |
by (cases x) simp_all |
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
202 |
|
58732 | 203 |
lemma case_prod_o_map_prod: "case_prod f \<circ> map_prod g1 g2 = case_prod (\<lambda>l r. f (g1 l) (g2 r))" |
204 |
unfolding comp_def by auto |
|
205 |
||
58446 | 206 |
lemma case_prod_transfer: |
207 |
"(rel_fun (rel_fun A (rel_fun B C)) (rel_fun (rel_prod A B) C)) case_prod case_prod" |
|
58916 | 208 |
unfolding rel_fun_def by simp |
56650
1f9ab71d43a5
no need to make 'size' generation an interpretation -- overkill
blanchet
parents:
56640
diff
changeset
|
209 |
|
57489 | 210 |
lemma eq_ifI: "(P \<longrightarrow> t = u1) \<Longrightarrow> (\<not> P \<longrightarrow> t = u2) \<Longrightarrow> t = (if P then u1 else u2)" |
211 |
by simp |
|
212 |
||
58446 | 213 |
lemma comp_transfer: |
67399 | 214 |
"rel_fun (rel_fun B C) (rel_fun (rel_fun A B) (rel_fun A C)) (\<circ>) (\<circ>)" |
58446 | 215 |
unfolding rel_fun_def by simp |
216 |
||
67399 | 217 |
lemma If_transfer: "rel_fun (=) (rel_fun A (rel_fun A A)) If If" |
58448 | 218 |
unfolding rel_fun_def by simp |
219 |
||
220 |
lemma Abs_transfer: |
|
221 |
assumes type_copy1: "type_definition Rep1 Abs1 UNIV" |
|
222 |
assumes type_copy2: "type_definition Rep2 Abs2 UNIV" |
|
223 |
shows "rel_fun R (vimage2p Rep1 Rep2 R) Abs1 Abs2" |
|
224 |
unfolding vimage2p_def rel_fun_def |
|
225 |
type_definition.Abs_inverse[OF type_copy1 UNIV_I] |
|
226 |
type_definition.Abs_inverse[OF type_copy2 UNIV_I] by simp |
|
227 |
||
228 |
lemma Inl_transfer: |
|
229 |
"rel_fun S (rel_sum S T) Inl Inl" |
|
230 |
by auto |
|
231 |
||
232 |
lemma Inr_transfer: |
|
233 |
"rel_fun T (rel_sum S T) Inr Inr" |
|
234 |
by auto |
|
235 |
||
236 |
lemma Pair_transfer: "rel_fun A (rel_fun B (rel_prod A B)) Pair Pair" |
|
58916 | 237 |
unfolding rel_fun_def by simp |
58448 | 238 |
|
62335 | 239 |
lemma eq_onp_live_step: "x = y \<Longrightarrow> eq_onp P a a \<and> x \<longleftrightarrow> P a \<and> y" |
240 |
by (simp only: eq_onp_same_args) |
|
241 |
||
242 |
lemma top_conj: "top x \<and> P \<longleftrightarrow> P" "P \<and> top x \<longleftrightarrow> P" |
|
243 |
by blast+ |
|
244 |
||
62905 | 245 |
lemma fst_convol': "fst (\<langle>f, g\<rangle> x) = f x" |
246 |
using fst_convol unfolding convol_def by simp |
|
247 |
||
248 |
lemma snd_convol': "snd (\<langle>f, g\<rangle> x) = g x" |
|
249 |
using snd_convol unfolding convol_def by simp |
|
250 |
||
67091 | 251 |
lemma convol_expand_snd: "fst \<circ> f = g \<Longrightarrow> \<langle>g, snd \<circ> f\<rangle> = f" |
62905 | 252 |
unfolding convol_def by auto |
253 |
||
254 |
lemma convol_expand_snd': |
|
67091 | 255 |
assumes "(fst \<circ> f = g)" |
256 |
shows "h = snd \<circ> f \<longleftrightarrow> \<langle>g, h\<rangle> = f" |
|
62905 | 257 |
proof - |
67091 | 258 |
