author | nipkow |
Wed, 28 Jan 2009 16:29:16 +0100 | |
changeset 29667 | 53103fc8ffa3 |
parent 28637 | 7aabaf1ba263 |
child 29700 | 22faf21db3df |
permissions | -rw-r--r-- |
14593 | 1 |
(* Title: HOL/Matrix/Matrix.thy |
2 |
ID: $Id$ |
|
3 |
Author: Steven Obua |
|
4 |
*) |
|
5 |
||
17915 | 6 |
theory Matrix |
27484 | 7 |
imports Main |
17915 | 8 |
begin |
14940 | 9 |
|
27484 | 10 |
types 'a infmatrix = "nat \<Rightarrow> nat \<Rightarrow> 'a" |
11 |
||
12 |
definition nonzero_positions :: "(nat \<Rightarrow> nat \<Rightarrow> 'a::zero) \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where |
|
13 |
"nonzero_positions A = {pos. A (fst pos) (snd pos) ~= 0}" |
|
14 |
||
15 |
typedef 'a matrix = "{(f::(nat \<Rightarrow> nat \<Rightarrow> 'a::zero)). finite (nonzero_positions f)}" |
|
16 |
proof - |
|
17 |
have "(\<lambda>j i. 0) \<in> {(f::(nat \<Rightarrow> nat \<Rightarrow> 'a::zero)). finite (nonzero_positions f)}" |
|
18 |
by (simp add: nonzero_positions_def) |
|
19 |
then show ?thesis by auto |
|
20 |
qed |
|
21 |
||
22 |
declare Rep_matrix_inverse[simp] |
|
23 |
||
24 |
lemma finite_nonzero_positions : "finite (nonzero_positions (Rep_matrix A))" |
|
25 |
apply (rule Abs_matrix_induct) |
|
26 |
by (simp add: Abs_matrix_inverse matrix_def) |
|
27 |
||
28 |
constdefs |
|
29 |
nrows :: "('a::zero) matrix \<Rightarrow> nat" |
|
30 |
"nrows A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image fst) (nonzero_positions (Rep_matrix A))))" |
|
31 |
ncols :: "('a::zero) matrix \<Rightarrow> nat" |
|
32 |
"ncols A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image snd) (nonzero_positions (Rep_matrix A))))" |
|
33 |
||
34 |
lemma nrows: |
|
35 |
assumes hyp: "nrows A \<le> m" |
|
36 |
shows "(Rep_matrix A m n) = 0" (is ?concl) |
|
37 |
proof cases |
|
38 |
assume "nonzero_positions(Rep_matrix A) = {}" |
|
39 |
then show "(Rep_matrix A m n) = 0" by (simp add: nonzero_positions_def) |
|
40 |
next |
|
41 |
assume a: "nonzero_positions(Rep_matrix A) \<noteq> {}" |
|
42 |
let ?S = "fst`(nonzero_positions(Rep_matrix A))" |
|
43 |
have c: "finite (?S)" by (simp add: finite_nonzero_positions) |
|
44 |
from hyp have d: "Max (?S) < m" by (simp add: a nrows_def) |
|
45 |
have "m \<notin> ?S" |
|
46 |
proof - |
|
47 |
have "m \<in> ?S \<Longrightarrow> m <= Max(?S)" by (simp add: Max_ge [OF c]) |
|
48 |
moreover from d have "~(m <= Max ?S)" by (simp) |
|
49 |
ultimately show "m \<notin> ?S" by (auto) |
|
50 |
qed |
|
51 |
thus "Rep_matrix A m n = 0" by (simp add: nonzero_positions_def image_Collect) |
|
52 |
qed |
|
53 |
||
54 |
constdefs |
|
55 |
transpose_infmatrix :: "'a infmatrix \<Rightarrow> 'a infmatrix" |
|
56 |
"transpose_infmatrix A j i == A i j" |
|
57 |
transpose_matrix :: "('a::zero) matrix \<Rightarrow> 'a matrix" |
|
58 |
"transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix" |
|
59 |
||
60 |
declare transpose_infmatrix_def[simp] |
|
61 |
||
62 |
lemma transpose_infmatrix_twice[simp]: "transpose_infmatrix (transpose_infmatrix A) = A" |
|
63 |
by ((rule ext)+, simp) |
|
64 |
||
65 |
lemma transpose_infmatrix: "transpose_infmatrix (% j i. P j i) = (% j i. P i j)" |
|
66 |
apply (rule ext)+ |
|
67 |
by (simp add: transpose_infmatrix_def) |
|
68 |
||
69 |
lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)" |
|
70 |
apply (rule Abs_matrix_inverse) |
|
71 |
apply (simp add: matrix_def nonzero_positions_def image_def) |
|
72 |
proof - |
|
73 |
let ?A = "{pos. Rep_matrix x (snd pos) (fst pos) \<noteq> 0}" |
|
74 |
let ?swap = "% pos. (snd pos, fst pos)" |
|
75 |
let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \<noteq> 0}" |
|
76 |
have swap_image: "?swap`?A = ?B" |
|
77 |
apply (simp add: image_def) |
|
78 |
apply (rule set_ext) |
|
79 |
apply (simp) |
|
80 |
proof |
|
81 |
fix y |
|
82 |
assume hyp: "\<exists>a b. Rep_matrix x b a \<noteq> 0 \<and> y = (b, a)" |
|
83 |
thus "Rep_matrix x (fst y) (snd y) \<noteq> 0" |
|
84 |
proof - |
|
85 |
from hyp obtain a b where "(Rep_matrix x b a \<noteq> 0 & y = (b,a))" by blast |
|
86 |
then show "Rep_matrix x (fst y) (snd y) \<noteq> 0" by (simp) |
|
87 |
qed |
|
88 |
next |
|
89 |
fix y |
|
90 |
assume hyp: "Rep_matrix x (fst y) (snd y) \<noteq> 0" |
|
91 |
show "\<exists> a b. (Rep_matrix x b a \<noteq> 0 & y = (b,a))" |
|
92 |
by (rule exI[of _ "snd y"], rule exI[of _ "fst y"]) (simp add: hyp) |
|
93 |
qed |
|
94 |
then have "finite (?swap`?A)" |
|
95 |
proof - |
|
96 |
have "finite (nonzero_positions (Rep_matrix x))" by (simp add: finite_nonzero_positions) |
|
97 |
then have "finite ?B" by (simp add: nonzero_positions_def) |
|
98 |
with swap_image show "finite (?swap`?A)" by (simp) |
|
99 |
qed |
|
100 |
moreover |
|
101 |
have "inj_on ?swap ?A" by (simp add: inj_on_def) |
|
102 |
ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A]) |
|
103 |
qed |
|
104 |
||
105 |
lemma infmatrixforward: "(x::'a infmatrix) = y \<Longrightarrow> \<forall> a b. x a b = y a b" by auto |
|
106 |
||
107 |
lemma transpose_infmatrix_inject: "(transpose_infmatrix A = transpose_infmatrix B) = (A = B)" |
|
108 |
apply (auto) |
|
109 |
apply (rule ext)+ |
|
110 |
apply (simp add: transpose_infmatrix) |
|
111 |
apply (drule infmatrixforward) |
|
112 |
apply (simp) |
|
113 |
done |
|
114 |
||
115 |
lemma transpose_matrix_inject: "(transpose_matrix A = transpose_matrix B) = (A = B)" |
|
116 |
apply (simp add: transpose_matrix_def) |
|
117 |
apply (subst Rep_matrix_inject[THEN sym])+ |
|
118 |
apply (simp only: transpose_infmatrix_closed transpose_infmatrix_inject) |
|
119 |
done |
|
120 |
||
121 |
lemma transpose_matrix[simp]: "Rep_matrix(transpose_matrix A) j i = Rep_matrix A i j" |
|
122 |
by (simp add: transpose_matrix_def) |
|
123 |
||
124 |
lemma transpose_transpose_id[simp]: "transpose_matrix (transpose_matrix A) = A" |
|
125 |
by (simp add: transpose_matrix_def) |
|
126 |
||
127 |
lemma nrows_transpose[simp]: "nrows (transpose_matrix A) = ncols A" |
|
128 |
by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def) |
|
129 |
||
130 |
lemma ncols_transpose[simp]: "ncols (transpose_matrix A) = nrows A" |
|
131 |
by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def) |
|
132 |
||
133 |
lemma ncols: "ncols A <= n \<Longrightarrow> Rep_matrix A m n = 0" |
|
134 |
proof - |
|
135 |
assume "ncols A <= n" |
|
136 |
then have "nrows (transpose_matrix A) <= n" by (simp) |
|
137 |
then have "Rep_matrix (transpose_matrix A) n m = 0" by (rule nrows) |
|
138 |
thus "Rep_matrix A m n = 0" by (simp add: transpose_matrix_def) |
|
139 |
qed |
|
140 |
||
141 |
lemma ncols_le: "(ncols A <= n) = (! j i. n <= i \<longrightarrow> (Rep_matrix A j i) = 0)" (is "_ = ?st") |
|
142 |
apply (auto) |
|
143 |
apply (simp add: ncols) |
|
144 |
proof (simp add: ncols_def, auto) |
|
145 |
let ?P = "nonzero_positions (Rep_matrix A)" |
|
146 |
let ?p = "snd`?P" |
|
147 |
have a:"finite ?p" by (simp add: finite_nonzero_positions) |
|
148 |
let ?m = "Max ?p" |
|
149 |
assume "~(Suc (?m) <= n)" |
|
150 |
then have b:"n <= ?m" by (simp) |
|
151 |
fix a b |
|
152 |
assume "(a,b) \<in> ?P" |
|
153 |
then have "?p \<noteq> {}" by (auto) |
|
154 |
with a have "?m \<in> ?p" by (simp) |
|
155 |
moreover have "!x. (x \<in> ?p \<longrightarrow> (? y. (Rep_matrix A y x) \<noteq> 0))" by (simp add: nonzero_positions_def image_def) |
|
156 |
ultimately have "? y. (Rep_matrix A y ?m) \<noteq> 0" by (simp) |
|
157 |
moreover assume ?st |
|
158 |
ultimately show "False" using b by (simp) |
|
159 |
qed |
|
160 |
||
161 |
lemma less_ncols: "(n < ncols A) = (? j i. n <= i & (Rep_matrix A j i) \<noteq> 0)" (is ?concl) |
|
162 |
proof - |
|
163 |
have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith |
|
164 |
show ?concl by (simp add: a ncols_le) |
|
165 |
qed |
|
166 |
||
167 |
lemma le_ncols: "(n <= ncols A) = (\<forall> m. (\<forall> j i. m <= i \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n <= m)" (is ?concl) |
|
168 |
apply (auto) |
|
169 |
apply (subgoal_tac "ncols A <= m") |
|
170 |
apply (simp) |
|
171 |
apply (simp add: ncols_le) |
|
172 |
apply (drule_tac x="ncols A" in spec) |
|
173 |
by (simp add: ncols) |
|
174 |
||
175 |
lemma nrows_le: "(nrows A <= n) = (! j i. n <= j \<longrightarrow> (Rep_matrix A j i) = 0)" (is ?s) |
|
176 |
proof - |
|
177 |
have "(nrows A <= n) = (ncols (transpose_matrix A) <= n)" by (simp) |
|
178 |
also have "\<dots> = (! j i. n <= i \<longrightarrow> (Rep_matrix (transpose_matrix A) j i = 0))" by (rule ncols_le) |
|
179 |
also have "\<dots> = (! j i. n <= i \<longrightarrow> (Rep_matrix A i j) = 0)" by (simp) |
|
180 |
finally show "(nrows A <= n) = (! j i. n <= j \<longrightarrow> (Rep_matrix A j i) = 0)" by (auto) |
|
181 |
qed |
|
182 |
||
183 |
lemma less_nrows: "(m < nrows A) = (? j i. m <= j & (Rep_matrix A j i) \<noteq> 0)" (is ?concl) |
