author | wenzelm |
Fri, 15 Oct 2021 21:10:54 +0200 | |
changeset 74527 | 52eadb60499f |
parent 71886 | 4f4695757980 |
child 76213 | e44d86131648 |
permissions | -rw-r--r-- |
41777 | 1 |
(* Title: ZF/pair.thy |
13240 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1992 University of Cambridge |
|
4 |
*) |
|
5 |
||
60770 | 6 |
section\<open>Ordered Pairs\<close> |
13357 | 7 |
|
16417 | 8 |
theory pair imports upair |
42455 | 9 |
begin |
10 |
||
69605 | 11 |
ML_file \<open>simpdata.ML\<close> |
48891 | 12 |
|
60770 | 13 |
setup \<open> |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
48891
diff
changeset
|
14 |
map_theory_simpset |
60822 | 15 |
(Simplifier.set_mksimps (fn ctxt => map mk_eq o ZF_atomize o Variable.gen_all ctxt) |
45625
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
wenzelm
parents:
45620
diff
changeset
|
16 |
#> Simplifier.add_cong @{thm if_weak_cong}) |
60770 | 17 |
\<close> |
42794 | 18 |
|
69593 | 19 |
ML \<open>val ZF_ss = simpset_of \<^context>\<close> |
42794 | 20 |
|
60770 | 21 |
simproc_setup defined_Bex ("\<exists>x\<in>A. P(x) & Q(x)") = \<open> |
71886 | 22 |
fn _ => Quantifier1.rearrange_Bex |
23 |
(fn ctxt => unfold_tac ctxt @{thms Bex_def}) |
|
60770 | 24 |
\<close> |
42455 | 25 |
|
60770 | 26 |
simproc_setup defined_Ball ("\<forall>x\<in>A. P(x) \<longrightarrow> Q(x)") = \<open> |
71886 | 27 |
fn _ => Quantifier1.rearrange_Ball |
28 |
(fn ctxt => unfold_tac ctxt @{thms Ball_def}) |
|
60770 | 29 |
\<close> |
42455 | 30 |
|
13240 | 31 |
|
32 |
(** Lemmas for showing that <a,b> uniquely determines a and b **) |
|
33 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
34 |
lemma singleton_eq_iff [iff]: "{a} = {b} \<longleftrightarrow> a=b" |
13240 | 35 |
by (rule extension [THEN iff_trans], blast) |
36 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
37 |
lemma doubleton_eq_iff: "{a,b} = {c,d} \<longleftrightarrow> (a=c & b=d) | (a=d & b=c)" |
13240 | 38 |
by (rule extension [THEN iff_trans], blast) |
39 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
40 |
lemma Pair_iff [simp]: "<a,b> = <c,d> \<longleftrightarrow> a=c & b=d" |
13240 | 41 |
by (simp add: Pair_def doubleton_eq_iff, blast) |
42 |
||
45602 | 43 |
lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!] |
13240 | 44 |
|
45602 | 45 |
lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1] |
46 |
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2] |
|
13240 | 47 |
|
46820 | 48 |
lemma Pair_not_0: "<a,b> \<noteq> 0" |
13240 | 49 |
apply (unfold Pair_def) |
50 |
apply (blast elim: equalityE) |
|
51 |
done |
|
52 |
||
45602 | 53 |
lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!] |
13240 | 54 |
|
55 |
declare sym [THEN Pair_neq_0, elim!] |
|
56 |
||
57 |
lemma Pair_neq_fst: "<a,b>=a ==> P" |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
58 |
proof (unfold Pair_def) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
59 |
assume eq: "{{a, a}, {a, b}} = a" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
60 |
have "{a, a} \<in> {{a, a}, {a, b}}" by (rule consI1) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
61 |
hence "{a, a} \<in> a" by (simp add: eq) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
62 |
moreover have "a \<in> {a, a}" by (rule consI1) |
46953 | 63 |
ultimately show "P" by (rule mem_asym) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
64 |
qed |
13240 | 65 |
|
66 |
lemma Pair_neq_snd: "<a,b>=b ==> P" |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
67 |
proof (unfold Pair_def) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
68 |
assume eq: "{{a, a}, {a, b}} = b" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
69 |
have "{a, b} \<in> {{a, a}, {a, b}}" by blast |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
70 |
hence "{a, b} \<in> b" by (simp add: eq) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
71 |
moreover have "b \<in> {a, b}" by blast |
46953 | 72 |
ultimately show "P" by (rule mem_asym) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
73 |
qed |
13240 | 74 |
|
75 |
||
60770 | 76 |
subsection\<open>Sigma: Disjoint Union of a Family of Sets\<close> |
13357 | 77 |
|
60770 | 78 |
text\<open>Generalizes Cartesian product\<close> |
13240 | 79 |
|
46953 | 80 |
lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) \<longleftrightarrow> a \<in> A & b \<in> B(a)" |
