|
22141
|
1 |
(* Title: HOL/ex/Binary.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Makarius
|
|
|
4 |
*)
|
|
|
5 |
|
|
|
6 |
header {* Simple and efficient binary numerals *}
|
|
|
7 |
|
|
|
8 |
theory Binary
|
|
|
9 |
imports Main
|
|
|
10 |
begin
|
|
|
11 |
|
|
|
12 |
subsection {* Binary representation of natural numbers *}
|
|
|
13 |
|
|
|
14 |
definition
|
|
|
15 |
bit :: "nat \<Rightarrow> bool \<Rightarrow> nat" where
|
|
|
16 |
"bit n b = (if b then 2 * n + 1 else 2 * n)"
|
|
|
17 |
|
|
|
18 |
lemma bit_simps:
|
|
|
19 |
"bit n False = 2 * n"
|
|
|
20 |
"bit n True = 2 * n + 1"
|
|
|
21 |
unfolding bit_def by simp_all
|
|
|
22 |
|
|
|
23 |
|
|
|
24 |
subsection {* Direct operations -- plain normalization *}
|
|
|
25 |
|
|
|
26 |
lemma binary_norm:
|
|
|
27 |
"bit 0 False = 0"
|
|
|
28 |
"bit 0 True = 1"
|
|
|
29 |
unfolding bit_def by simp_all
|
|
|
30 |
|
|
|
31 |
lemma binary_add:
|
|
|
32 |
"n + 0 = n"
|
|
|
33 |
"0 + n = n"
|
|
|
34 |
"1 + 1 = bit 1 False"
|
|
|
35 |
"bit n False + 1 = bit n True"
|
|
|
36 |
"bit n True + 1 = bit (n + 1) False"
|
|
|
37 |
"1 + bit n False = bit n True"
|
|
|
38 |
"1 + bit n True = bit (n + 1) False"
|
|
|
39 |
"bit m False + bit n False = bit (m + n) False"
|
|
|
40 |
"bit m False + bit n True = bit (m + n) True"
|
|
|
41 |
"bit m True + bit n False = bit (m + n) True"
|
|
|
42 |
"bit m True + bit n True = bit ((m + n) + 1) False"
|
|
|
43 |
by (simp_all add: bit_simps)
|
|
|
44 |
|
|
|
45 |
lemma binary_mult:
|
|
|
46 |
"n * 0 = 0"
|
|
|
47 |
"0 * n = 0"
|
|
|
48 |
"n * 1 = n"
|
|
|
49 |
"1 * n = n"
|
|
|
50 |
"bit m True * n = bit (m * n) False + n"
|
|
|
51 |
"bit m False * n = bit (m * n) False"
|
|
|
52 |
"n * bit m True = bit (m * n) False + n"
|
|
|
53 |
"n * bit m False = bit (m * n) False"
|
|
|
54 |
by (simp_all add: bit_simps)
|
|
|
55 |
|
|
|
56 |
lemmas binary_simps = binary_norm binary_add binary_mult
|
|
|
57 |
|
|
|
58 |
|
|
|
59 |
subsection {* Indirect operations -- ML will produce witnesses *}
|
|
|
60 |
|
|
|
61 |
lemma binary_less_eq:
|
|
|
62 |
fixes n :: nat
|
|
|
63 |
shows "n \<equiv> m + k \<Longrightarrow> (m \<le> n) \<equiv> True"
|
|
|
64 |
and "m \<equiv> n + k + 1 \<Longrightarrow> (m \<le> n) \<equiv> False"
|
|
|
65 |
by simp_all
|
|
|
66 |
|
|
|
67 |
lemma binary_less:
|
|
|
68 |
fixes n :: nat
|
|
|
69 |
shows "m \<equiv> n + k \<Longrightarrow> (m < n) \<equiv> False"
|
|
|
70 |
and "n \<equiv> m + k + 1 \<Longrightarrow> (m < n) \<equiv> True"
|
|
|
71 |
by simp_all
|
|
|
72 |
|
|
|
73 |
lemma binary_diff:
|
|
|
74 |
fixes n :: nat
|
|
|
75 |
shows "m \<equiv> n + k \<Longrightarrow> m - n \<equiv> k"
|
|
|
76 |
and "n \<equiv> m + k \<Longrightarrow> m - n \<equiv> 0"
|
|
|
77 |
by simp_all
|
|
|
78 |
|
|
|
79 |
lemma binary_divmod:
|
|
|
80 |
fixes n :: nat
|
|
|
81 |
assumes "m \<equiv> n * k + l" and "0 < n" and "l < n"
|
|
|
82 |
shows "m div n \<equiv> k"
|
|
|
83 |