|
184 |
proof - |
|
185 |
have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith |
|
186 |
show ?concl by (simp add: a nrows_le) |
|
187 |
qed |
|
188 |
||
189 |
lemma le_nrows: "(n <= nrows A) = (\<forall> m. (\<forall> j i. m <= j \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n <= m)" (is ?concl) |
|
190 |
apply (auto) |
|
191 |
apply (subgoal_tac "nrows A <= m") |
|
192 |
apply (simp) |
|
193 |
apply (simp add: nrows_le) |
|
194 |
apply (drule_tac x="nrows A" in spec) |
|
195 |
by (simp add: nrows) |
|
196 |
||
197 |
lemma nrows_notzero: "Rep_matrix A m n \<noteq> 0 \<Longrightarrow> m < nrows A" |
|
198 |
apply (case_tac "nrows A <= m") |
|
199 |
apply (simp_all add: nrows) |
|
200 |
done |
|
201 |
||
202 |
lemma ncols_notzero: "Rep_matrix A m n \<noteq> 0 \<Longrightarrow> n < ncols A" |
|
203 |
apply (case_tac "ncols A <= n") |
|
204 |
apply (simp_all add: ncols) |
|
205 |
done |
|
206 |
||
207 |
lemma finite_natarray1: "finite {x. x < (n::nat)}" |
|
208 |
apply (induct n) |
|
209 |
apply (simp) |
|
210 |
proof - |
|
211 |
fix n |
|
212 |
have "{x. x < Suc n} = insert n {x. x < n}" by (rule set_ext, simp, arith) |
|
213 |
moreover assume "finite {x. x < n}" |
|
214 |
ultimately show "finite {x. x < Suc n}" by (simp) |
|
215 |
qed |
|
216 |
||
217 |
lemma finite_natarray2: "finite {pos. (fst pos) < (m::nat) & (snd pos) < (n::nat)}" |
|
218 |
apply (induct m) |
|
219 |
apply (simp+) |
|
220 |
proof - |
|
221 |
fix m::nat |
|
222 |
let ?s0 = "{pos. fst pos < m & snd pos < n}" |
|
223 |
let ?s1 = "{pos. fst pos < (Suc m) & snd pos < n}" |
|
224 |
let ?sd = "{pos. fst pos = m & snd pos < n}" |
|
225 |
assume f0: "finite ?s0" |
|
226 |
have f1: "finite ?sd" |
|
227 |
proof - |
|
228 |
let ?f = "% x. (m, x)" |
|
229 |
have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_ext, simp add: image_def, auto) |
|
230 |
moreover have "finite {x. x < n}" by (simp add: finite_natarray1) |
|
231 |
ultimately show "finite {pos. fst pos = m & snd pos < n}" by (simp) |
|
232 |
qed |
|
233 |
have su: "?s0 \<union> ?sd = ?s1" by (rule set_ext, simp, arith) |
|
234 |
from f0 f1 have "finite (?s0 \<union> ?sd)" by (rule finite_UnI) |
|
235 |
with su show "finite ?s1" by (simp) |
|
236 |
qed |
|
237 |
||
238 |
lemma RepAbs_matrix: |
|
239 |
assumes aem: "? m. ! j i. m <= j \<longrightarrow> x j i = 0" (is ?em) and aen:"? n. ! j i. (n <= i \<longrightarrow> x j i = 0)" (is ?en) |
|
240 |
shows "(Rep_matrix (Abs_matrix x)) = x" |
|
241 |
apply (rule Abs_matrix_inverse) |
|
242 |
apply (simp add: matrix_def nonzero_positions_def) |
|
243 |
proof - |
|
244 |
from aem obtain m where a: "! j i. m <= j \<longrightarrow> x j i = 0" by (blast) |
|
245 |
from aen obtain n where b: "! j i. n <= i \<longrightarrow> x j i = 0" by (blast) |
|
246 |
let ?u = "{pos. x (fst pos) (snd pos) \<noteq> 0}" |
|
247 |
let ?v = "{pos. fst pos < m & snd pos < n}" |
|
248 |
have c: "!! (m::nat) a. ~(m <= a) \<Longrightarrow> a < m" by (arith) |
|
249 |
from a b have "(?u \<inter> (-?v)) = {}" |
|
250 |
apply (simp) |
|
251 |
apply (rule set_ext) |
|
252 |
apply (simp) |
|
253 |
apply auto |
|
254 |
by (rule c, auto)+ |
|
255 |
then have d: "?u \<subseteq> ?v" by blast |
|
256 |
moreover have "finite ?v" by (simp add: finite_natarray2) |
|
257 |
ultimately show "finite ?u" by (rule finite_subset) |
|
258 |
qed |
|
259 |
||
260 |
constdefs |
|
261 |
apply_infmatrix :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix" |
|
262 |
"apply_infmatrix f == % A. (% j i. f (A j i))" |
|
263 |
apply_matrix :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix" |
|
264 |
"apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))" |
|
265 |
combine_infmatrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix \<Rightarrow> 'c infmatrix" |
|
266 |
"combine_infmatrix f == % A B. (% j i. f (A j i) (B j i))" |
|
267 |
combine_matrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix \<Rightarrow> ('c::zero) matrix" |
|
268 |
"combine_matrix f == % A B. Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))" |
|
269 |
||
270 |
lemma expand_apply_infmatrix[simp]: "apply_infmatrix f A j i = f (A j i)" |
|
271 |
by (simp add: apply_infmatrix_def) |
|
272 |
||
273 |
lemma expand_combine_infmatrix[simp]: "combine_infmatrix f A B j i = f (A j i) (B j i)" |
|
274 |
by (simp add: combine_infmatrix_def) |
|
275 |
||
276 |
constdefs |
|
277 |
commutative :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> bool" |
|
278 |
"commutative f == ! x y. f x y = f y x" |
|
279 |
associative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" |
|
280 |
"associative f == ! x y z. f (f x y) z = f x (f y z)" |
|
281 |
||
282 |
text{* |
|
283 |
To reason about associativity and commutativity of operations on matrices, |
|
284 |
let's take a step back and look at the general situtation: Assume that we have |
|
285 |
sets $A$ and $B$ with $B \subset A$ and an abstraction $u: A \rightarrow B$. This abstraction has to fulfill $u(b) = b$ for all $b \in B$, but is arbitrary otherwise. |
|
286 |
Each function $f: A \times A \rightarrow A$ now induces a function $f': B \times B \rightarrow B$ by $f' = u \circ f$. |
|
287 |
It is obvious that commutativity of $f$ implies commutativity of $f'$: $f' x y = u (f x y) = u (f y x) = f' y x.$ |
|
288 |
*} |
|
289 |
||
290 |
lemma combine_infmatrix_commute: |
|
291 |
"commutative f \<Longrightarrow> commutative (combine_infmatrix f)" |
|
292 |
by (simp add: commutative_def combine_infmatrix_def) |
|
293 |
||
294 |
lemma combine_matrix_commute: |
|
295 |
"commutative f \<Longrightarrow> commutative (combine_matrix f)" |
|
296 |
by (simp add: combine_matrix_def commutative_def combine_infmatrix_def) |
|
297 |
||
298 |
text{* |
|
299 |
On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\ganz$, $B=\{-1, 0, 1\}$, |
|
300 |
as $f$ we take addition on $\ganz$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have |
|
301 |
\[ f' (f' 1 1) -1 = u(f (u (f 1 1)) -1) = u(f (u 2) -1) = u (f 0 -1) = -1, \] |
|
302 |
but on the other hand we have |
|
303 |
\[ f' 1 (f' 1 -1) = u (f 1 (u (f 1 -1))) = u (f 1 0) = 1.\] |
|
304 |
A way out of this problem is to assume that $f(A\times A)\subset A$ holds, and this is what we are going to do: |
|
305 |
*} |
|
306 |
||
307 |
lemma nonzero_positions_combine_infmatrix[simp]: "f 0 0 = 0 \<Longrightarrow> nonzero_positions (combine_infmatrix f A B) \<subseteq> (nonzero_positions A) \<union> (nonzero_positions B)" |
|
308 |
by (rule subsetI, simp add: nonzero_positions_def combine_infmatrix_def, auto) |
|
309 |
||
310 |
lemma finite_nonzero_positions_Rep[simp]: "finite (nonzero_positions (Rep_matrix A))" |
|
311 |
by (insert Rep_matrix [of A], simp add: matrix_def) |
|
312 |
||
313 |
lemma combine_infmatrix_closed [simp]: |
|
314 |
"f 0 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))) = combine_infmatrix f (Rep_matrix A) (Rep_matrix B)" |
|
315 |
apply (rule Abs_matrix_inverse) |
|
316 |
apply (simp add: matrix_def) |
|
317 |
apply (rule finite_subset[of _ "(nonzero_positions (Rep_matrix A)) \<union> (nonzero_positions (Rep_matrix B))"]) |
|
318 |
by (simp_all) |
|
319 |
||
320 |
text {* We need the next two lemmas only later, but it is analog to the above one, so we prove them now: *} |
|
321 |
lemma nonzero_positions_apply_infmatrix[simp]: "f 0 = 0 \<Longrightarrow> nonzero_positions (apply_infmatrix f A) \<subseteq> nonzero_positions A" |
|
322 |
by (rule subsetI, simp add: nonzero_positions_def apply_infmatrix_def, auto) |
|
323 |
||
324 |
lemma apply_infmatrix_closed [simp]: |
|
325 |
"f 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (apply_infmatrix f (Rep_matrix A))) = apply_infmatrix f (Rep_matrix A)" |
|
326 |
apply (rule Abs_matrix_inverse) |
|
327 |
apply (simp add: matrix_def) |
|
328 |
apply (rule finite_subset[of _ "nonzero_positions (Rep_matrix A)"]) |
|
329 |
by (simp_all) |
|
330 |
||
331 |
lemma combine_infmatrix_assoc[simp]: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_infmatrix f)" |
|
332 |
by (simp add: associative_def combine_infmatrix_def) |
|
333 |
||
334 |
lemma comb: "f = g \<Longrightarrow> x = y \<Longrightarrow> f x = g y" |
|
335 |
by (auto) |
|
336 |
||
337 |
lemma combine_matrix_assoc: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_matrix f)" |
|
338 |
apply (simp(no_asm) add: associative_def combine_matrix_def, auto) |
|
339 |
apply (rule comb [of Abs_matrix Abs_matrix]) |
|
340 |
by (auto, insert combine_infmatrix_assoc[of f], simp add: associative_def) |
|
341 |
||
342 |
lemma Rep_apply_matrix[simp]: "f 0 = 0 \<Longrightarrow> Rep_matrix (apply_matrix f A) j i = f (Rep_matrix A j i)" |
|
343 |
by (simp add: apply_matrix_def) |
|
344 |
||
345 |
