| author | huffman | 
| Tue, 08 May 2007 01:10:55 +0200 | |
| changeset 22854 | 51087b1cc77d | 
| parent 22841 | 83b9f2d3fb3c | 
| child 22886 | cdff6ef76009 | 
| permissions | -rw-r--r-- | 
| 15524 | 1 | (* Title: HOL/Orderings.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | |
| 4 | *) | |
| 5 | ||
| 21329 | 6 | header {* Syntactic and abstract orders *}
 | 
| 15524 | 7 | |
| 8 | theory Orderings | |
| 21329 | 9 | imports HOL | 
| 15524 | 10 | begin | 
| 11 | ||
| 21329 | 12 | subsection {* Order syntax *}
 | 
| 15524 | 13 | |
| 22473 | 14 | class ord = type + | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 15 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 16 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50) | 
| 21204 | 17 | begin | 
| 18 | ||
| 19 | notation | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 20 |   less_eq  ("op \<^loc><=") and
 | 
| 21620 | 21 |   less_eq  ("(_/ \<^loc><= _)" [51, 51] 50) and
 | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 22 |   less  ("op \<^loc><") and
 | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 23 |   less  ("(_/ \<^loc>< _)"  [51, 51] 50)
 | 
| 21620 | 24 | |
| 21204 | 25 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 26 |   less_eq  ("op \<^loc>\<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 27 |   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
 | 
| 15524 | 28 | |
| 21204 | 29 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 30 |   less_eq  ("op \<^loc>\<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 31 |   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
 | 
| 21204 | 32 | |
| 33 | abbreviation (input) | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 34 | greater (infix "\<^loc>>" 50) where | 
| 21620 | 35 | "x \<^loc>> y \<equiv> y \<^loc>< x" | 
| 36 | ||
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 37 | abbreviation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 38 | greater_eq (infix "\<^loc>>=" 50) where | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 39 | "x \<^loc>>= y \<equiv> y \<^loc><= x" | 
| 21204 | 40 | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 41 | notation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 42 | greater_eq (infix "\<^loc>\<ge>" 50) | 
| 21204 | 43 | |
| 22738 | 44 | text {*
 | 
| 45 | syntactic min/max -- these definitions reach | |
| 46 | their usual semantics in class linorder ahead. | |
| 47 | *} | |
| 48 | ||
| 49 | definition | |
| 50 | min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 22841 | 51 | "min a b = (if a \<^loc>\<le> b then a else b)" | 
| 22738 | 52 | |
| 53 | definition | |
| 54 | max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 22841 | 55 | "max a b = (if a \<^loc>\<le> b then b else a)" | 
| 22738 | 56 | |
| 21204 | 57 | end | 
| 58 | ||
| 59 | notation | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 60 |   less_eq  ("op <=") and
 | 
| 21620 | 61 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 62 |   less  ("op <") and
 | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 63 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 21204 | 64 | |
| 65 | notation (xsymbols) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 66 |   less_eq  ("op \<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 67 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 15524 | 68 | |
| 21204 | 69 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 70 |   less_eq  ("op \<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 71 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 20714 | 72 | |
| 19536 | 73 | abbreviation (input) | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 74 | greater (infix ">" 50) where | 
| 21620 | 75 | "x > y \<equiv> y < x" | 
| 76 | ||
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 77 | abbreviation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 78 | greater_eq (infix ">=" 50) where | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 79 | "x >= y \<equiv> y <= x" | 
| 21620 | 80 | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 81 | notation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 82 | greater_eq (infix "\<ge>" 50) | 
| 15524 | 83 | |
| 22738 | 84 | definition | 
| 85 | min :: "'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 86 | "min a b = (if a \<le> b then a else b)" | |
| 87 | ||
| 88 | definition | |
| 89 | max :: "'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 90 | "max a b = (if a \<le> b then b else a)" | |
| 91 | ||
| 92 | lemma min_linorder: | |
| 93 | "ord.min (op \<le> \<Colon> 'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> bool) = min" | |
| 94 | by rule+ (simp add: min_def ord_class.min_def) | |
| 95 | ||
| 96 | lemma max_linorder: | |
| 97 | "ord.max (op \<le> \<Colon> 'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> bool) = max" | |
| 98 | by rule+ (simp add: max_def ord_class.max_def) | |
| 99 | ||
| 15524 | 100 | |
| 22841 | 101 | subsection {* Partial orders *}
 | 
| 15524 | 102 | |
| 22841 | 103 | class order = ord + | 
| 22316 | 104 | assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 105 | and order_refl [iff]: "x \<sqsubseteq> x" | 
| 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 106 | and order_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" | 
| 22841 | 107 | assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" | 
| 108 | ||
| 21248 | 109 | begin | 
| 110 | ||
| 15524 | 111 | text {* Reflexivity. *}
 | 
| 112 | ||
| 22841 | 113 | lemma eq_refl: "x = y \<Longrightarrow> x \<^loc>\<le> y" | 
| 15524 | 114 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 115 | by (erule ssubst) (rule order_refl) | 
| 15524 | 116 | |
| 22841 | 117 | lemma less_irrefl [iff]: "\<not> x \<^loc>< x" | 
| 21248 | 118 | by (simp add: less_le) | 
| 15524 | 119 | |
