Simple and efficient binary numerals.
authorwenzelm
Sat, 20 Jan 2007 14:27:46 +0100
changeset 22141 a91334ece12a
parent 22140 0d49078c28bd
child 22142 2b54aa7586e2
Simple and efficient binary numerals.
src/HOL/ex/Binary.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Binary.thy	Sat Jan 20 14:27:46 2007 +0100
@@ -0,0 +1,305 @@
+(*  Title:      HOL/ex/Binary.thy
+    ID:         $Id$
+    Author:     Makarius
+*)
+
+header {* Simple and efficient binary numerals *}
+
+theory Binary
+imports Main
+begin
+
+subsection {* Binary representation of natural numbers *}
+
+definition
+  bit :: "nat \<Rightarrow> bool \<Rightarrow> nat" where
+  "bit n b = (if b then 2 * n + 1 else 2 * n)"
+
+lemma bit_simps:
+    "bit n False = 2 * n"
+    "bit n True = 2 * n + 1"
+  unfolding bit_def by simp_all
+
+
+subsection {* Direct operations -- plain normalization *}
+
+lemma binary_norm:
+    "bit 0 False = 0"
+    "bit 0 True = 1"
+  unfolding bit_def by simp_all
+
+lemma binary_add:
+    "n + 0 = n"
+    "0 + n = n"
+    "1 + 1 = bit 1 False"
+    "bit n False + 1 = bit n True"
+    "bit n True + 1 = bit (n + 1) False"
+    "1 + bit n False = bit n True"
+    "1 + bit n True = bit (n + 1) False"
+    "bit m False + bit n False = bit (m + n) False"
+    "bit m False + bit n True = bit (m + n) True"
+    "bit m True + bit n False = bit (m + n) True"
+    "bit m True + bit n True = bit ((m + n) + 1) False"
+  by (simp_all add: bit_simps)
+
+lemma binary_mult:
+    "n * 0 = 0"
+    "0 * n = 0"
+    "n * 1 = n"
+    "1 * n = n"
+    "bit m True * n = bit (m * n) False + n"
+    "bit m False * n = bit (m * n) False"
+    "n * bit m True = bit (m * n) False + n"
+    "n * bit m False = bit (m * n) False"
+  by (simp_all add: bit_simps)
+
+lemmas binary_simps = binary_norm binary_add binary_mult
+
+
+subsection {* Indirect operations -- ML will produce witnesses *}
+
+lemma binary_less_eq:
+  fixes n :: nat
+  shows "n \<equiv> m + k \<Longrightarrow> (m \<le> n) \<equiv> True"
+    and "m \<equiv> n + k + 1 \<Longrightarrow> (m \<le> n) \<equiv> False"
+  by simp_all
+  
+lemma binary_less:
+  fixes n :: nat
+  shows "m \<equiv> n + k \<Longrightarrow> (m < n) \<equiv> False"
+    and "n \<equiv> m + k + 1 \<Longrightarrow> (m < n) \<equiv> True"
+  by simp_all
+
+lemma binary_diff:
+  fixes n :: nat
+  shows "m \<equiv> n + k \<Longrightarrow> m - n \<equiv> k"
+    and "n \<equiv> m + k \<Longrightarrow> m - n \<equiv> 0"
+  by simp_all
+
+lemma binary_divmod:
+  fixes n :: nat
+  assumes "m \<equiv> n * k + l" and "0 < n" and "l < n"
+  shows "m div n \<equiv> k"
+    and "m mod n \<equiv> l"
+proof -
+  from `m \<equiv> n * k + l` have "m = l + k * n" by simp
+  with `0 < n` and `l < n` show "m div n \<equiv> k" and "m mod n \<equiv> l" by simp_all
+qed
+
+ML {*
+  fun dest_bit (Const ("False", _)) = 0
+    | dest_bit (Const ("True", _)) = 1
+    | dest_bit t = raise TERM ("dest_bit", [t]);
+
+  fun dest_binary (Const ("HOL.zero", Type ("nat", _))) = 0
+    | dest_binary (Const ("HOL.one", Type ("nat", _))) = 1
+    | dest_binary (Const ("Binary.bit", _) $ bs $ b) =
+        2 * dest_binary bs + IntInf.fromInt (dest_bit b)
+    | dest_binary t = raise TERM ("dest_binary", [t]);
+