lemma Rep_combine_matrix[simp]: "f 0 0 = 0 \<Longrightarrow> Rep_matrix (combine_matrix f A B) j i = f (Rep_matrix A j i) (Rep_matrix B j i)" |
|
346 |
by(simp add: combine_matrix_def) |
|
347 |
||
348 |
lemma combine_nrows_max: "f 0 0 = 0 \<Longrightarrow> nrows (combine_matrix f A B) <= max (nrows A) (nrows B)" |
|
349 |
by (simp add: nrows_le) |
|
350 |
||
351 |
lemma combine_ncols_max: "f 0 0 = 0 \<Longrightarrow> ncols (combine_matrix f A B) <= max (ncols A) (ncols B)" |
|
352 |
by (simp add: ncols_le) |
|
353 |
||
354 |
lemma combine_nrows: "f 0 0 = 0 \<Longrightarrow> nrows A <= q \<Longrightarrow> nrows B <= q \<Longrightarrow> nrows(combine_matrix f A B) <= q" |
|
355 |
by (simp add: nrows_le) |
|
356 |
||
357 |
lemma combine_ncols: "f 0 0 = 0 \<Longrightarrow> ncols A <= q \<Longrightarrow> ncols B <= q \<Longrightarrow> ncols(combine_matrix f A B) <= q" |
|
358 |
by (simp add: ncols_le) |
|
359 |
||
360 |
constdefs |
|
361 |
zero_r_neutral :: "('a \<Rightarrow> 'b::zero \<Rightarrow> 'a) \<Rightarrow> bool" |
|
362 |
"zero_r_neutral f == ! a. f a 0 = a" |
|
363 |
zero_l_neutral :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool" |
|
364 |
"zero_l_neutral f == ! a. f 0 a = a" |
|
365 |
zero_closed :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> bool" |
|
366 |
"zero_closed f == (!x. f x 0 = 0) & (!y. f 0 y = 0)" |
|
367 |
||
368 |
consts foldseq :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a" |
|
369 |
primrec |
|
370 |
"foldseq f s 0 = s 0" |
|
371 |
"foldseq f s (Suc n) = f (s 0) (foldseq f (% k. s(Suc k)) n)" |
|
372 |
||
373 |
consts foldseq_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a" |
|
374 |
primrec |
|
375 |
"foldseq_transposed f s 0 = s 0" |
|
376 |
"foldseq_transposed f s (Suc n) = f (foldseq_transposed f s n) (s (Suc n))" |
|
377 |
||
378 |
lemma foldseq_assoc : "associative f \<Longrightarrow> foldseq f = foldseq_transposed f" |
|
379 |
proof - |
|
380 |
assume a:"associative f" |
|
381 |
then have sublemma: "!! n. ! N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N" |
|
382 |
proof - |
|
383 |
fix n |
|
384 |
show "!N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N" |
|
385 |
proof (induct n) |
|
386 |
show "!N s. N <= 0 \<longrightarrow> foldseq f s N = foldseq_transposed f s N" by simp |
|
387 |
next |
|
388 |
fix n |
|
389 |
assume b:"! N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N" |
|
390 |
have c:"!!N s. N <= n \<Longrightarrow> foldseq f s N = foldseq_transposed f s N" by (simp add: b) |
|
391 |
show "! N t. N <= Suc n \<longrightarrow> foldseq f t N = foldseq_transposed f t N" |
|
392 |
proof (auto) |
|
393 |
fix N t |
|
394 |
assume Nsuc: "N <= Suc n" |
|
395 |
show "foldseq f t N = foldseq_transposed f t N" |
|
396 |
proof cases |
|
397 |
assume "N <= n" |
|
398 |
then show "foldseq f t N = foldseq_transposed f t N" by (simp add: b) |
|
399 |
next |
|
400 |
assume "~(N <= n)" |
|
401 |
with Nsuc have Nsuceq: "N = Suc n" by simp |
|
402 |
have neqz: "n \<noteq> 0 \<Longrightarrow> ? m. n = Suc m & Suc m <= n" by arith |
|
403 |
have assocf: "!! x y z. f x (f y z) = f (f x y) z" by (insert a, simp add: associative_def) |
|
404 |
show "foldseq f t N = foldseq_transposed f t N" |
|
405 |
apply (simp add: Nsuceq) |
|
406 |
apply (subst c) |
|
407 |
apply (simp) |
|
408 |
apply (case_tac "n = 0") |
|
409 |
apply (simp) |
|
410 |
apply (drule neqz) |
|
411 |
apply (erule exE) |
|
412 |
apply (simp) |
|
413 |
apply (subst assocf) |
|
414 |
proof - |
|
415 |
fix m |
|
416 |
assume "n = Suc m & Suc m <= n" |
|
417 |
then have mless: "Suc m <= n" by arith |
|
418 |
then have step1: "foldseq_transposed f (% k. t (Suc k)) m = foldseq f (% k. t (Suc k)) m" (is "?T1 = ?T2") |
|
419 |
apply (subst c) |
|
420 |
by simp+ |
|
421 |
have step2: "f (t 0) ?T2 = foldseq f t (Suc m)" (is "_ = ?T3") by simp |
|
422 |
have step3: "?T3 = foldseq_transposed f t (Suc m)" (is "_ = ?T4") |
|
423 |
apply (subst c) |
|
424 |
by (simp add: mless)+ |
|
425 |
have step4: "?T4 = f (foldseq_transposed f t m) (t (Suc m))" (is "_=?T5") by simp |
|
426 |
from step1 step2 step3 step4 show sowhat: "f (f (t 0) ?T1) (t (Suc (Suc m))) = f ?T5 (t (Suc (Suc m)))" by simp |
|
427 |
qed |
|
428 |
qed |
|
429 |
qed |
|
430 |
qed |
|
431 |
qed |
|
432 |
show "foldseq f = foldseq_transposed f" by ((rule ext)+, insert sublemma, auto) |
|
433 |
qed |
|
434 |
||
435 |
lemma foldseq_distr: "\<lbrakk>associative f; commutative f\<rbrakk> \<Longrightarrow> foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" |
|
436 |
proof - |
|
437 |
assume assoc: "associative f" |
|
438 |
assume comm: "commutative f" |
|
439 |
from assoc have a:"!! x y z. f (f x y) z = f x (f y z)" by (simp add: associative_def) |
|
440 |
from comm have b: "!! x y. f x y = f y x" by (simp add: commutative_def) |
|
441 |
from assoc comm have c: "!! x y z. f x (f y z) = f y (f x z)" by (simp add: commutative_def associative_def) |
|
442 |
have "!! n. (! u v. foldseq f (%k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))" |
|
443 |
apply (induct_tac n) |
|
444 |
apply (simp+, auto) |
|
445 |
by (simp add: a b c) |
|
446 |
then show "foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" by simp |
|
447 |
qed |
|
448 |
||
449 |
theorem "\<lbrakk>associative f; associative g; \<forall>a b c d. g (f a b) (f c d) = f (g a c) (g b d); ? x y. (f x) \<noteq> (f y); ? x y. (g x) \<noteq> (g y); f x x = x; g x x = x\<rbrakk> \<Longrightarrow> f=g | (! y. f y x = y) | (! y. g y x = y)" |
|
450 |
oops |
|
451 |
(* Model found |
|
452 |
||
453 |
Trying to find a model that refutes: \<lbrakk>associative f; associative g; |
|
454 |
\<forall>a b c d. g (f a b) (f c d) = f (g a c) (g b d); \<exists>x y. f x \<noteq> f y; |
|
455 |
\<exists>x y. g x \<noteq> g y; f x x = x; g x x = x\<rbrakk> |
|
456 |
\<Longrightarrow> f = g \<or> (\<forall>y. f y x = y) \<or> (\<forall>y. g y x = y) |
|
457 |
Searching for a model of size 1, translating term... invoking SAT solver... no model found. |
|
458 |
Searching for a model of size 2, translating term... invoking SAT solver... no model found. |
|
459 |
Searching for a model of size 3, translating term... invoking SAT solver... |
|
460 |
Model found: |
|
461 |
Size of types: 'a: 3 |
|
462 |
x: a1 |
|
463 |
g: (a0\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a0, a2\<mapsto>a1), a1\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a1, a2\<mapsto>a0), a2\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a0, a2\<mapsto>a1)) |
|
464 |
f: (a0\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a0, a2\<mapsto>a0), a1\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a1, a2\<mapsto>a1), a2\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a0, a2\<mapsto>a0)) |
|
465 |
*) |
|
466 |
||
467 |
lemma foldseq_zero: |
|
468 |
assumes fz: "f 0 0 = 0" and sz: "! i. i <= n \<longrightarrow> s i = 0" |
|
469 |
shows "foldseq f s n = 0" |
|
470 |
proof - |
|
471 |
have "!! n. ! s. (! i. i <= n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s n = 0" |
|
472 |
apply (induct_tac n) |
|
473 |
apply (simp) |
|
474 |
by (simp add: fz) |
|
475 |
then show "foldseq f s n = 0" by (simp add: sz) |
|
476 |
qed |
|
477 |
||
478 |
lemma foldseq_significant_positions: |
|
479 |
assumes p: "! i. i <= N \<longrightarrow> S i = T i" |
|
480 |
shows "foldseq f S N = foldseq f T N" (is ?concl) |
|
481 |
proof - |
|
482 |
have "!! m . ! s t. (! i. i<=m \<longrightarrow> s i = t i) \<longrightarrow> foldseq f s m = foldseq f t m" |
|
483 |
apply (induct_tac m) |
|
484 |
apply (simp) |
|
485 |
apply (simp) |
|
486 |
apply (auto) |
|
487 |
proof - |
|
488 |
fix n |
|
489 |
fix s::"nat\<Rightarrow>'a" |
|
490 |
fix t::"nat\<Rightarrow>'a" |
|
491 |
assume a: "\<forall>s t. (\<forall>i\<le>n. s i = t i) \<longrightarrow> foldseq f s n = foldseq f t n" |
|
492 |
assume b: "\<forall>i\<le>Suc n. s i = t i" |
|
493 |
have c:"!! a b. a = b \<Longrightarrow> f (t 0) a = f (t 0) b" by blast |
|
494 |
have d:"!! s t. (\<forall>i\<le>n. s i = t i) \<Longrightarrow> foldseq f s n = foldseq f t n" by (simp add: a) |
|
495 |
show "f (t 0) (foldseq f (\<lambda>k. s (Suc k)) n) = f (t 0) (foldseq f (\<lambda>k. t (Suc k)) n)" by (rule c, simp add: d b) |
|
496 |
qed |
|
497 |
with p show ?concl by simp |
|
498 |
qed |
|
499 |
||
500 |
lemma foldseq_tail: "M <= N \<Longrightarrow> foldseq f S N = foldseq f (% k. (if k < M then (S k) else (foldseq f (% k. S(k+M)) (N-M)))) M" (is "?p \<Longrightarrow> ?concl") |
|
501 |
proof - |
|
502 |
have suc: "!! a b. \<lbrakk>a <= Suc b; a \<noteq> Suc b\<rbrakk> \<Longrightarrow> a <= b" by arith |
|
503 |
have a:"!! a b c . a = b \<Longrightarrow> f c a = f c b" by blast |
|
504 |