| 22841 | 120 | lemma le_less: "x \<^loc>\<le> y \<longleftrightarrow> x \<^loc>< y \<or> x = y" | 
| 15524 | 121 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 21248 | 122 | by (simp add: less_le) blast | 
| 15524 | 123 | |
| 22841 | 124 | lemma le_imp_less_or_eq: "x \<^loc>\<le> y \<Longrightarrow> x \<^loc>< y \<or> x = y" | 
| 21248 | 125 | unfolding less_le by blast | 
| 15524 | 126 | |
| 22841 | 127 | lemma less_imp_le: "x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y" | 
| 21248 | 128 | unfolding less_le by blast | 
| 129 | ||
| 22841 | 130 | lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y" | 
| 21329 | 131 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 132 | ||
| 133 | ||
| 134 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 135 | ||
| 22841 | 136 | lemma less_imp_not_eq: "x \<^loc>< y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 21329 | 137 | by auto | 
| 138 | ||
| 22841 | 139 | lemma less_imp_not_eq2: "x \<^loc>< y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 21329 | 140 | by auto | 
| 141 | ||
| 142 | ||
| 143 | text {* Transitivity rules for calculational reasoning *}
 | |
| 144 | ||
| 22841 | 145 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<^loc>\<le> b \<Longrightarrow> a \<^loc>< b" | 
| 21329 | 146 | by (simp add: less_le) | 
| 147 | ||
| 22841 | 148 | lemma le_neq_trans: "a \<^loc>\<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<^loc>< b" | 
| 149 | by (simp add: less_le) | |
| 21329 | 150 | |
| 15524 | 151 | |
| 152 | text {* Asymmetry. *}
 | |
| 153 | ||
| 22841 | 154 | lemma less_not_sym: "x \<^loc>< y \<Longrightarrow> \<not> (y \<^loc>< x)" | 
| 21248 | 155 | by (simp add: less_le antisym) | 
| 15524 | 156 | |
| 22841 | 157 | lemma less_asym: "x \<^loc>< y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<^loc>< x) \<Longrightarrow> P" | 
| 21248 | 158 | by (drule less_not_sym, erule contrapos_np) simp | 
| 15524 | 159 | |
| 22841 | 160 | lemma eq_iff: "x = y \<longleftrightarrow> x \<^loc>\<le> y \<and> y \<^loc>\<le> x" | 
| 21248 | 161 | by (blast intro: antisym) | 
| 15524 | 162 | |
| 22841 | 163 | lemma antisym_conv: "y \<^loc>\<le> x \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y" | 
| 21248 | 164 | by (blast intro: antisym) | 
| 15524 | 165 | |
| 22841 | 166 | lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y" | 
| 21248 | 167 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 168 | ||
| 21083 | 169 | |
| 15524 | 170 | text {* Transitivity. *}
 | 
| 171 | ||
| 22841 | 172 | lemma less_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 173 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 174 | |
| 22841 | 175 | lemma le_less_trans: "x \<^loc>\<le> y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 176 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 177 | |
| 22841 | 178 | lemma less_le_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<^loc>< z" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 179 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 180 | |
| 181 | ||
| 182 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 183 | ||
| 22841 | 184 | lemma less_imp_not_less: "x \<^loc>< y \<Longrightarrow> (\<not> y \<^loc>< x) \<longleftrightarrow> True" | 
| 21248 | 185 | by (blast elim: less_asym) | 
| 15524 | 186 | |
| 22841 | 187 | lemma less_imp_triv: "x \<^loc>< y \<Longrightarrow> (y \<^loc>< x \<longrightarrow> P) \<longleftrightarrow> True" | 
| 21248 | 188 | by (blast elim: less_asym) | 
| 15524 | 189 | |
| 21248 | 190 | |
| 21083 | 191 | text {* Transitivity rules for calculational reasoning *}
 | 
| 15524 | 192 | |
| 22841 | 193 | lemma less_asym': "a \<^loc>< b \<Longrightarrow> b \<^loc>< a \<Longrightarrow> P" | 
| 21248 | 194 | by (rule less_asym) | 
| 195 | ||
| 196 | end | |
| 15524 | 197 | |
| 21329 | 198 | |
| 199 | subsection {* Linear (total) orders *}
 | |
| 200 | ||
| 22316 | 201 | class linorder = order + | 
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 202 | assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | 
| 21248 | 203 | begin | 
| 204 | ||
| 22841 | 205 | lemma less_linear: "x \<^loc>< y \<or> x = y \<or> y \<^loc>< x" | 
| 21248 | 206 | unfolding less_le using less_le linear by blast | 
| 207 | ||
| 22841 | 208 | lemma le_less_linear: "x \<^loc>\<le> y \<or> y \<^loc>< x" | 
| 21412 | 209 | by (simp add: le_less less_linear) | 
| 21248 | 210 | |
| 211 | lemma le_cases [case_names le ge]: | |
| 22841 | 212 | "(x \<^loc>\<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>\<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 21248 | 213 | using linear by blast | 
| 214 | ||
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 215 | lemma linorder_cases [case_names less equal greater]: | 
| 22841 | 216 | "(x \<^loc>< y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 21412 | 217 | using less_linear by blast | 
| 21248 | 218 | |
| 22841 | 219 | lemma not_less: "\<not> x \<^loc>< y \<longleftrightarrow> y \<^loc>\<le> x" | 
| 21248 | 220 | apply (simp add: less_le) | 
| 221 | using linear apply (blast intro: antisym) | |
| 15524 | 222 | done | 
| 223 | ||
| 22841 | 224 | lemma not_le: "\<not> x \<^loc>\<le> y \<longleftrightarrow> y \<^loc>< x" | 
| 21248 | 225 | apply (simp add: less_le) | 
| 226 | using linear apply (blast intro: antisym) | |
| 15524 | 227 | done | 
| 228 | ||
| 22841 | 229 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<^loc>< y \<or> y \<^loc>< x" | 
| 21412 | 230 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 231 | |
| 22841 | 232 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x \<^loc>< y \<Longrightarrow> R) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 21248 | 233 | by (simp add: neq_iff) blast | 
| 15524 | 234 | |
| 22841 | 235 | lemma antisym_conv1: "\<not> x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y" | 