+  val bit_const = Const ("Binary.bit", HOLogic.natT --> HOLogic.boolT --> HOLogic.natT);
+
+  fun mk_bit 0 = HOLogic.false_const
+    | mk_bit 1 = HOLogic.true_const
+    | mk_bit _ = raise TERM ("mk_bit", []);
+
+  fun mk_binary 0 = Const ("HOL.zero", HOLogic.natT)
+    | mk_binary 1 = Const ("HOL.one", HOLogic.natT)
+    | mk_binary n =
+        if n < 0 then raise TERM ("mk_binary", [])
+        else
+          let val (q, r) = IntInf.divMod (n, 2)
+          in bit_const $ mk_binary q $ mk_bit (IntInf.toInt r) end;
+*}
+
+ML {*
+local
+  val binary_ss = HOL_basic_ss addsimps @{thms binary_simps};
+  val [binary_less_eq1, binary_less_eq2] = @{thms binary_less_eq};
+  val [binary_less1, binary_less2] = @{thms binary_less}
+  val [binary_diff1, binary_diff2] = @{thms binary_diff}
+  val [binary_div, binary_mod] = @{thms binary_divmod}
+
+  infix ==;
+  val op == = Logic.mk_equals;
+
+  fun nat_op c t u = Const (c, HOLogic.natT --> HOLogic.natT --> HOLogic.natT) $ t $ u;
+  val plus = nat_op "HOL.plus";
+  val mult = nat_op "HOL.times";
+
+  fun prove ctxt prop =  (* FIXME avoid re-certification *)
+    Goal.prove ctxt [] [] prop (fn _ => ALLGOALS (full_simp_tac binary_ss));
+
+
+  exception FAIL;
+  fun the_arg t = (t, dest_binary t handle TERM _ => raise FAIL);
+
+  val read =
+    let val thy = the_context () in Thm.cterm_of thy o Sign.read_term thy end;
+  fun mk_proc name pat proc = Simplifier.mk_simproc' name [read pat]
+    (fn ss => fn ct =>
+      (case Thm.term_of ct of
+        _ $ t $ u =>
+          (SOME (proc (Simplifier.the_context ss) (the_arg t) (the_arg u)) handle FAIL => NONE)
+      | _ => NONE));
+
+
+  val less_eq_simproc = mk_proc "binary_nat_less_eq" "?m <= (?n::nat)"
+    (fn ctxt => fn (t, m) => fn (u, n) =>
+      let val k = n - m in
+        if k >= 0 then binary_less_eq1 OF [prove ctxt (u == plus t (mk_binary k))]
+        else binary_less_eq2 OF
+          [prove ctxt (t == plus (plus u (mk_binary (~ k - 1))) (mk_binary 1))]
+      end);
+
+  val less_simproc = mk_proc "binary_nat_less" "?m < (?n::nat)"
+    (fn ctxt => fn (t, m) => fn (u, n) =>
+      let val k = m - n in
+        if k >= 0 then binary_less1 OF [prove ctxt (t == plus u (mk_binary k))]
+        else binary_less2 OF [prove ctxt (u == plus (plus t (mk_binary (~ k - 1))) (mk_binary 1))]
+      end);
+
+  val diff_simproc = mk_proc "binary_nat_diff" "?m - (?n::nat)"
+    (fn ctxt => fn (t, m) => fn (u, n) =>
+      let val k = m - n in
+        if k >= 0 then binary_diff1 OF [prove ctxt (t == plus u (mk_binary k))]
+        else binary_diff2 OF [prove ctxt (u == plus t (mk_binary (~ k)))]
+      end);
+
+  fun divmod_proc rule ctxt (t, m) (u, n) =
+    if n = 0 then raise FAIL
+    else
+      let val (k, l) = IntInf.divMod (m, n)
+      in rule OF [prove ctxt (t == plus (mult u (mk_binary k)) (mk_binary l))] end;
+
+  val div_simproc = mk_proc "binary_nat_div" "?m div (?n::nat)" (divmod_proc binary_div);
+  val mod_simproc = mk_proc "binary_nat_mod" "?m mod (?n::nat)" (divmod_proc binary_mod);
+
+in
+  val binary_nat_simprocs =
+    [less_eq_simproc, less_simproc, diff_simproc, div_simproc, mod_simproc];
+end
+*}
+
+
+subsection {* Concrete syntax *}
+
+syntax