have "!! n. ! m s. m <= n \<longrightarrow> foldseq f s n = foldseq f (% k. (if k < m then (s k) else (foldseq f (% k. s(k+m)) (n-m)))) m" |
|
505 |
apply (induct_tac n) |
|
506 |
apply (simp) |
|
507 |
apply (simp) |
|
508 |
apply (auto) |
|
509 |
apply (case_tac "m = Suc na") |
|
510 |
apply (simp) |
|
511 |
apply (rule a) |
|
512 |
apply (rule foldseq_significant_positions) |
|
513 |
apply (auto) |
|
514 |
apply (drule suc, simp+) |
|
515 |
proof - |
|
516 |
fix na m s |
|
517 |
assume suba:"\<forall>m\<le>na. \<forall>s. foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m" |
|
518 |
assume subb:"m <= na" |
|
519 |
from suba have subc:"!! m s. m <= na \<Longrightarrow>foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m" by simp |
|
520 |
have subd: "foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m = |
|
521 |
foldseq f (% k. s(Suc k)) na" |
|
522 |
by (rule subc[of m "% k. s(Suc k)", THEN sym], simp add: subb) |
|
523 |
from subb have sube: "m \<noteq> 0 \<Longrightarrow> ? mm. m = Suc mm & mm <= na" by arith |
|
524 |
show "f (s 0) (foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m) = |
|
525 |
foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (Suc na - m)) m" |
|
526 |
apply (simp add: subd) |
|
527 |
apply (case_tac "m=0") |
|
528 |
apply (simp) |
|
529 |
apply (drule sube) |
|
530 |
apply (auto) |
|
531 |
apply (rule a) |
|
532 |
by (simp add: subc if_def) |
|
533 |
qed |
|
534 |
then show "?p \<Longrightarrow> ?concl" by simp |
|
535 |
qed |
|
536 |
||
537 |
lemma foldseq_zerotail: |
|
538 |
assumes |
|
539 |
fz: "f 0 0 = 0" |
|
540 |
and sz: "! i. n <= i \<longrightarrow> s i = 0" |
|
541 |
and nm: "n <= m" |
|
542 |
shows |
|
543 |
"foldseq f s n = foldseq f s m" |
|
544 |
proof - |
|
545 |
show "foldseq f s n = foldseq f s m" |
|
546 |
apply (simp add: foldseq_tail[OF nm, of f s]) |
|
547 |
apply (rule foldseq_significant_positions) |
|
548 |
apply (auto) |
|
549 |
apply (subst foldseq_zero) |
|
550 |
by (simp add: fz sz)+ |
|
551 |
qed |
|
552 |
||
553 |
lemma foldseq_zerotail2: |
|
554 |
assumes "! x. f x 0 = x" |
|
555 |
and "! i. n < i \<longrightarrow> s i = 0" |
|
556 |
and nm: "n <= m" |
|
557 |
shows |
|
558 |
"foldseq f s n = foldseq f s m" (is ?concl) |
|
559 |
proof - |
|
560 |
have "f 0 0 = 0" by (simp add: prems) |
|
561 |
have b:"!! m n. n <= m \<Longrightarrow> m \<noteq> n \<Longrightarrow> ? k. m-n = Suc k" by arith |
|
562 |
have c: "0 <= m" by simp |
|
563 |
have d: "!! k. k \<noteq> 0 \<Longrightarrow> ? l. k = Suc l" by arith |
|
564 |
show ?concl |
|
565 |
apply (subst foldseq_tail[OF nm]) |
|
566 |
apply (rule foldseq_significant_positions) |
|
567 |
apply (auto) |
|
568 |
apply (case_tac "m=n") |
|
569 |
apply (simp+) |
|
570 |
apply (drule b[OF nm]) |
|
571 |
apply (auto) |
|
572 |
apply (case_tac "k=0") |
|
573 |
apply (simp add: prems) |
|
574 |
apply (drule d) |
|
575 |
apply (auto) |
|
576 |
by (simp add: prems foldseq_zero) |
|
577 |
qed |
|
578 |
||
579 |
lemma foldseq_zerostart: |
|
580 |
"! x. f 0 (f 0 x) = f 0 x \<Longrightarrow> ! i. i <= n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" |
|
581 |
proof - |
|
582 |
assume f00x: "! x. f 0 (f 0 x) = f 0 x" |
|
583 |
have "! s. (! i. i<=n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" |
|
584 |
apply (induct n) |
|
585 |
apply (simp) |
|
586 |
apply (rule allI, rule impI) |
|
587 |
proof - |
|
588 |
fix n |
|
589 |
fix s |
|
590 |
have a:"foldseq f s (Suc (Suc n)) = f (s 0) (foldseq f (% k. s(Suc k)) (Suc n))" by simp |
|
591 |
assume b: "! s. ((\<forall>i\<le>n. s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n)))" |
|
592 |
from b have c:"!! s. (\<forall>i\<le>n. s i = 0) \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp |
|
593 |
assume d: "! i. i <= Suc n \<longrightarrow> s i = 0" |
|
594 |
show "foldseq f s (Suc (Suc n)) = f 0 (s (Suc (Suc n)))" |
|
595 |
apply (subst a) |
|
596 |
apply (subst c) |
|
597 |
by (simp add: d f00x)+ |
|
598 |
qed |
|
599 |
then show "! i. i <= n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp |
|
600 |
qed |
|
601 |
||
602 |
lemma foldseq_zerostart2: |
|
603 |
"! x. f 0 x = x \<Longrightarrow> ! i. i < n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s n = s n" |
|
604 |
proof - |
|
605 |
assume a:"! i. i<n \<longrightarrow> s i = 0" |
|
606 |
assume x:"! x. f 0 x = x" |
|
607 |
from x have f00x: "! x. f 0 (f 0 x) = f 0 x" by blast |
|
608 |
have b: "!! i l. i < Suc l = (i <= l)" by arith |
|
609 |
have d: "!! k. k \<noteq> 0 \<Longrightarrow> ? l. k = Suc l" by arith |
|
610 |
show "foldseq f s n = s n" |
|
611 |
apply (case_tac "n=0") |
|
612 |
apply (simp) |
|
613 |
apply (insert a) |
|
614 |
apply (drule d) |
|
615 |
apply (auto) |
|
616 |
apply (simp add: b) |
|
617 |
apply (insert f00x) |
|
618 |
apply (drule foldseq_zerostart) |
|
619 |
by (simp add: x)+ |
|
620 |
qed |
|
621 |
||
622 |
lemma foldseq_almostzero: |
|
623 |
assumes f0x:"! x. f 0 x = x" and fx0: "! x. f x 0 = x" and s0:"! i. i \<noteq> j \<longrightarrow> s i = 0" |
|
624 |
shows "foldseq f s n = (if (j <= n) then (s j) else 0)" (is ?concl) |
|
625 |
proof - |
|
626 |
from s0 have a: "! i. i < j \<longrightarrow> s i = 0" by simp |
|
627 |
from s0 have b: "! i. j < i \<longrightarrow> s i = 0" by simp |
|
628 |
show ?concl |
|
629 |
apply auto |
|
630 |
apply (subst foldseq_zerotail2[of f, OF fx0, of j, OF b, of n, THEN sym]) |
|
631 |
apply simp |
|
632 |
apply (subst foldseq_zerostart2) |
|
633 |
apply (simp add: f0x a)+ |
|
634 |
apply (subst foldseq_zero) |
|
635 |
by (simp add: s0 f0x)+ |
|
636 |
qed |
|
637 |
||
638 |
lemma foldseq_distr_unary: |
|
639 |
assumes "!! a b. g (f a b) = f (g a) (g b)" |
|
640 |
shows "g(foldseq f s n) = foldseq f (% x. g(s x)) n" (is ?concl) |
|
641 |
proof - |
|
642 |
have "! s. g(foldseq f s n) = foldseq f (% x. g(s x)) n" |
|
643 |
apply (induct_tac n) |
|
644 |
apply (simp) |
|
645 |
apply (simp) |
|
646 |
apply (auto) |
|
647 |
apply (drule_tac x="% k. s (Suc k)" in spec) |
|
648 |
by (simp add: prems) |
|
649 |
then show ?concl by simp |
|
650 |
qed |
|
651 |
||
652 |
constdefs |
|
653 |
mult_matrix_n :: "nat \<Rightarrow> (('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix" |
|
654 |
"mult_matrix_n n fmul fadd A B == Abs_matrix(% j i. foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n)" |
|
655 |
mult_matrix :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix" |
|
656 |
"mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B" |
|
657 |
||
658 |
lemma mult_matrix_n: |
|
659 |
assumes prems: "ncols A \<le> n" (is ?An) "nrows B \<le> n" (is ?Bn) "fadd 0 0 = 0" "fmul 0 0 = 0" |
|
660 |
shows c:"mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B" (is ?concl) |
|
661 |
proof - |
|
662 |
show ?concl using prems |
|
663 |
apply (simp add: mult_matrix_def mult_matrix_n_def) |
|
664 |
apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) |
|
665 |
by (rule foldseq_zerotail, simp_all add: nrows_le ncols_le prems) |
|
666 |
qed |
|
667 |
||
668 |
lemma mult_matrix_nm: |
|
669 |
assumes prems: "ncols A <= n" "nrows B <= n" "ncols A <= m" "nrows B <= m" "fadd 0 0 = 0" "fmul 0 0 = 0" |
|
670 |
shows "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" |
|
671 |
proof - |
|
672 |
from prems have "mult_matrix_n n fmul fadd A B = mult_matrix fmul fadd A B" by (simp add: mult_matrix_n) |
|
673 |
also from prems have "\<dots> = mult_matrix_n m fmul fadd A B" by (simp add: mult_matrix_n[THEN sym]) |
|
674 |
finally show "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" by simp |
|
675 |
qed |
|
676 |
||
677 |
constdefs |
|
678 |
r_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool" |
|
679 |
"r_distributive fmul fadd == ! a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a v)" |
|
680 |
l_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" |
|
681 |
"l_distributive fmul fadd == ! a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)" |
|
682 |
distributive :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" |
|
683 |
"distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd" |
|
684 |
||
685 |
lemma max1: "!! a x y. (a::nat) <= x \<Longrightarrow> a <= max x y" by (arith) |
|
686 |
lemma max2: "!! b x y. (b::nat) <= y \<Longrightarrow> b <= max x y" by (arith) |
|
687 |
||
688 |
lemma r_distributive_matrix: |
|
689 |
assumes prems: |
|
690 |
"r_distributive fmul fadd" |
|
691 |
"associative fadd" |
|
692 |
"commutative fadd" |
|
693 |
"fadd 0 0 = 0" |
|
694 |
"! a. fmul a 0 = 0" |
|
695 |
"! a. fmul 0 a = 0" |
|
696 |
shows "r_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl) |
|
697 |
proof - |
|
698 |
from prems show ?concl |
|
699 |
apply (simp add: r_distributive_def mult_matrix_def, auto) |
|
700 |
proof - |
|
701 |
fix a::"'a matrix" |