13240 | 81 |
by (simp add: Sigma_def) |
82 |
||
46953 | 83 |
lemma SigmaI [TC,intro!]: "[| a \<in> A; b \<in> B(a) |] ==> <a,b> \<in> Sigma(A,B)" |
13240 | 84 |
by simp |
85 |
||
45602 | 86 |
lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1] |
87 |
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2] |
|
13240 | 88 |
|
89 |
(*The general elimination rule*) |
|
90 |
lemma SigmaE [elim!]: |
|
46953 | 91 |
"[| c \<in> Sigma(A,B); |
92 |
!!x y.[| x \<in> A; y \<in> B(x); c=<x,y> |] ==> P |
|
13240 | 93 |
|] ==> P" |
46953 | 94 |
by (unfold Sigma_def, blast) |
13240 | 95 |
|
96 |
lemma SigmaE2 [elim!]: |
|
46953 | 97 |
"[| <a,b> \<in> Sigma(A,B); |
98 |
[| a \<in> A; b \<in> B(a) |] ==> P |
|
13240 | 99 |
|] ==> P" |
46953 | 100 |
by (unfold Sigma_def, blast) |
13240 | 101 |
|
102 |
lemma Sigma_cong: |
|
46953 | 103 |
"[| A=A'; !!x. x \<in> A' ==> B(x)=B'(x) |] ==> |
13240 | 104 |
Sigma(A,B) = Sigma(A',B')" |
105 |
by (simp add: Sigma_def) |
|
106 |
||
107 |
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause |
|
108 |
flex-flex pairs and the "Check your prover" error. Most |
|
109 |
Sigmas and Pis are abbreviated as * or -> *) |
|
110 |
||
111 |
lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0" |
|
112 |
by blast |
|
113 |
||
114 |
lemma Sigma_empty2 [simp]: "A*0 = 0" |
|
115 |
by blast |
|
116 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
117 |
lemma Sigma_empty_iff: "A*B=0 \<longleftrightarrow> A=0 | B=0" |
13240 | 118 |
by blast |
119 |
||
120 |
||
69593 | 121 |
subsection\<open>Projections \<^term>\<open>fst\<close> and \<^term>\<open>snd\<close>\<close> |
13240 | 122 |
|
123 |
lemma fst_conv [simp]: "fst(<a,b>) = a" |
|
13544 | 124 |
by (simp add: fst_def) |
13240 | 125 |
|
126 |
lemma snd_conv [simp]: "snd(<a,b>) = b" |
|
13544 | 127 |
by (simp add: snd_def) |
13240 | 128 |
|
46953 | 129 |
lemma fst_type [TC]: "p \<in> Sigma(A,B) ==> fst(p) \<in> A" |
13240 | 130 |
by auto |
131 |
||
46953 | 132 |
lemma snd_type [TC]: "p \<in> Sigma(A,B) ==> snd(p) \<in> B(fst(p))" |
13240 | 133 |
by auto |
134 |
||
46953 | 135 |
lemma Pair_fst_snd_eq: "a \<in> Sigma(A,B) ==> <fst(a),snd(a)> = a" |
13240 | 136 |
by auto |
137 |
||
138 |
||
69593 | 139 |
subsection\<open>The Eliminator, \<^term>\<open>split\<close>\<close> |
13240 | 140 |
|
141 |
(*A META-equality, so that it applies to higher types as well...*) |
|
142 |
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)" |
|
143 |
by (simp add: split_def) |
|
144 |
||
145 |
lemma split_type [TC]: |
|
46953 | 146 |
"[| p \<in> Sigma(A,B); |
147 |
!!x y.[| x \<in> A; y \<in> B(x) |] ==> c(x,y):C(<x,y>) |
|
46820 | 148 |
|] ==> split(%x y. c(x,y), p) \<in> C(p)" |
46953 | 149 |
by (erule SigmaE, auto) |
13240 | 150 |
|
46953 | 151 |
lemma expand_split: |
152 |
"u \<in> A*B ==> |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
153 |
R(split(c,u)) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. u = <x,y> \<longrightarrow> R(c(x,y)))" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
154 |
by (auto simp add: split_def) |
13240 | 155 |
|
156 |
||
69593 | 157 |
subsection\<open>A version of \<^term>\<open>split\<close> for Formulae: Result Type \<^typ>\<open>o\<close>\<close> |
13240 | 158 |
|
159 |
lemma splitI: "R(a,b) ==> split(R, <a,b>)" |
|
160 |
by (simp add: split_def) |
|
161 |
||
162 |
lemma splitE: |
|
46953 | 163 |
"[| split(R,z); z \<in> Sigma(A,B); |
164 |
!!x y. [| z = <x,y>; R(x,y) |] ==> P |
|
13240 | 165 |
|] ==> P" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
166 |
by (auto simp add: split_def) |
13240 | 167 |
|
168 |
lemma splitD: "split(R,<a,b>) ==> R(a,b)" |
|
169 |
by (simp add: split_def) |
|
170 |
||
60770 | 171 |
text \<open> |
14864 | 172 |
\bigskip Complex rules for Sigma. |
60770 | 173 |
\<close> |
14864 | 174 |
|
175 |
lemma split_paired_Bex_Sigma [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
176 |
"(\<exists>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(<x,y>))" |
14864 | 177 |
by blast |
178 |
||
179 |
lemma split_paired_Ball_Sigma [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
180 |
"(\<forall>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(<x,y>))" |
14864 | 181 |
by blast |
182 |
||
9570
e16e168984e1
installation of cancellation simprocs for the integers
paulson
parents:
2469
diff
changeset
|
183 |
end |
124 | 184 |
|
2469 | 185 |