+  "_Binary" :: "num_const \<Rightarrow> 'a"    ("$_")
+
+parse_translation {*
+let
+
+val syntax_consts = map_aterms (fn Const (c, T) => Const (Syntax.constN ^ c, T) | a => a);
+
+fun binary_tr [t as Const (num, _)] =
+      let
+        val {leading_zeros = z, value = n, ...} = Syntax.read_xnum num;
+        val _ = z = 0 andalso n >= 0 orelse error ("Bad binary number: " ^ num);
+      in syntax_consts (mk_binary n) end
+  | binary_tr ts = raise TERM ("binary_tr", ts);
+
+in [("_Binary", binary_tr)] end
+*}
+
+
+subsection {* Examples *}
+
+method_setup binary_simp = {*
+  Method.no_args (Method.SIMPLE_METHOD'
+    (full_simp_tac (HOL_basic_ss addsimps @{thms binary_simps} addsimprocs binary_nat_simprocs)))
+*} "binary simplification"
+
+
+lemma "$6 = 6"
+  by (simp add: bit_simps)
+
+lemma "bit (bit (bit 0 False) False) True = 1"
+  by (simp add: bit_simps)
+
+lemma "bit (bit (bit 0 False) False) True = bit 0 True"
+  by (simp add: bit_simps)
+
+lemma "$5 + $3 = $8"
+  by binary_simp
+
+lemma "$5 * $3 = $15"
+  by binary_simp
+
+lemma "$5 - $3 = $2"
+  by binary_simp
+
+lemma "$3 - $5 = 0"
+  by binary_simp
+
+lemma "$123456789 - $123 = $123456666"
+  by binary_simp
+
+lemma "$1111111111222222222233333333334444444444 - $998877665544332211 =
+  $1111111111222222222232334455668900112233"
+  by binary_simp
+
+lemma "(1111111111222222222233333333334444444444::nat) - 998877665544332211 =
+  1111111111222222222232334455668900112233"
+  by simp
+
+lemma "(1111111111222222222233333333334444444444::int) - 998877665544332211 =
+  1111111111222222222232334455668900112233"
+  by simp
+
+lemma "$1111111111222222222233333333334444444444 * $998877665544332211 =
+    $1109864072938022197293802219729380221972383090160869185684"
+  by binary_simp
+
+lemma "$1111111111222222222233333333334444444444 * $998877665544332211 -
+      $5555555555666666666677777777778888888888 =
+    $1109864072938022191738246664062713555294605312381980296796"
+  by binary_simp
+
+lemma "$42 < $4 = False"
+  by binary_simp
+
+lemma "$4 < $42 = True"
+  by binary_simp
+
+lemma "$42 <= $4 = False"
+  by binary_simp
+
+lemma "$4 <= $42 = True"
+  by binary_simp
+
+lemma "$1111111111222222222233333333334444444444 < $998877665544332211 = False"
+  by binary_simp
+
+lemma "$998877665544332211 < $1111111111222222222233333333334444444444 = True"
+  by binary_simp
+
+lemma "$1111111111222222222233333333334444444444 <= $998877665544332211 = False"
+  by binary_simp
+
+lemma "$998877665544332211 <= $1111111111222222222233333333334444444444 = True"
+  by binary_simp
+
+lemma "$1234 div $23 = $53"
+  by binary_simp
+
+lemma "$1234 mod $23 = $15"
+  by binary_simp
+
+lemma "$1111111111222222222233333333334444444444 div $998877665544332211 =
+    $1112359550673033707875"
+  by binary_simp
+
+lemma "(1111111111222222222233333333334444444444::int) div 998877665544332211 =
+    1112359550673033707875"
+  by simp  -- {* existing numerals: slower by factor 30 *}
+
+lemma "$1111111111222222222233333333334444444444 mod $998877665544332211 =
+    $42245174317582819"
+  by binary_simp
+
+lemma "(1111111111222222222233333333334444444444::int) mod 998877665544332211 =
+    42245174317582819"
+  by simp  -- {* existing numerals: slower by factor 30 *}
+
+end