and "m mod n \<equiv> l"
|
|
|
84 |
proof -
|
|
|
85 |
from `m \<equiv> n * k + l` have "m = l + k * n" by simp
|
|
|
86 |
with `0 < n` and `l < n` show "m div n \<equiv> k" and "m mod n \<equiv> l" by simp_all
|
|
|
87 |
qed
|
|
|
88 |
|
|
|
89 |
ML {*
|
|
|
90 |
fun dest_bit (Const ("False", _)) = 0
|
|
|
91 |
| dest_bit (Const ("True", _)) = 1
|
|
|
92 |
| dest_bit t = raise TERM ("dest_bit", [t]);
|
|
|
93 |
|
|
|
94 |
fun dest_binary (Const ("HOL.zero", Type ("nat", _))) = 0
|
|
|
95 |
| dest_binary (Const ("HOL.one", Type ("nat", _))) = 1
|
|
|
96 |
| dest_binary (Const ("Binary.bit", _) $ bs $ b) =
|
|
|
97 |
2 * dest_binary bs + IntInf.fromInt (dest_bit b)
|
|
|
98 |
| dest_binary t = raise TERM ("dest_binary", [t]);
|
|
|
99 |
|
|
22153
|
100 |
fun mk_bit 0 = @{term False}
|
|
|
101 |
| mk_bit 1 = @{term True}
|
|
22141
|
102 |
| mk_bit _ = raise TERM ("mk_bit", []);
|
|
|
103 |
|
|
22153
|
104 |
fun mk_binary 0 = @{term "0::nat"}
|
|
|
105 |
| mk_binary 1 = @{term "1::nat"}
|
|
22141
|
106 |
| mk_binary n =
|
|
|
107 |
if n < 0 then raise TERM ("mk_binary", [])
|
|
|
108 |
else
|
|
|
109 |
let val (q, r) = IntInf.divMod (n, 2)
|
|
22153
|
110 |
in @{term bit} $ mk_binary q $ mk_bit (IntInf.toInt r) end;
|
|
22141
|
111 |
*}
|
|
|
112 |
|
|
|
113 |
ML {*
|
|
|
114 |
local
|
|
|
115 |
val binary_ss = HOL_basic_ss addsimps @{thms binary_simps};
|
|
22156
|
116 |
fun prove ctxt prop =
|
|
|
117 |
Goal.prove ctxt [] [] prop (fn _ => ALLGOALS (full_simp_tac binary_ss));
|
|
22141
|
118 |
|
|
|
119 |
infix ==;
|
|
|
120 |
val op == = Logic.mk_equals;
|
|
|
121 |
|
|
22153
|
122 |
fun plus m n = @{term "plus :: nat \<Rightarrow> nat \<Rightarrow> nat"} $ m $ n;
|
|
|
123 |
fun mult m n = @{term "times :: nat \<Rightarrow> nat \<Rightarrow> nat"} $ m $ n;
|
|
22141
|
124 |
|
|
|
125 |
|
|
|
126 |
exception FAIL;
|
|
|
127 |
fun the_arg t = (t, dest_binary t handle TERM _ => raise FAIL);
|
|
|
128 |
|
|
22153
|
129 |
val read = Thm.cterm_of @{theory} o Sign.read_term @{theory};
|
|
22141
|
130 |
fun mk_proc name pat proc = Simplifier.mk_simproc' name [read pat]
|
|
|
131 |
(fn ss => fn ct =>
|
|
|
132 |
(case Thm.term_of ct of
|
|
|
133 |
_ $ t $ u =>
|
|
|
134 |
(SOME (proc (Simplifier.the_context ss) (the_arg t) (the_arg u)) handle FAIL => NONE)
|
|
|
135 |
| _ => NONE));
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
val less_eq_simproc = mk_proc "binary_nat_less_eq" "?m <= (?n::nat)"
|
|
|
139 |
(fn ctxt => fn (t, m) => fn (u, n) =>
|
|
|
140 |
let val k = n - m in
|
|
22153
|
141 |
if k >= 0 then @{thm binary_less_eq(1)} OF [prove ctxt (u == plus t (mk_binary k))]
|
|
|
142 |
else @{thm binary_less_eq(2)} OF
|
|
22141
|
143 |
[prove ctxt (t == plus (plus u (mk_binary (~ k - 1))) (mk_binary 1))]
|
|
|
144 |
end);
|
|
|
145 |
|
|
|
146 |
val less_simproc = mk_proc "binary_nat_less" "?m < (?n::nat)"
|
|
|
147 |
(fn ctxt => fn (t, m) => fn (u, n) =>
|
|
|
148 |