from assms have *: "\<langle>g, snd \<circ> f\<rangle> = f" by (rule convol_expand_snd) |
259 |
then have "h = snd \<circ> f \<longleftrightarrow> h = snd \<circ> \<langle>g, snd \<circ> f\<rangle>" by simp |
|
260 |
moreover have "\<dots> \<longleftrightarrow> h = snd \<circ> f" by (simp add: snd_convol) |
|
62905 | 261 |
moreover have "\<dots> \<longleftrightarrow> \<langle>g, h\<rangle> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff) |
262 |
ultimately show ?thesis by simp |
|
263 |
qed |
|
264 |
||
67091 | 265 |
lemma case_sum_expand_Inr_pointfree: "f \<circ> Inl = g \<Longrightarrow> case_sum g (f \<circ> Inr) = f" |
62905 | 266 |
by (auto split: sum.splits) |
267 |
||
67091 | 268 |
lemma case_sum_expand_Inr': "f \<circ> Inl = g \<Longrightarrow> h = f \<circ> Inr \<longleftrightarrow> case_sum g h = f" |
62905 | 269 |
by (rule iffI) (auto simp add: fun_eq_iff split: sum.splits) |
270 |
||
67091 | 271 |
lemma case_sum_expand_Inr: "f \<circ> Inl = g \<Longrightarrow> f x = case_sum g (f \<circ> Inr) x" |
62905 | 272 |
by (auto split: sum.splits) |
273 |
||
274 |
lemma id_transfer: "rel_fun A A id id" |
|
275 |
unfolding rel_fun_def by simp |
|
276 |
||
277 |
lemma fst_transfer: "rel_fun (rel_prod A B) A fst fst" |
|
278 |
unfolding rel_fun_def by simp |
|
279 |
||
280 |
lemma snd_transfer: "rel_fun (rel_prod A B) B snd snd" |
|
281 |
unfolding rel_fun_def by simp |
|
282 |
||
283 |
lemma convol_transfer: |
|
284 |
"rel_fun (rel_fun R S) (rel_fun (rel_fun R T) (rel_fun R (rel_prod S T))) BNF_Def.convol BNF_Def.convol" |
|
285 |
unfolding rel_fun_def convol_def by auto |
|
286 |
||
63046
8053ef5a0174
intermediate definitions and caching in n2m to keep terms small
traytel
parents:
62905
diff
changeset
|
287 |
lemma Let_const: "Let x (\<lambda>_. c) = c" |
8053ef5a0174
intermediate definitions and caching in n2m to keep terms small
traytel
parents:
62905
diff
changeset
|
288 |
unfolding Let_def .. |
8053ef5a0174
intermediate definitions and caching in n2m to keep terms small
traytel
parents:
62905
diff
changeset
|
289 |
|
69605 | 290 |
ML_file \<open>Tools/BNF/bnf_fp_util_tactics.ML\<close> |
291 |
ML_file \<open>Tools/BNF/bnf_fp_util.ML\<close> |
|
292 |
ML_file \<open>Tools/BNF/bnf_fp_def_sugar_tactics.ML\<close> |
|
293 |
ML_file \<open>Tools/BNF/bnf_fp_def_sugar.ML\<close> |
|
294 |
ML_file \<open>Tools/BNF/bnf_fp_n2m_tactics.ML\<close> |
|
295 |
ML_file \<open>Tools/BNF/bnf_fp_n2m.ML\<close> |
|
296 |
ML_file \<open>Tools/BNF/bnf_fp_n2m_sugar.ML\<close> |
|
55702
63c80031d8dd
improved accounting for dead variables when naming set functions (refines d71c2737ee21)
blanchet
parents:
55700
diff
changeset
|
297 |
|
49308
6190b701e4f4
reorganized dependencies so that the sugar does not depend on GFP -- this will be essential for bootstrapping
blanchet
parents:
diff
changeset
|
298 |
end |