|
702 |
fix u::"'b matrix" |
|
703 |
fix v::"'b matrix" |
|
704 |
let ?mx = "max (ncols a) (max (nrows u) (nrows v))" |
|
705 |
from prems show "mult_matrix_n (max (ncols a) (nrows (combine_matrix fadd u v))) fmul fadd a (combine_matrix fadd u v) = |
|
706 |
combine_matrix fadd (mult_matrix_n (max (ncols a) (nrows u)) fmul fadd a u) (mult_matrix_n (max (ncols a) (nrows v)) fmul fadd a v)" |
|
707 |
apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) |
|
708 |
apply (simp add: max1 max2 combine_nrows combine_ncols)+ |
|
709 |
apply (subst mult_matrix_nm[of _ _ v ?mx fadd fmul]) |
|
710 |
apply (simp add: max1 max2 combine_nrows combine_ncols)+ |
|
711 |
apply (subst mult_matrix_nm[of _ _ u ?mx fadd fmul]) |
|
712 |
apply (simp add: max1 max2 combine_nrows combine_ncols)+ |
|
713 |
apply (simp add: mult_matrix_n_def r_distributive_def foldseq_distr[of fadd]) |
|
714 |
apply (simp add: combine_matrix_def combine_infmatrix_def) |
|
715 |
apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) |
|
716 |
apply (simplesubst RepAbs_matrix) |
|
717 |
apply (simp, auto) |
|
718 |
apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero) |
|
719 |
apply (rule exI[of _ "ncols v"], simp add: ncols_le foldseq_zero) |
|
720 |
apply (subst RepAbs_matrix) |
|
721 |
apply (simp, auto) |
|
722 |
apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero) |
|
723 |
apply (rule exI[of _ "ncols u"], simp add: ncols_le foldseq_zero) |
|
724 |
done |
|
725 |
qed |
|
726 |
qed |
|
727 |
||
728 |
lemma l_distributive_matrix: |
|
729 |
assumes prems: |
|
730 |
"l_distributive fmul fadd" |
|
731 |
"associative fadd" |
|
732 |
"commutative fadd" |
|
733 |
"fadd 0 0 = 0" |
|
734 |
"! a. fmul a 0 = 0" |
|
735 |
"! a. fmul 0 a = 0" |
|
736 |
shows "l_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl) |
|
737 |
proof - |
|
738 |
from prems show ?concl |
|
739 |
apply (simp add: l_distributive_def mult_matrix_def, auto) |
|
740 |
proof - |
|
741 |
fix a::"'b matrix" |
|
742 |
fix u::"'a matrix" |
|
743 |
fix v::"'a matrix" |
|
744 |
let ?mx = "max (nrows a) (max (ncols u) (ncols v))" |
|
745 |
from prems show "mult_matrix_n (max (ncols (combine_matrix fadd u v)) (nrows a)) fmul fadd (combine_matrix fadd u v) a = |
|
746 |
combine_matrix fadd (mult_matrix_n (max (ncols u) (nrows a)) fmul fadd u a) (mult_matrix_n (max (ncols v) (nrows a)) fmul fadd v a)" |
|
747 |
apply (subst mult_matrix_nm[of v _ _ ?mx fadd fmul]) |
|
748 |
apply (simp add: max1 max2 combine_nrows combine_ncols)+ |
|
749 |
apply (subst mult_matrix_nm[of u _ _ ?mx fadd fmul]) |
|
750 |
apply (simp add: max1 max2 combine_nrows combine_ncols)+ |
|
751 |
apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) |
|
752 |
apply (simp add: max1 max2 combine_nrows combine_ncols)+ |
|
753 |
apply (simp add: mult_matrix_n_def l_distributive_def foldseq_distr[of fadd]) |
|
754 |
apply (simp add: combine_matrix_def combine_infmatrix_def) |
|
755 |
apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) |
|
756 |
apply (simplesubst RepAbs_matrix) |
|
757 |
apply (simp, auto) |
|
758 |
apply (rule exI[of _ "nrows v"], simp add: nrows_le foldseq_zero) |
|
759 |
apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero) |
|
760 |
apply (subst RepAbs_matrix) |
|
761 |
apply (simp, auto) |
|
762 |
apply (rule exI[of _ "nrows u"], simp add: nrows_le foldseq_zero) |
|
763 |
apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero) |
|
764 |
done |
|
765 |
qed |
|
766 |
qed |
|
767 |
||
768 |
instantiation matrix :: (zero) zero |
|
769 |
begin |
|
770 |
||
28562 | 771 |
definition zero_matrix_def [code del]: "0 = Abs_matrix (\<lambda>j i. 0)" |
27484 | 772 |
|
773 |
instance .. |
|
774 |
||
775 |
end |
|
776 |
||
777 |
lemma Rep_zero_matrix_def[simp]: "Rep_matrix 0 j i = 0" |
|
778 |
apply (simp add: zero_matrix_def) |
|
779 |
apply (subst RepAbs_matrix) |
|
780 |
by (auto) |
|
781 |
||
782 |
lemma zero_matrix_def_nrows[simp]: "nrows 0 = 0" |
|
783 |
proof - |
|
784 |
have a:"!! (x::nat). x <= 0 \<Longrightarrow> x = 0" by (arith) |
|
785 |
show "nrows 0 = 0" by (rule a, subst nrows_le, simp) |
|
786 |
qed |
|
787 |
||
788 |
lemma zero_matrix_def_ncols[simp]: "ncols 0 = 0" |
|
789 |
proof - |
|
790 |
have a:"!! (x::nat). x <= 0 \<Longrightarrow> x = 0" by (arith) |
|
791 |
show "ncols 0 = 0" by (rule a, subst ncols_le, simp) |
|
792 |
qed |
|
793 |
||
794 |
lemma combine_matrix_zero_l_neutral: "zero_l_neutral f \<Longrightarrow> zero_l_neutral (combine_matrix f)" |
|
795 |
by (simp add: zero_l_neutral_def combine_matrix_def combine_infmatrix_def) |
|
796 |
||
797 |
lemma combine_matrix_zero_r_neutral: "zero_r_neutral f \<Longrightarrow> zero_r_neutral (combine_matrix f)" |
|
798 |
by (simp add: zero_r_neutral_def combine_matrix_def combine_infmatrix_def) |
|
799 |
||
800 |
lemma mult_matrix_zero_closed: "\<lbrakk>fadd 0 0 = 0; zero_closed fmul\<rbrakk> \<Longrightarrow> zero_closed (mult_matrix fmul fadd)" |
|
801 |
apply (simp add: zero_closed_def mult_matrix_def mult_matrix_n_def) |
|
802 |
apply (auto) |
|
803 |
by (subst foldseq_zero, (simp add: zero_matrix_def)+)+ |
|
804 |
||
805 |
lemma mult_matrix_n_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd A 0 = 0" |
|
806 |
apply (simp add: mult_matrix_n_def) |
|
807 |
apply (subst foldseq_zero) |
|
808 |
by (simp_all add: zero_matrix_def) |
|
809 |
||
810 |
lemma mult_matrix_n_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd 0 A = 0" |
|
811 |
apply (simp add: mult_matrix_n_def) |
|
812 |
apply (subst foldseq_zero) |
|
813 |
by (simp_all add: zero_matrix_def) |
|
814 |
||
815 |
lemma mult_matrix_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd 0 A = 0" |
|
816 |
by (simp add: mult_matrix_def) |
|
817 |
||
818 |
lemma mult_matrix_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd A 0 = 0" |
|
819 |
by (simp add: mult_matrix_def) |
|
820 |
||
821 |
lemma apply_matrix_zero[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f 0 = 0" |
|
822 |
apply (simp add: apply_matrix_def apply_infmatrix_def) |
|
823 |
by (simp add: zero_matrix_def) |
|
824 |
||
825 |
lemma combine_matrix_zero: "f 0 0 = 0 \<Longrightarrow> combine_matrix f 0 0 = 0" |
|
826 |
apply (simp add: combine_matrix_def combine_infmatrix_def) |
|
827 |
by (simp add: zero_matrix_def) |
|
828 |
||
829 |
lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0" |
|
830 |
apply (simp add: transpose_matrix_def transpose_infmatrix_def zero_matrix_def RepAbs_matrix) |
|
831 |
apply (subst Rep_matrix_inject[symmetric], (rule ext)+) |
|
832 |
apply (simp add: RepAbs_matrix) |
|
833 |
done |
|
834 |
||
835 |
lemma apply_zero_matrix_def[simp]: "apply_matrix (% x. 0) A = 0" |
|
836 |
apply (simp add: apply_matrix_def apply_infmatrix_def) |
|
837 |
by (simp add: zero_matrix_def) |
|
838 |
||
839 |
constdefs |
|
840 |
singleton_matrix :: "nat \<Rightarrow> nat \<Rightarrow> ('a::zero) \<Rightarrow> 'a matrix" |
|
841 |
"singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)" |
|
842 |
move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix" |
|
843 |
"move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))" |
|
844 |
take_rows :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" |
|
845 |
"take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)" |
|
846 |
take_columns :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" |
|
847 |
"take_columns A c == Abs_matrix(% j i. if (i < c) then (Rep_matrix A j i) else 0)" |
|
848 |
||
849 |
constdefs |
|
850 |
column_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" |
|
851 |
"column_of_matrix A n == take_columns (move_matrix A 0 (- int n)) 1" |
|
852 |
row_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix" |
|
853 |
"row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1" |
|
854 |
||
855 |
lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)" |
|
856 |
apply (simp add: singleton_matrix_def) |
|
857 |
apply (auto) |
|
858 |
apply (subst RepAbs_matrix) |
|
859 |
apply (rule exI[of _ "Suc m"], simp) |
|
860 |
apply (rule exI[of _ "Suc n"], simp+) |
|
861 |
by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+ |
|
862 |
||
863 |
lemma apply_singleton_matrix[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f (singleton_matrix j i x) = (singleton_matrix j i (f x))" |
|
864 |
apply (subst Rep_matrix_inject[symmetric]) |
|
865 |
apply (rule ext)+ |
|
866 |
apply (simp) |
|
867 |
done |
|
868 |
||
869 |
lemma singleton_matrix_zero[simp]: "singleton_matrix j i 0 = 0" |
|
870 |
by (simp add: singleton_matrix_def zero_matrix_def) |
|
871 |
||
872 |
lemma nrows_singleton[simp]: "nrows(singleton_matrix j i e) = (if e = 0 then 0 else Suc j)" |
|
873 |
proof- |
|
874 |
have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+ |
|
875 |