| 21248 | 236 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 237 | |
| 22841 | 238 | lemma antisym_conv2: "x \<^loc>\<le> y \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y" | 
| 21248 | 239 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 240 | |
| 22841 | 241 | lemma antisym_conv3: "\<not> y \<^loc>< x \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y" | 
| 21248 | 242 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 243 | |
| 16796 | 244 | text{*Replacing the old Nat.leI*}
 | 
| 22841 | 245 | lemma leI: "\<not> x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x" | 
| 21248 | 246 | unfolding not_less . | 
| 16796 | 247 | |
| 22841 | 248 | lemma leD: "y \<^loc>\<le> x \<Longrightarrow> \<not> x \<^loc>< y" | 
| 21248 | 249 | unfolding not_less . | 
| 16796 | 250 | |
| 251 | (*FIXME inappropriate name (or delete altogether)*) | |
| 22841 | 252 | lemma not_leE: "\<not> y \<^loc>\<le> x \<Longrightarrow> x \<^loc>< y" | 
| 21248 | 253 | unfolding not_le . | 
| 254 | ||
| 22738 | 255 | text {* min/max properties *}
 | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 256 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 257 | lemma min_le_iff_disj: | 
| 22841 | 258 | "min x y \<^loc>\<le> z \<longleftrightarrow> x \<^loc>\<le> z \<or> y \<^loc>\<le> z" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 259 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 260 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 261 | lemma le_max_iff_disj: | 
| 22841 | 262 | "z \<^loc>\<le> max x y \<longleftrightarrow> z \<^loc>\<le> x \<or> z \<^loc>\<le> y" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 263 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 264 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 265 | lemma min_less_iff_disj: | 
| 22841 | 266 | "min x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<or> y \<^loc>< z" | 
| 21412 | 267 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 268 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 269 | lemma less_max_iff_disj: | 
| 22841 | 270 | "z \<^loc>< max x y \<longleftrightarrow> z \<^loc>< x \<or> z \<^loc>< y" | 
| 21412 | 271 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 272 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 273 | lemma min_less_iff_conj [simp]: | 
| 22841 | 274 | "z \<^loc>< min x y \<longleftrightarrow> z \<^loc>< x \<and> z \<^loc>< y" | 
| 21412 | 275 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 276 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 277 | lemma max_less_iff_conj [simp]: | 
| 22841 | 278 | "max x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<and> y \<^loc>< z" | 
| 21412 | 279 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 280 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 281 | lemma split_min: | 
| 22841 | 282 | "P (min i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P i) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P j)" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 283 | by (simp add: min_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 284 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 285 | lemma split_max: | 
| 22841 | 286 | "P (max i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P j) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P i)" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 287 | by (simp add: max_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 288 | |
| 21248 | 289 | end | 
| 290 | ||
| 291 | ||
| 292 | subsection {* Name duplicates *}
 | |
| 293 | ||
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 294 | lemmas order_less_le = less_le | 
| 22841 | 295 | lemmas order_eq_refl = order_class.eq_refl | 
| 296 | lemmas order_less_irrefl = order_class.less_irrefl | |
| 297 | lemmas order_le_less = order_class.le_less | |
| 298 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | |
| 299 | lemmas order_less_imp_le = order_class.less_imp_le | |
| 300 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | |
| 301 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | |
| 302 | lemmas order_neq_le_trans = order_class.neq_le_trans | |
| 303 | lemmas order_le_neq_trans = order_class.le_neq_trans | |
| 22316 | 304 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 305 | lemmas order_antisym = antisym | 
| 22316 | 306 | lemmas order_less_not_sym = order_class.less_not_sym | 
| 307 | lemmas order_less_asym = order_class.less_asym | |
| 308 | lemmas order_eq_iff = order_class.eq_iff | |
| 309 | lemmas order_antisym_conv = order_class.antisym_conv | |
| 310 | lemmas less_imp_neq = order_class.less_imp_neq | |
| 311 | lemmas order_less_trans = order_class.less_trans | |
| 312 | lemmas order_le_less_trans = order_class.le_less_trans | |
| 313 | lemmas order_less_le_trans = order_class.less_le_trans | |
| 314 | lemmas order_less_imp_not_less = order_class.less_imp_not_less | |
| 315 | lemmas order_less_imp_triv = order_class.less_imp_triv | |
| 316 | lemmas order_less_asym' = order_class.less_asym' | |
| 317 | ||
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 318 | lemmas linorder_linear = linear | 
| 22316 | 319 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 320 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | |
| 321 | lemmas linorder_le_cases = linorder_class.le_cases | |
| 322 | lemmas linorder_not_less = linorder_class.not_less | |
| 323 | lemmas linorder_not_le = linorder_class.not_le | |
| 324 | lemmas linorder_neq_iff = linorder_class.neq_iff | |
| 325 | lemmas linorder_neqE = linorder_class.neqE | |
| 326 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | |
| 327 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | |
| 328 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | |
| 329 | lemmas leI = linorder_class.leI | |
| 330 | lemmas leD = linorder_class.leD | |