let val k = m - n in
|
|
22153
|
149 |
if k >= 0 then @{thm binary_less(1)} OF [prove ctxt (t == plus u (mk_binary k))]
|
|
|
150 |
else @{thm binary_less(2)} OF
|
|
|
151 |
[prove ctxt (u == plus (plus t (mk_binary (~ k - 1))) (mk_binary 1))]
|
|
22141
|
152 |
end);
|
|
|
153 |
|
|
|
154 |
val diff_simproc = mk_proc "binary_nat_diff" "?m - (?n::nat)"
|
|
|
155 |
(fn ctxt => fn (t, m) => fn (u, n) =>
|
|
|
156 |
let val k = m - n in
|
|
22153
|
157 |
if k >= 0 then @{thm binary_diff(1)} OF [prove ctxt (t == plus u (mk_binary k))]
|
|
|
158 |
else @{thm binary_diff(2)} OF [prove ctxt (u == plus t (mk_binary (~ k)))]
|
|
22141
|
159 |
end);
|
|
|
160 |
|
|
|
161 |
fun divmod_proc rule ctxt (t, m) (u, n) =
|
|
|
162 |
if n = 0 then raise FAIL
|
|
|
163 |
else
|
|
|
164 |
let val (k, l) = IntInf.divMod (m, n)
|
|
|
165 |
in rule OF [prove ctxt (t == plus (mult u (mk_binary k)) (mk_binary l))] end;
|
|
|
166 |
|
|
22153
|
167 |
val div_simproc = mk_proc "binary_nat_div" "?m div (?n::nat)"
|
|
|
168 |
(divmod_proc @{thm binary_divmod(1)});
|
|
|
169 |
val mod_simproc = mk_proc "binary_nat_mod" "?m mod (?n::nat)"
|
|
|
170 |
(divmod_proc @{thm binary_divmod(2)});
|
|
22141
|
171 |
in
|
|
|
172 |
val binary_nat_simprocs =
|
|
|
173 |
[less_eq_simproc, less_simproc, diff_simproc, div_simproc, mod_simproc];
|
|
|
174 |
end
|
|
|
175 |
*}
|
|
|
176 |
|
|
|
177 |
|
|
|
178 |
subsection {* Concrete syntax *}
|
|
|
179 |
|
|
|
180 |
syntax
|
|
|
181 |
"_Binary" :: "num_const \<Rightarrow> 'a" ("$_")
|
|
|
182 |
|
|
|
183 |
parse_translation {*
|
|
|
184 |
let
|
|
|
185 |
|
|
|
186 |
val syntax_consts = map_aterms (fn Const (c, T) => Const (Syntax.constN ^ c, T) | a => a);
|
|
|
187 |
|
|
|
188 |
fun binary_tr [t as Const (num, _)] =
|
|
|
189 |
let
|
|
|
190 |
val {leading_zeros = z, value = n, ...} = Syntax.read_xnum num;
|
|
|
191 |
val _ = z = 0 andalso n >= 0 orelse error ("Bad binary number: " ^ num);
|
|
|
192 |
in syntax_consts (mk_binary n) end
|
|
|
193 |
| binary_tr ts = raise TERM ("binary_tr", ts);
|
|
|
194 |
|
|
|
195 |
in [("_Binary", binary_tr)] end
|
|
|
196 |
*}
|
|
|
197 |
|
|
|
198 |
|
|
|
199 |
subsection {* Examples *}
|
|
|
200 |
|
|
|
201 |
method_setup binary_simp = {*
|
|
|
202 |
Method.no_args (Method.SIMPLE_METHOD'
|
|
|
203 |
(full_simp_tac (HOL_basic_ss addsimps @{thms binary_simps} addsimprocs binary_nat_simprocs)))
|
|
|
204 |
*} "binary simplification"
|
|
|
205 |
|
|
|
206 |
|
|
|
207 |
lemma "$6 = 6"
|
|
|
208 |
by (simp add: bit_simps)
|
|
|
209 |
|
|
|
210 |
lemma "bit (bit (bit 0 False) False) True = 1"
|
|
|
211 |
by (simp add: bit_simps)
|
|
|
212 |
|
|
|
213 |
lemma "bit (bit (bit 0 False) False) True = bit 0 True"
|
|
|
214 |
by (simp add: bit_simps)
|
|
|
215 |
|
|
|
216 |
lemma "$5 + $3 = $8"
|
|
|
217 |
by binary_simp
|
|
|
218 |
|
|
|
219 |
lemma "$5 * $3 = $15"
|
|
|
220 |
by binary_simp
|
|
|
221 |
|
|
|
222 |
lemma "$5 - $3 = $2"
|
|
|