from th show ?thesis |
|
876 |
apply (auto) |
|
877 |
apply (rule le_anti_sym) |
|
878 |
apply (subst nrows_le) |
|
879 |
apply (simp add: singleton_matrix_def, auto) |
|
880 |
apply (subst RepAbs_matrix) |
|
881 |
apply auto |
|
882 |
apply (simp add: Suc_le_eq) |
|
883 |
apply (rule not_leE) |
|
884 |
apply (subst nrows_le) |
|
885 |
by simp |
|
886 |
qed |
|
887 |
||
888 |
lemma ncols_singleton[simp]: "ncols(singleton_matrix j i e) = (if e = 0 then 0 else Suc i)" |
|
889 |
proof- |
|
890 |
have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+ |
|
891 |
from th show ?thesis |
|
892 |
apply (auto) |
|
893 |
apply (rule le_anti_sym) |
|
894 |
apply (subst ncols_le) |
|
895 |
apply (simp add: singleton_matrix_def, auto) |
|
896 |
apply (subst RepAbs_matrix) |
|
897 |
apply auto |
|
898 |
apply (simp add: Suc_le_eq) |
|
899 |
apply (rule not_leE) |
|
900 |
apply (subst ncols_le) |
|
901 |
by simp |
|
902 |
qed |
|
903 |
||
904 |
lemma combine_singleton: "f 0 0 = 0 \<Longrightarrow> combine_matrix f (singleton_matrix j i a) (singleton_matrix j i b) = singleton_matrix j i (f a b)" |
|
905 |
apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def) |
|
906 |
apply (subst RepAbs_matrix) |
|
907 |
apply (rule exI[of _ "Suc j"], simp) |
|
908 |
apply (rule exI[of _ "Suc i"], simp) |
|
909 |
apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) |
|
910 |
apply (subst RepAbs_matrix) |
|
911 |
apply (rule exI[of _ "Suc j"], simp) |
|
912 |
apply (rule exI[of _ "Suc i"], simp) |
|
913 |
by simp |
|
914 |
||
915 |
lemma transpose_singleton[simp]: "transpose_matrix (singleton_matrix j i a) = singleton_matrix i j a" |
|
916 |
apply (subst Rep_matrix_inject[symmetric], (rule ext)+) |
|
917 |
apply (simp) |
|
918 |
done |
|
919 |
||
920 |
lemma Rep_move_matrix[simp]: |
|
921 |
"Rep_matrix (move_matrix A y x) j i = |
|
922 |
(if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))" |
|
923 |
apply (simp add: move_matrix_def) |
|
924 |
apply (auto) |
|
925 |
by (subst RepAbs_matrix, |
|
926 |
rule exI[of _ "(nrows A)+(nat (abs y))"], auto, rule nrows, arith, |
|
927 |
rule exI[of _ "(ncols A)+(nat (abs x))"], auto, rule ncols, arith)+ |
|
928 |
||
929 |
lemma move_matrix_0_0[simp]: "move_matrix A 0 0 = A" |
|
930 |
by (simp add: move_matrix_def) |
|
931 |
||
932 |
lemma move_matrix_ortho: "move_matrix A j i = move_matrix (move_matrix A j 0) 0 i" |
|
933 |
apply (subst Rep_matrix_inject[symmetric]) |
|
934 |
apply (rule ext)+ |
|
935 |
apply (simp) |
|
936 |
done |
|
937 |
||
938 |
lemma transpose_move_matrix[simp]: |
|
939 |
"transpose_matrix (move_matrix A x y) = move_matrix (transpose_matrix A) y x" |
|
940 |
apply (subst Rep_matrix_inject[symmetric], (rule ext)+) |
|
941 |
apply (simp) |
|
942 |
done |
|
943 |
||
944 |
lemma move_matrix_singleton[simp]: "move_matrix (singleton_matrix u v x) j i = |
|
945 |
(if (j + int u < 0) | (i + int v < 0) then 0 else (singleton_matrix (nat (j + int u)) (nat (i + int v)) x))" |
|
946 |
apply (subst Rep_matrix_inject[symmetric]) |
|
947 |
apply (rule ext)+ |
|
948 |
apply (case_tac "j + int u < 0") |
|
949 |
apply (simp, arith) |
|
950 |
apply (case_tac "i + int v < 0") |
|
951 |
apply (simp add: neg_def, arith) |
|
952 |
apply (simp add: neg_def) |
|
953 |
apply arith |
|
954 |
done |
|
955 |
||
956 |
lemma Rep_take_columns[simp]: |
|
957 |
"Rep_matrix (take_columns A c) j i = |
|
958 |
(if i < c then (Rep_matrix A j i) else 0)" |
|
959 |
apply (simp add: take_columns_def) |
|
960 |
apply (simplesubst RepAbs_matrix) |
|
961 |
apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le) |
|
962 |
apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le) |
|
963 |
done |
|
964 |
||
965 |
lemma Rep_take_rows[simp]: |
|
966 |
"Rep_matrix (take_rows A r) j i = |
|
967 |
(if j < r then (Rep_matrix A j i) else 0)" |
|
968 |
apply (simp add: take_rows_def) |
|
969 |
apply (simplesubst RepAbs_matrix) |
|
970 |
apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le) |
|
971 |
apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le) |
|
972 |
done |
|
973 |
||
974 |
lemma Rep_column_of_matrix[simp]: |
|
975 |
"Rep_matrix (column_of_matrix A c) j i = (if i = 0 then (Rep_matrix A j c) else 0)" |
|
976 |
by (simp add: column_of_matrix_def) |
|
977 |
||
978 |
lemma Rep_row_of_matrix[simp]: |
|
979 |
"Rep_matrix (row_of_matrix A r) j i = (if j = 0 then (Rep_matrix A r i) else 0)" |
|
980 |
by (simp add: row_of_matrix_def) |
|
981 |
||
982 |
lemma column_of_matrix: "ncols A <= n \<Longrightarrow> column_of_matrix A n = 0" |
|
983 |
apply (subst Rep_matrix_inject[THEN sym]) |
|
984 |
apply (rule ext)+ |
|
985 |
by (simp add: ncols) |
|
986 |
||
987 |
lemma row_of_matrix: "nrows A <= n \<Longrightarrow> row_of_matrix A n = 0" |
|
988 |
apply (subst Rep_matrix_inject[THEN sym]) |
|
989 |
apply (rule ext)+ |
|
990 |
by (simp add: nrows) |
|
991 |
||
992 |
lemma mult_matrix_singleton_right[simp]: |
|
993 |
assumes prems: |
|
994 |
"! x. fmul x 0 = 0" |
|
995 |
"! x. fmul 0 x = 0" |
|
996 |
"! x. fadd 0 x = x" |
|
997 |
"! x. fadd x 0 = x" |
|
998 |
shows "(mult_matrix fmul fadd A (singleton_matrix j i e)) = apply_matrix (% x. fmul x e) (move_matrix (column_of_matrix A j) 0 (int i))" |
|
999 |
apply (simp add: mult_matrix_def) |
|
1000 |
apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"]) |
|
1001 |
apply (auto) |
|
1002 |
apply (simp add: prems)+ |
|
1003 |
apply (simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def) |
|
1004 |
apply (rule comb[of "Abs_matrix" "Abs_matrix"], auto, (rule ext)+) |
|
1005 |
apply (subst foldseq_almostzero[of _ j]) |
|
1006 |
apply (simp add: prems)+ |
|
1007 |
apply (auto) |
|
1008 |
proof - |
|
1009 |
fix k |
|
1010 |
fix l |
|
1011 |
assume a:"~neg(int l - int i)" |
|
1012 |
assume b:"nat (int l - int i) = 0" |
|
1013 |
from a b have a: "l = i" by(insert not_neg_nat[of "int l - int i"], simp add: a b) |
|
1014 |
assume c: "i \<noteq> l" |
|
1015 |
from c a show "fmul (Rep_matrix A k j) e = 0" by blast |
|
1016 |
qed |
|
1017 |
||
1018 |
lemma mult_matrix_ext: |
|
1019 |
assumes |
|
1020 |
eprem: |
|
1021 |
"? e. (! a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)" |
|
1022 |
and fprems: |
|
1023 |
"! a. fmul 0 a = 0" |
|
1024 |
"! a. fmul a 0 = 0" |
|
1025 |
"! a. fadd a 0 = a" |
|
1026 |
"! a. fadd 0 a = a" |
|
1027 |
and contraprems: |
|
1028 |
"mult_matrix fmul fadd A = mult_matrix fmul fadd B" |
|
1029 |
shows |
|
1030 |
"A = B" |
|
1031 |
proof(rule contrapos_np[of "False"], simp) |
|
1032 |
assume a: "A \<noteq> B" |
|
1033 |
have b: "!! f g. (! x y. f x y = g x y) \<Longrightarrow> f = g" by ((rule ext)+, auto) |
|
1034 |
have "? j i. (Rep_matrix A j i) \<noteq> (Rep_matrix B j i)" |
|
1035 |
apply (rule contrapos_np[of "False"], simp+) |
|
1036 |
apply (insert b[of "Rep_matrix A" "Rep_matrix B"], simp) |
|
1037 |
by (simp add: Rep_matrix_inject a) |
|
1038 |
then obtain J I where c:"(Rep_matrix A J I) \<noteq> (Rep_matrix B J I)" by blast |
|
1039 |
from eprem obtain e where eprops:"(! a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)" by blast |
|
1040 |
let ?S = "singleton_matrix I 0 e" |
|
1041 |
let ?comp = "mult_matrix fmul fadd" |
|
1042 |
have d: "!!x f g. f = g \<Longrightarrow> f x = g x" by blast |
|
1043 |
have e: "(% x. fmul x e) 0 = 0" by (simp add: prems) |
|
1044 |
have "~(?comp A ?S = ?comp B ?S)" |
|
1045 |
apply (rule notI) |
|
1046 |
apply (simp add: fprems eprops) |
|
1047 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1048 |
apply (drule d[of _ _ "J"], drule d[of _ _ "0"]) |
|
1049 |
by (simp add: e c eprops) |
|
1050 |
with contraprems show "False" by simp |
|
1051 |
qed |
|
1052 |
||
1053 |
constdefs |
|
1054 |
foldmatrix :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a" |
|
1055 |
"foldmatrix f g A m n == foldseq_transposed g (% j. foldseq f (A j) n) m" |
|
1056 |
foldmatrix_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a" |
|
1057 |
"foldmatrix_transposed f g A m n == foldseq g (% j. foldseq_transposed f (A j) n) m" |
|
1058 |
||
1059 |
lemma foldmatrix_transpose: |
|
1060 |
assumes |
|
1061 |
"! a b c d. g(f a b) (f c d) = f (g a c) (g b d)" |
|
1062 |
shows |
|
1063 |
"foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" (is ?concl) |
|
1064 |
proof - |
|
1065 |
have forall:"!! P x. (! x. P x) \<Longrightarrow> P x" by auto |
|
1066 |
have tworows:"! A. foldmatrix f g A 1 n = foldmatrix_transposed g f (transpose_infmatrix A) n 1" |
|
1067 |
apply (induct n) |
|
1068 |
apply (simp add: foldmatrix_def foldmatrix_transposed_def prems)+ |
|
1069 |
apply (auto) |
|
1070 |
by (drule_tac x="(% j i. A j (Suc i))" in forall, simp) |
|
1071 |
show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" |
|
1072 |