| 331 | lemmas not_leE = linorder_class.not_leE | |
| 16796 | 332 | |
| 21083 | 333 | |
| 334 | subsection {* Reasoning tools setup *}
 | |
| 335 | ||
| 21091 | 336 | ML {*
 | 
| 337 | local | |
| 338 | ||
| 339 | fun decomp_gen sort thy (Trueprop $ t) = | |
| 21248 | 340 | let | 
| 341 | fun of_sort t = | |
| 342 | let | |
| 343 | val T = type_of t | |
| 344 | in | |
| 21091 | 345 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 21248 | 346 | T <> HOLogic.natT andalso T <> HOLogic.intT | 
| 347 | andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort) | |
| 348 | end; | |
| 349 |     fun dec (Const ("Not", _) $ t) = (case dec t
 | |
| 350 | of NONE => NONE | |
| 351 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | |
| 352 |       | dec (Const ("op =",  _) $ t1 $ t2) =
 | |
| 353 | if of_sort t1 | |
| 354 | then SOME (t1, "=", t2) | |
| 355 | else NONE | |
| 356 |       | dec (Const ("Orderings.less_eq",  _) $ t1 $ t2) =
 | |
| 357 | if of_sort t1 | |
| 358 | then SOME (t1, "<=", t2) | |
| 359 | else NONE | |
| 360 |       | dec (Const ("Orderings.less",  _) $ t1 $ t2) =
 | |
| 361 | if of_sort t1 | |
| 362 | then SOME (t1, "<", t2) | |
| 363 | else NONE | |
| 364 | | dec _ = NONE; | |
| 21091 | 365 | in dec t end; | 
| 366 | ||
| 367 | in | |
| 368 | ||
| 22841 | 369 | (* sorry - there is no preorder class | 
| 21248 | 370 | structure Quasi_Tac = Quasi_Tac_Fun ( | 
| 371 | struct | |
| 372 | val le_trans = thm "order_trans"; | |
| 373 | val le_refl = thm "order_refl"; | |
| 374 | val eqD1 = thm "order_eq_refl"; | |
| 375 | val eqD2 = thm "sym" RS thm "order_eq_refl"; | |
| 376 | val less_reflE = thm "order_less_irrefl" RS thm "notE"; | |
| 377 | val less_imp_le = thm "order_less_imp_le"; | |
| 378 | val le_neq_trans = thm "order_le_neq_trans"; | |
| 379 | val neq_le_trans = thm "order_neq_le_trans"; | |
| 380 | val less_imp_neq = thm "less_imp_neq"; | |
| 22738 | 381 | val decomp_trans = decomp_gen ["Orderings.preorder"]; | 
| 382 | val decomp_quasi = decomp_gen ["Orderings.preorder"]; | |
| 22841 | 383 | end);*) | 
| 21091 | 384 | |
| 385 | structure Order_Tac = Order_Tac_Fun ( | |
| 21248 | 386 | struct | 
| 387 | val less_reflE = thm "order_less_irrefl" RS thm "notE"; | |
| 388 | val le_refl = thm "order_refl"; | |
| 389 | val less_imp_le = thm "order_less_imp_le"; | |
| 390 | val not_lessI = thm "linorder_not_less" RS thm "iffD2"; | |
| 391 | val not_leI = thm "linorder_not_le" RS thm "iffD2"; | |
| 392 | val not_lessD = thm "linorder_not_less" RS thm "iffD1"; | |
| 393 | val not_leD = thm "linorder_not_le" RS thm "iffD1"; | |
| 394 | val eqI = thm "order_antisym"; | |
| 395 | val eqD1 = thm "order_eq_refl"; | |
| 396 | val eqD2 = thm "sym" RS thm "order_eq_refl"; | |
| 397 | val less_trans = thm "order_less_trans"; | |
| 398 | val less_le_trans = thm "order_less_le_trans"; | |
| 399 | val le_less_trans = thm "order_le_less_trans"; | |
| 400 | val le_trans = thm "order_trans"; | |
| 401 | val le_neq_trans = thm "order_le_neq_trans"; | |
| 402 | val neq_le_trans = thm "order_neq_le_trans"; | |
| 403 | val less_imp_neq = thm "less_imp_neq"; | |
| 404 | val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq"; | |
| 405 | val not_sym = thm "not_sym"; | |
| 406 | val decomp_part = decomp_gen ["Orderings.order"]; | |
| 407 | val decomp_lin = decomp_gen ["Orderings.linorder"]; | |
| 408 | end); | |
| 21091 | 409 | |
| 410 | end; | |
| 411 | *} | |
| 412 | ||
| 21083 | 413 | setup {*
 | 
| 414 | let | |
| 415 | ||
| 416 | fun prp t thm = (#prop (rep_thm thm) = t); | |
| 15524 | 417 | |
| 21083 | 418 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 419 | let val prems = prems_of_ss ss; | |
| 420 |       val less = Const("Orderings.less",T);
 | |
| 421 | val t = HOLogic.mk_Trueprop(le $ s $ r); | |
| 422 | in case find_first (prp t) prems of | |
| 423 | NONE => | |
| 424 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 425 | in case find_first (prp t) prems of | |
| 426 | NONE => NONE | |
| 22738 | 427 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv1}))
 | 
| 21083 | 428 | end | 
| 22738 | 429 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_antisym_conv}))
 | 
| 21083 | 430 | end | 
| 431 | handle THM _ => NONE; | |
| 15524 | 432 | |
| 21083 | 433 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 434 | let val prems = prems_of_ss ss; | |
| 435 |       val le = Const("Orderings.less_eq",T);
 | |
| 436 | val t = HOLogic.mk_Trueprop(le $ r $ s); | |
| 437 | in case find_first (prp t) prems of | |
| 438 | NONE => | |
| 439 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 440 | in case find_first (prp t) prems of | |
| 441 | NONE => NONE | |
| 22738 | 442 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv3}))
 | 
| 21083 | 443 | end | 
| 22738 | 444 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv2}))
 | 
| 21083 | 445 | end | 
| 446 | handle THM _ => NONE; | |
| 15524 | 447 | |
| 21248 | 448 | fun add_simprocs procs thy = | 
| 449 | (Simplifier.change_simpset_of thy (fn ss => ss | |
| 450 | addsimprocs (map (fn (name, raw_ts, proc) => | |
| 451 | Simplifier.simproc thy name raw_ts proc)) procs); thy); | |
| 452 | fun add_solver name tac thy = | |
| 453 | (Simplifier.change_simpset_of thy (fn ss => ss addSolver | |
| 454 | (mk_solver name (K tac))); thy); | |
| 21083 | 455 | |
| 456 | in | |
| 21248 | 457 | add_simprocs [ | 
| 458 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 459 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 460 | ] | |
| 461 | #> add_solver "Trans_linear" Order_Tac.linear_tac | |
| 462 | #> add_solver "Trans_partial" Order_Tac.partial_tac | |
| 463 | (* Adding the transitivity reasoners also as safe solvers showed a slight | |
| 464 | speed up, but the reasoning strength appears to be not higher (at least | |
| 465 | no breaking of additional proofs in the entire HOL distribution, as | |