223 |
by binary_simp
|
|
|
224 |
|
|
|
225 |
lemma "$3 - $5 = 0"
|
|
|
226 |
by binary_simp
|
|
|
227 |
|
|
|
228 |
lemma "$123456789 - $123 = $123456666"
|
|
|
229 |
by binary_simp
|
|
|
230 |
|
|
|
231 |
lemma "$1111111111222222222233333333334444444444 - $998877665544332211 =
|
|
|
232 |
$1111111111222222222232334455668900112233"
|
|
|
233 |
by binary_simp
|
|
|
234 |
|
|
|
235 |
lemma "(1111111111222222222233333333334444444444::nat) - 998877665544332211 =
|
|
|
236 |
1111111111222222222232334455668900112233"
|
|
|
237 |
by simp
|
|
|
238 |
|
|
|
239 |
lemma "(1111111111222222222233333333334444444444::int) - 998877665544332211 =
|
|
|
240 |
1111111111222222222232334455668900112233"
|
|
|
241 |
by simp
|
|
|
242 |
|
|
|
243 |
lemma "$1111111111222222222233333333334444444444 * $998877665544332211 =
|
|
|
244 |
$1109864072938022197293802219729380221972383090160869185684"
|
|
|
245 |
by binary_simp
|
|
|
246 |
|
|
|
247 |
lemma "$1111111111222222222233333333334444444444 * $998877665544332211 -
|
|
|
248 |
$5555555555666666666677777777778888888888 =
|
|
|
249 |
$1109864072938022191738246664062713555294605312381980296796"
|
|
|
250 |
by binary_simp
|
|
|
251 |
|
|
|
252 |
lemma "$42 < $4 = False"
|
|
|
253 |
by binary_simp
|
|
|
254 |
|
|
|
255 |
lemma "$4 < $42 = True"
|
|
|
256 |
by binary_simp
|
|
|
257 |
|
|
|
258 |
lemma "$42 <= $4 = False"
|
|
|
259 |
by binary_simp
|
|
|
260 |
|
|
|
261 |
lemma "$4 <= $42 = True"
|
|
|
262 |
by binary_simp
|
|
|
263 |
|
|
|
264 |
lemma "$1111111111222222222233333333334444444444 < $998877665544332211 = False"
|
|
|
265 |
by binary_simp
|
|
|
266 |
|
|
|
267 |
lemma "$998877665544332211 < $1111111111222222222233333333334444444444 = True"
|
|
|
268 |
by binary_simp
|
|
|
269 |
|
|
|
270 |
lemma "$1111111111222222222233333333334444444444 <= $998877665544332211 = False"
|
|
|
271 |
by binary_simp
|
|
|
272 |
|
|
|
273 |
lemma "$998877665544332211 <= $1111111111222222222233333333334444444444 = True"
|
|
|
274 |
by binary_simp
|
|
|
275 |
|
|
|
276 |
lemma "$1234 div $23 = $53"
|
|
|
277 |
by binary_simp
|
|
|
278 |
|
|
|
279 |
lemma "$1234 mod $23 = $15"
|
|
|
280 |
by binary_simp
|
|
|
281 |
|
|
|
282 |
lemma "$1111111111222222222233333333334444444444 div $998877665544332211 =
|
|
|
283 |
$1112359550673033707875"
|
|
|
284 |
by binary_simp
|
|
|
285 |
|
|
|
286 |
lemma "$1111111111222222222233333333334444444444 mod $998877665544332211 =
|
|
|
287 |
$42245174317582819"
|
|
|
288 |
by binary_simp
|
|
|
289 |
|
|
22153
|
290 |
lemma "(1111111111222222222233333333334444444444::int) div 998877665544332211 =
|
|
|
291 |
1112359550673033707875"
|
|
|
292 |
by simp -- {* legacy numerals: 30 times slower *}
|
|
|
293 |
|
|
22141
|
294 |
lemma "(1111111111222222222233333333334444444444::int) mod 998877665544332211 =
|
|
|
295 |
42245174317582819"
|
|
22153
|
296 |
by simp -- {* legacy numerals: 30 times slower *}
|
|
22141
|
297 |
|
|
|
298 |
end
|