| 466 | of 5 March 2004, was observed). *) | |
| 21083 | 467 | end | 
| 468 | *} | |
| 15524 | 469 | |
| 470 | ||
| 21083 | 471 | subsection {* Bounded quantifiers *}
 | 
| 472 | ||
| 473 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 474 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 475 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 476 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 477 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 478 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 479 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 480 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 481 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 482 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 483 | |
| 484 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 485 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 486 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 487 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 488 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 489 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 490 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 491 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 492 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 493 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 494 | |
| 495 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 496 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 497 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 498 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 499 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 500 | |
| 501 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 502 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 503 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 504 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 505 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 506 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 507 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 508 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 509 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 510 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 511 | |
| 512 | translations | |
| 513 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 514 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 515 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 516 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 517 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 518 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 519 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 520 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 521 | ||
| 522 | print_translation {*
 | |
| 523 | let | |
| 22377 | 524 |   val All_binder = Syntax.binder_name @{const_syntax "All"};
 | 
| 525 |   val Ex_binder = Syntax.binder_name @{const_syntax "Ex"};
 | |
| 526 |   val impl = @{const_syntax "op -->"};
 | |
| 527 |   val conj = @{const_syntax "op &"};
 | |
| 528 |   val less = @{const_syntax "less"};
 | |
| 529 |   val less_eq = @{const_syntax "less_eq"};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 530 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 531 | val trans = | 
| 21524 | 532 |    [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
| 533 |     ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | |
| 534 |     ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | |
| 535 |     ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 536 | |
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 537 | fun matches_bound v t = | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 538 |      case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 539 | | _ => false | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 540 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 541 | fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 542 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 543 | fun tr' q = (q, | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 544 |     fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 545 | (case AList.lookup (op =) trans (q, c, d) of | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 546 | NONE => raise Match | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 547 | | SOME (l, g) => | 
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 548 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 549 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 550 | else raise Match) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 551 | | _ => raise Match); | 
| 21524 | 552 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 553 | *} | 
| 554 | ||
| 555 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 556 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 557 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 558 | lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 559 | by (rule subst) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 560 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 561 | lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 562 | by (rule ssubst) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 563 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 564 | lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 565 | by (rule subst) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 566 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 567 | lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 568 | by (rule ssubst) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 569 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 570 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 571 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 572 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 573 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 574 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 575 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 576 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 577 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 578 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 579 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 580 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 581 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 582 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 583 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 584 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 585 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 586 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 587 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 588 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 589 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 590 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 591 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 592 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 593 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 594 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 595 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 596 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 597 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 598 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 599 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 600 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 601 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 602 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 603 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 604 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 605 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 606 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 607 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 608 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 609 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 610 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 611 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 612 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 613 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 614 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 615 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 616 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 617 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 618 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 619 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 620 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 621 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 622 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 623 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 624 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 625 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 626 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 627 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 628 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 629 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 630 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 631 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 632 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 633 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 634 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 635 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 636 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 637 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 638 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 639 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 640 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 641 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 642 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 643 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 644 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 645 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 646 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 647 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 648 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 649 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 650 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 651 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 652 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 653 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 654 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 655 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 656 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 657 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 658 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 659 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 660 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 661 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 662 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 663 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 664 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 665 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 666 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 667 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 668 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 669 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 670 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 671 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 672 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 673 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 674 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 675 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 676 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 677 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 678 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 679 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 680 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 681 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 682 | lemmas order_trans_rules [trans] = | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 683 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 684 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 685 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 686 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 687 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 688 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 689 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 690 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 691 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 692 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 693 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 694 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 695 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 696 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 697 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 698 | mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | order_neq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | order_le_neq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | order_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | order_less_asym' | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | order_le_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 704 | order_less_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | order_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | order_antisym | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | |
| 21083 | 713 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 714 | (* FIXME cleanup *) | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 715 | |
| 21083 | 716 | text {* These support proving chains of decreasing inequalities
 | 
| 717 | a >= b >= c ... in Isar proofs. *} | |
| 718 | ||
| 719 | lemma xt1: | |
| 720 | "a = b ==> b > c ==> a > c" | |
| 721 | "a > b ==> b = c ==> a > c" | |
| 722 | "a = b ==> b >= c ==> a >= c" | |
| 723 | "a >= b ==> b = c ==> a >= c" | |
| 724 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 725 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 726 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 727 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 728 | "(a::'a::order) > b ==> b > a ==> ?P" | |
| 729 | "(x::'a::order) > y ==> y > z ==> x > z" | |
| 730 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 731 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 732 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 733 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 734 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 735 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 736 | by auto | |
| 737 | ||
| 738 | lemma xt2: | |
| 739 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 740 | by (subgoal_tac "f b >= f c", force, force) | |
| 741 | ||
| 742 | lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | |
| 743 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 744 | by (subgoal_tac "f a >= f b", force, force) | |
| 745 | ||
| 746 | lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | |
| 747 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | |
| 748 | by (subgoal_tac "f b >= f c", force, force) | |
| 749 | ||
| 750 | lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | |
| 751 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 752 | by (subgoal_tac "f a > f b", force, force) | |
| 753 | ||
| 754 | lemma xt6: "(a::'a::order) >= f b ==> b > c ==> | |
| 755 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 756 | by (subgoal_tac "f b > f c", force, force) | |
| 757 | ||
| 758 | lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | |
| 759 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | |
| 760 | by (subgoal_tac "f a >= f b", force, force) | |
| 761 | ||
| 762 | lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | |
| 763 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 764 | by (subgoal_tac "f b > f c", force, force) | |
| 765 | ||
| 766 | lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | |
| 767 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 768 | by (subgoal_tac "f a > f b", force, force) | |
| 769 | ||
| 770 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | |
| 771 | ||
| 772 | (* | |
| 773 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 774 | for the wrong thing in an Isar proof. | |
| 775 | ||
| 776 | The extra transitivity rules can be used as follows: | |
| 777 | ||
| 778 | lemma "(a::'a::order) > z" | |
| 779 | proof - | |
| 780 | have "a >= b" (is "_ >= ?rhs") | |
| 781 | sorry | |
| 782 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 783 | sorry | |
| 784 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 785 | sorry | |
| 786 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 787 | sorry | |
| 788 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 789 | sorry | |
| 790 | also (xtrans) have "?rhs > z" | |
| 791 | sorry | |
| 792 | finally (xtrans) show ?thesis . | |
| 793 | qed | |
| 794 | ||
| 795 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 796 | leave out the "(xtrans)" above. | |
| 797 | *) | |
| 798 | ||
| 21546 | 799 | subsection {* Order on bool *}
 | 
| 800 | ||
| 801 | instance bool :: linorder | |
| 802 | le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q" | |
| 803 | less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q" | |
| 804 | by default (auto simp add: le_bool_def less_bool_def) | |
| 805 | ||
| 806 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 807 | by (simp add: le_bool_def) | |
| 808 | ||
| 809 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 810 | by (simp add: le_bool_def) | |
| 811 | ||
| 812 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 813 | by (simp add: le_bool_def) | |
| 814 | ||
| 815 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 816 | by (simp add: le_bool_def) | |
| 817 | ||
| 22348 | 818 | lemma [code func]: | 
| 819 | "False \<le> b \<longleftrightarrow> True" | |
| 820 | "True \<le> b \<longleftrightarrow> b" | |
| 821 | "False < b \<longleftrightarrow> b" | |
| 822 | "True < b \<longleftrightarrow> False" | |
| 823 | unfolding le_bool_def less_bool_def by simp_all | |
| 824 | ||
| 22424 | 825 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | subsection {* Monotonicity, syntactic least value operator and min/max *}
 | 
| 21083 | 827 | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 828 | locale mono = | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 829 | fixes f | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 830 | assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B" | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 831 | |
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 832 | lemmas monoI [intro?] = mono.intro | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 833 | and monoD [dest?] = mono.mono | 
| 21083 | 834 | |
| 835 | constdefs | |
| 836 |   Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
 | |
| 837 | "Least P == THE x. P x & (ALL y. P y --> x <= y)" | |
| 838 |     -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
 | |
| 839 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | lemma LeastI2_order: | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | "[| P (x::'a::order); | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | !!y. P y ==> x <= y; | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |] | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 844 | ==> Q (Least P)" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | apply (unfold Least_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | apply (rule theI2) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 847 | apply (blast intro: order_antisym)+ | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 848 | done | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 849 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 850 | lemma Least_equality: | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 851 | "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 852 | apply (simp add: Least_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 853 | apply (rule the_equality) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 854 | apply (auto intro!: order_antisym) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 855 | done | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 856 | |
| 22316 | 857 | lemmas min_le_iff_disj = linorder_class.min_le_iff_disj [unfolded min_linorder] | 
| 858 | lemmas le_max_iff_disj = linorder_class.le_max_iff_disj [unfolded max_linorder] | |
| 859 | lemmas min_less_iff_disj = linorder_class.min_less_iff_disj [unfolded min_linorder] | |
| 860 | lemmas less_max_iff_disj = linorder_class.less_max_iff_disj [unfolded max_linorder] | |
| 861 | lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj [unfolded min_linorder] | |
| 862 | lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj [unfolded max_linorder] | |
| 863 | lemmas split_min = linorder_class.split_min [unfolded min_linorder] | |
| 864 | lemmas split_max = linorder_class.split_max [unfolded max_linorder] | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 865 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | lemma min_leastL: "(!!x. least <= x) ==> min least x = least" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 867 | by (simp add: min_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 868 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 869 | lemma max_leastL: "(!!x. least <= x) ==> max least x = x" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 870 | by (simp add: max_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 871 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 872 | lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | apply (simp add: min_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | apply (blast intro: order_antisym) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | done | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | apply (simp add: max_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | apply (blast intro: order_antisym) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | done | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 881 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 882 | lemma min_of_mono: | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 883 | "(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 884 | by (simp add: min_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 885 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 886 | lemma max_of_mono: | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 887 | "(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 888 | by (simp add: max_def) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 889 | |
| 22548 | 890 | |
| 891 | subsection {* legacy ML bindings *}
 | |
| 21673 | 892 | |
| 893 | ML {*
 | |
| 22548 | 894 | val monoI = @{thm monoI};
 | 
| 21673 | 895 | |
| 896 | structure HOL = | |
| 897 | struct | |
| 898 | val thy = theory "HOL"; | |
| 899 | end; | |
| 900 | *} -- "belongs to theory HOL" | |
| 901 | ||
| 15524 | 902 | end |