apply (simp add: foldmatrix_def foldmatrix_transposed_def) |
|
1073 |
apply (induct m, simp) |
|
1074 |
apply (simp) |
|
1075 |
apply (insert tworows) |
|
1076 |
apply (drule_tac x="% j i. (if j = 0 then (foldseq_transposed g (\<lambda>u. A u i) m) else (A (Suc m) i))" in spec) |
|
1077 |
by (simp add: foldmatrix_def foldmatrix_transposed_def) |
|
1078 |
qed |
|
1079 |
||
1080 |
lemma foldseq_foldseq: |
|
1081 |
assumes |
|
1082 |
"associative f" |
|
1083 |
"associative g" |
|
1084 |
"! a b c d. g(f a b) (f c d) = f (g a c) (g b d)" |
|
1085 |
shows |
|
1086 |
"foldseq g (% j. foldseq f (A j) n) m = foldseq f (% j. foldseq g ((transpose_infmatrix A) j) m) n" |
|
1087 |
apply (insert foldmatrix_transpose[of g f A m n]) |
|
1088 |
by (simp add: foldmatrix_def foldmatrix_transposed_def foldseq_assoc[THEN sym] prems) |
|
1089 |
||
1090 |
lemma mult_n_nrows: |
|
1091 |
assumes |
|
1092 |
"! a. fmul 0 a = 0" |
|
1093 |
"! a. fmul a 0 = 0" |
|
1094 |
"fadd 0 0 = 0" |
|
1095 |
shows "nrows (mult_matrix_n n fmul fadd A B) \<le> nrows A" |
|
1096 |
apply (subst nrows_le) |
|
1097 |
apply (simp add: mult_matrix_n_def) |
|
1098 |
apply (subst RepAbs_matrix) |
|
1099 |
apply (rule_tac x="nrows A" in exI) |
|
1100 |
apply (simp add: nrows prems foldseq_zero) |
|
1101 |
apply (rule_tac x="ncols B" in exI) |
|
1102 |
apply (simp add: ncols prems foldseq_zero) |
|
1103 |
by (simp add: nrows prems foldseq_zero) |
|
1104 |
||
1105 |
lemma mult_n_ncols: |
|
1106 |
assumes |
|
1107 |
"! a. fmul 0 a = 0" |
|
1108 |
"! a. fmul a 0 = 0" |
|
1109 |
"fadd 0 0 = 0" |
|
1110 |
shows "ncols (mult_matrix_n n fmul fadd A B) \<le> ncols B" |
|
1111 |
apply (subst ncols_le) |
|
1112 |
apply (simp add: mult_matrix_n_def) |
|
1113 |
apply (subst RepAbs_matrix) |
|
1114 |
apply (rule_tac x="nrows A" in exI) |
|
1115 |
apply (simp add: nrows prems foldseq_zero) |
|
1116 |
apply (rule_tac x="ncols B" in exI) |
|
1117 |
apply (simp add: ncols prems foldseq_zero) |
|
1118 |
by (simp add: ncols prems foldseq_zero) |
|
1119 |
||
1120 |
lemma mult_nrows: |
|
1121 |
assumes |
|
1122 |
"! a. fmul 0 a = 0" |
|
1123 |
"! a. fmul a 0 = 0" |
|
1124 |
"fadd 0 0 = 0" |
|
1125 |
shows "nrows (mult_matrix fmul fadd A B) \<le> nrows A" |
|
1126 |
by (simp add: mult_matrix_def mult_n_nrows prems) |
|
1127 |
||
1128 |
lemma mult_ncols: |
|
1129 |
assumes |
|
1130 |
"! a. fmul 0 a = 0" |
|
1131 |
"! a. fmul a 0 = 0" |
|
1132 |
"fadd 0 0 = 0" |
|
1133 |
shows "ncols (mult_matrix fmul fadd A B) \<le> ncols B" |
|
1134 |
by (simp add: mult_matrix_def mult_n_ncols prems) |
|
1135 |
||
1136 |
lemma nrows_move_matrix_le: "nrows (move_matrix A j i) <= nat((int (nrows A)) + j)" |
|
1137 |
apply (auto simp add: nrows_le) |
|
1138 |
apply (rule nrows) |
|
1139 |
apply (arith) |
|
1140 |
done |
|
1141 |
||
1142 |
lemma ncols_move_matrix_le: "ncols (move_matrix A j i) <= nat((int (ncols A)) + i)" |
|
1143 |
apply (auto simp add: ncols_le) |
|
1144 |
apply (rule ncols) |
|
1145 |
apply (arith) |
|
1146 |
done |
|
1147 |
||
1148 |
lemma mult_matrix_assoc: |
|
1149 |
assumes prems: |
|
1150 |
"! a. fmul1 0 a = 0" |
|
1151 |
"! a. fmul1 a 0 = 0" |
|
1152 |
"! a. fmul2 0 a = 0" |
|
1153 |
"! a. fmul2 a 0 = 0" |
|
1154 |
"fadd1 0 0 = 0" |
|
1155 |
"fadd2 0 0 = 0" |
|
1156 |
"! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)" |
|
1157 |
"associative fadd1" |
|
1158 |
"associative fadd2" |
|
1159 |
"! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)" |
|
1160 |
"! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)" |
|
1161 |
"! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)" |
|
1162 |
shows "mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B) C = mult_matrix fmul1 fadd1 A (mult_matrix fmul2 fadd2 B C)" (is ?concl) |
|
1163 |
proof - |
|
1164 |
have comb_left: "!! A B x y. A = B \<Longrightarrow> (Rep_matrix (Abs_matrix A)) x y = (Rep_matrix(Abs_matrix B)) x y" by blast |
|
1165 |
have fmul2fadd1fold: "!! x s n. fmul2 (foldseq fadd1 s n) x = foldseq fadd1 (% k. fmul2 (s k) x) n" |
|
1166 |
by (rule_tac g1 = "% y. fmul2 y x" in ssubst [OF foldseq_distr_unary], simp_all!) |
|
1167 |
have fmul1fadd2fold: "!! x s n. fmul1 x (foldseq fadd2 s n) = foldseq fadd2 (% k. fmul1 x (s k)) n" |
|
1168 |
by (rule_tac g1 = "% y. fmul1 x y" in ssubst [OF foldseq_distr_unary], simp_all!) |
|
1169 |
let ?N = "max (ncols A) (max (ncols B) (max (nrows B) (nrows C)))" |
|
1170 |
show ?concl |
|
1171 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1172 |
apply (rule ext)+ |
|
1173 |
apply (simp add: mult_matrix_def) |
|
1174 |
apply (simplesubst mult_matrix_nm[of _ "max (ncols (mult_matrix_n (max (ncols A) (nrows B)) fmul1 fadd1 A B)) (nrows C)" _ "max (ncols B) (nrows C)"]) |
|
1175 |
apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ |
|
1176 |
apply (simplesubst mult_matrix_nm[of _ "max (ncols A) (nrows (mult_matrix_n (max (ncols B) (nrows C)) fmul2 fadd2 B C))" _ "max (ncols A) (nrows B)"]) apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ |
|
1177 |
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) |
|
1178 |
apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ |
|
1179 |
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) |
|
1180 |
apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ |
|
1181 |
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) |
|
1182 |
apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ |
|
1183 |
apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) |
|
1184 |
apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ |
|
1185 |
apply (simp add: mult_matrix_n_def) |
|
1186 |
apply (rule comb_left) |
|
1187 |
apply ((rule ext)+, simp) |
|
1188 |
apply (simplesubst RepAbs_matrix) |
|
1189 |
apply (rule exI[of _ "nrows B"]) |
|
1190 |
apply (simp add: nrows prems foldseq_zero) |
|
1191 |
apply (rule exI[of _ "ncols C"]) |
|
1192 |
apply (simp add: prems ncols foldseq_zero) |
|
1193 |
apply (subst RepAbs_matrix) |
|
1194 |
apply (rule exI[of _ "nrows A"]) |
|
1195 |
apply (simp add: nrows prems foldseq_zero) |
|
1196 |
apply (rule exI[of _ "ncols B"]) |
|
1197 |
apply (simp add: prems ncols foldseq_zero) |
|
1198 |
apply (simp add: fmul2fadd1fold fmul1fadd2fold prems) |
|
1199 |
apply (subst foldseq_foldseq) |
|
1200 |
apply (simp add: prems)+ |
|
1201 |
by (simp add: transpose_infmatrix) |
|
1202 |
qed |
|
1203 |
||
1204 |
lemma |
|
1205 |
assumes prems: |
|
1206 |
"! a. fmul1 0 a = 0" |
|
1207 |
"! a. fmul1 a 0 = 0" |
|
1208 |
"! a. fmul2 0 a = 0" |
|
1209 |
"! a. fmul2 a 0 = 0" |
|
1210 |
"fadd1 0 0 = 0" |
|
1211 |
"fadd2 0 0 = 0" |
|
1212 |
"! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)" |
|
1213 |
"associative fadd1" |
|
1214 |
"associative fadd2" |
|
1215 |
"! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)" |
|
1216 |
"! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)" |
|
1217 |
"! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)" |
|
1218 |
shows |
|
1219 |
"(mult_matrix fmul1 fadd1 A) o (mult_matrix fmul2 fadd2 B) = mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B)" |
|
1220 |
apply (rule ext)+ |
|
1221 |
apply (simp add: comp_def ) |
|
1222 |
by (simp add: mult_matrix_assoc prems) |
|
1223 |
||
1224 |
lemma mult_matrix_assoc_simple: |
|
1225 |
assumes prems: |
|
1226 |
"! a. fmul 0 a = 0" |
|
1227 |
"! a. fmul a 0 = 0" |
|
1228 |
"fadd 0 0 = 0" |
|
1229 |
"associative fadd" |
|
1230 |
"commutative fadd" |
|
1231 |
"associative fmul" |
|
1232 |
"distributive fmul fadd" |
|
1233 |
shows "mult_matrix fmul fadd (mult_matrix fmul fadd A B) C = mult_matrix fmul fadd A (mult_matrix fmul fadd B C)" (is ?concl) |
|
1234 |
proof - |
|
1235 |
have "!! a b c d. fadd (fadd a b) (fadd c d) = fadd (fadd a c) (fadd b d)" |
|
1236 |
by (simp! add: associative_def commutative_def) |
|
1237 |
then show ?concl |
|
1238 |
apply (subst mult_matrix_assoc) |
|
1239 |
apply (simp_all!) |
|
1240 |
by (simp add: associative_def distributive_def l_distributive_def r_distributive_def)+ |
|
1241 |
qed |
|
1242 |
||
1243 |
lemma transpose_apply_matrix: "f 0 = 0 \<Longrightarrow> transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)" |
|
1244 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1245 |
apply (rule ext)+ |
|
1246 |
by simp |
|
1247 |
||
1248 |
lemma transpose_combine_matrix: "f 0 0 = 0 \<Longrightarrow> transpose_matrix (combine_matrix f A B) = combine_matrix f (transpose_matrix A) (transpose_matrix B)" |
|
1249 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1250 |
apply (rule ext)+ |
|
1251 |
by simp |
|
1252 |
||
1253 |
lemma Rep_mult_matrix: |
|
1254 |
assumes |
|
1255 |
"! a. fmul 0 a = 0" |
|
1256 |
"! a. fmul a 0 = 0" |
|
1257 |
"fadd 0 0 = 0" |
|
1258 |
shows |
|
1259 |
"Rep_matrix(mult_matrix fmul fadd A B) j i = |
|
1260 |
foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) (max (ncols A) (nrows B))" |
|
1261 |
apply (simp add: mult_matrix_def mult_matrix_n_def) |
|
1262 |
apply (subst RepAbs_matrix) |
|
1263 |
apply (rule exI[of _ "nrows A"], simp! add: nrows foldseq_zero) |
|
1264 |
apply (rule exI[of _ "ncols B"], simp! add: ncols foldseq_zero) |
|
1265 |
by simp |
|
1266 |
||
1267 |
lemma transpose_mult_matrix: |
|
1268 |
assumes |
|
1269 |
"! a. fmul 0 a = 0" |
|
1270 |
"! a. fmul a 0 = 0" |
|
1271 |
"fadd 0 0 = 0" |
|
1272 |
"! x y. fmul y x = fmul x y" |
|
1273 |
shows |
|
1274 |
"transpose_matrix (mult_matrix fmul fadd A B) = mult_matrix fmul fadd (transpose_matrix B) (transpose_matrix A)" |
|
1275 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1276 |
apply (rule ext)+ |
|
1277 |
by (simp! add: Rep_mult_matrix max_ac) |
|
1278 |
||
1279 |
lemma column_transpose_matrix: "column_of_matrix (transpose_matrix A) n = transpose_matrix (row_of_matrix A n)" |
|
1280 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1281 |
apply (rule ext)+ |
|
1282 |
by simp |
|
1283 |
||
1284 |
lemma take_columns_transpose_matrix: "take_columns (transpose_matrix A) n = transpose_matrix (take_rows A n)" |
|
1285 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1286 |
apply (rule ext)+ |
|
1287 |
by simp |
|
1288 |
||
27580 | 1289 |
instantiation matrix :: ("{zero, ord}") ord |
27484 | 1290 |
begin |
1291 |
||
1292 |
definition |
|
1293 |
le_matrix_def: "A \<le> B \<longleftrightarrow> (\<forall>j i. Rep_matrix A j i \<le> Rep_matrix B j i)" |
|
1294 |
||
1295 |
definition |
|
28637 | 1296 |
less_def: "A < (B\<Colon>'a matrix) \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> A" |
27484 | 1297 |
|
1298 |
instance .. |
|
1299 |
||
1300 |
end |
|
1301 |
||
27580 | 1302 |
instance matrix :: ("{zero, order}") order |
27484 | 1303 |
apply intro_classes |
1304 |
apply (simp_all add: le_matrix_def less_def) |
|
1305 |
apply (auto) |
|
1306 |
apply (drule_tac x=j in spec, drule_tac x=j in spec) |
|
1307 |
apply (drule_tac x=i in spec, drule_tac x=i in spec) |
|
1308 |
apply (simp) |
|
1309 |
apply (simp add: Rep_matrix_inject[THEN sym]) |
|
1310 |
apply (rule ext)+ |
|
1311 |
apply (drule_tac x=xa in spec, drule_tac x=xa in spec) |
|
1312 |
apply (drule_tac x=xb in spec, drule_tac x=xb in spec) |
|
28637 | 1313 |
apply simp |
1314 |
done |
|
27484 | 1315 |
|
1316 |
lemma le_apply_matrix: |
|
1317 |
assumes |
|
1318 |
"f 0 = 0" |
|
1319 |
"! x y. x <= y \<longrightarrow> f x <= f y" |
|
1320 |
"(a::('a::{ord, zero}) matrix) <= b" |
|
1321 |
shows |
|
1322 |
"apply_matrix f a <= apply_matrix f b" |
|
1323 |
by (simp! add: le_matrix_def) |
|
1324 |
||
1325 |
lemma le_combine_matrix: |
|
1326 |
assumes |
|
1327 |
"f 0 0 = 0" |
|
1328 |
"! a b c d. a <= b & c <= d \<longrightarrow> f a c <= f b d" |
|
1329 |
"A <= B" |
|
1330 |
"C <= D" |
|
1331 |
shows |
|
1332 |
"combine_matrix f A C <= combine_matrix f B D" |
|
1333 |
by (simp! add: le_matrix_def) |
|
1334 |
||
1335 |
lemma le_left_combine_matrix: |
|
1336 |
assumes |
|
1337 |
"f 0 0 = 0" |
|
1338 |
"! a b c. a <= b \<longrightarrow> f c a <= f c b" |
|
1339 |
"A <= B" |
|
1340 |
shows |
|
1341 |
"combine_matrix f C A <= combine_matrix f C B" |
|
1342 |
by (simp! add: le_matrix_def) |
|
1343 |
||
1344 |
lemma le_right_combine_matrix: |
|
1345 |
assumes |
|
1346 |
"f 0 0 = 0" |
|
1347 |
"! a b c. a <= b \<longrightarrow> f a c <= f b c" |
|
1348 |
"A <= B" |
|
1349 |
shows |
|
1350 |
"combine_matrix f A C <= combine_matrix f B C" |
|
1351 |
by (simp! add: le_matrix_def) |
|
1352 |
||
1353 |
lemma le_transpose_matrix: "(A <= B) = (transpose_matrix A <= transpose_matrix B)" |
|
1354 |
by (simp add: le_matrix_def, auto) |
|
1355 |
||
1356 |
lemma le_foldseq: |
|
1357 |
assumes |
|
1358 |
"! a b c d . a <= b & c <= d \<longrightarrow> f a c <= f b d" |
|
1359 |
"! i. i <= n \<longrightarrow> s i <= t i" |
|
1360 |
shows |
|
1361 |
"foldseq f s n <= foldseq f t n" |
|
1362 |
proof - |
|
1363 |
have "! s t. (! i. i<=n \<longrightarrow> s i <= t i) \<longrightarrow> foldseq f s n <= foldseq f t n" by (induct_tac n, simp_all!) |
|
1364 |
then show "foldseq f s n <= foldseq f t n" by (simp!) |
|
1365 |
qed |
|
1366 |
||
1367 |
lemma le_left_mult: |
|
1368 |
assumes |
|
1369 |
"! a b c d. a <= b & c <= d \<longrightarrow> fadd a c <= fadd b d" |
|
1370 |
"! c a b. 0 <= c & a <= b \<longrightarrow> fmul c a <= fmul c b" |
|
1371 |
"! a. fmul 0 a = 0" |
|
1372 |
"! a. fmul a 0 = 0" |
|
1373 |
"fadd 0 0 = 0" |
|
1374 |
"0 <= C" |
|
1375 |
"A <= B" |
|
1376 |
shows |
|
1377 |
"mult_matrix fmul fadd C A <= mult_matrix fmul fadd C B" |
|
1378 |
apply (simp! add: le_matrix_def Rep_mult_matrix) |
|
1379 |
apply (auto) |
|
1380 |
apply (simplesubst foldseq_zerotail[of _ _ _ "max (ncols C) (max (nrows A) (nrows B))"], simp_all add: nrows ncols max1 max2)+ |
|
1381 |
apply (rule le_foldseq) |
|
1382 |
by (auto) |
|
1383 |
||
1384 |
lemma le_right_mult: |
|
1385 |
assumes |
|
1386 |
"! a b c d. a <= b & c <= d \<longrightarrow> fadd a c <= fadd b d" |
|
1387 |
"! c a b. 0 <= c & a <= b \<longrightarrow> fmul a c <= fmul b c" |
|
1388 |
"! a. fmul 0 a = 0" |
|
1389 |
"! a. fmul a 0 = 0" |
|
1390 |
"fadd 0 0 = 0" |
|
1391 |
"0 <= C" |
|
1392 |
"A <= B" |
|
1393 |
shows |
|
1394 |
"mult_matrix fmul fadd A C <= mult_matrix fmul fadd B C" |
|
1395 |
apply (simp! add: le_matrix_def Rep_mult_matrix) |
|
1396 |
apply (auto) |
|
1397 |
apply (simplesubst foldseq_zerotail[of _ _ _ "max (nrows C) (max (ncols A) (ncols B))"], simp_all add: nrows ncols max1 max2)+ |
|
1398 |
apply (rule le_foldseq) |
|
1399 |
by (auto) |
|
1400 |
||
1401 |
lemma spec2: "! j i. P j i \<Longrightarrow> P j i" by blast |
|
1402 |
lemma neg_imp: "(\<not> Q \<longrightarrow> \<not> P) \<Longrightarrow> P \<longrightarrow> Q" by blast |
|
1403 |
||
1404 |
lemma singleton_matrix_le[simp]: "(singleton_matrix j i a <= singleton_matrix j i b) = (a <= (b::_::order))" |
|
1405 |
by (auto simp add: le_matrix_def) |
|
1406 |
||
1407 |
lemma singleton_le_zero[simp]: "(singleton_matrix j i x <= 0) = (x <= (0::'a::{order,zero}))" |
|
1408 |
apply (auto) |
|
1409 |
apply (simp add: le_matrix_def) |
|
1410 |
apply (drule_tac j=j and i=i in spec2) |
|
1411 |
apply (simp) |
|
1412 |
apply (simp add: le_matrix_def) |
|
1413 |
done |
|
1414 |
||
1415 |
lemma singleton_ge_zero[simp]: "(0 <= singleton_matrix j i x) = ((0::'a::{order,zero}) <= x)" |
|
1416 |
apply (auto) |
|
1417 |
apply (simp add: le_matrix_def) |
|
1418 |
apply (drule_tac j=j and i=i in spec2) |
|
1419 |
apply (simp) |
|
1420 |
apply (simp add: le_matrix_def) |
|
1421 |
done |
|
1422 |
||
1423 |
lemma move_matrix_le_zero[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= 0) = (A <= (0::('a::{order,zero}) matrix))" |
|
1424 |
apply (auto simp add: le_matrix_def neg_def) |
|
1425 |
apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) |
|
1426 |
apply (auto) |
|
1427 |
done |
|
1428 |
||
1429 |
lemma move_matrix_zero_le[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (0 <= move_matrix A j i) = ((0::('a::{order,zero}) matrix) <= A)" |
|
1430 |
apply (auto simp add: le_matrix_def neg_def) |
|
1431 |
apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) |
|
1432 |
apply (auto) |
|
1433 |
done |
|
1434 |
||
1435 |
lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))" |
|
1436 |
apply (auto simp add: le_matrix_def neg_def) |
|
1437 |
apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) |
|
1438 |
apply (auto) |
|
1439 |
done |
|
1440 |
||
27580 | 1441 |
instantiation matrix :: ("{lattice, zero}") lattice |
25764 | 1442 |
begin |
1443 |
||
28562 | 1444 |
definition [code del]: "inf = combine_matrix inf" |
25764 | 1445 |
|
28562 | 1446 |
definition [code del]: "sup = combine_matrix sup" |
25764 | 1447 |
|
1448 |
instance |
|
22452
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
22422
diff
changeset
|
1449 |
by default (auto simp add: inf_le1 inf_le2 le_infI le_matrix_def inf_matrix_def sup_matrix_def) |
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents:
22422
diff
changeset
|
1450 |
|
25764 | 1451 |
end |
1452 |
||
1453 |
instantiation matrix :: ("{plus, zero}") plus |
|
1454 |
begin |
|
1455 |
||
1456 |
definition |
|
28562 | 1457 |
plus_matrix_def [code del]: "A + B = combine_matrix (op +) A B" |
25764 | 1458 |
|
1459 |
instance .. |
|
1460 |
||
1461 |
end |
|
1462 |
||
1463 |
instantiation matrix :: ("{uminus, zero}") uminus |
|
1464 |
begin |
|
1465 |
||
1466 |
definition |
|
28562 | 1467 |
minus_matrix_def [code del]: "- A = apply_matrix uminus A" |
25764 | 1468 |
|
1469 |
instance .. |
|
1470 |
||
1471 |
end |
|
1472 |
||
1473 |
instantiation matrix :: ("{minus, zero}") minus |
|
1474 |
begin |
|
14593 | 1475 |
|
25764 | 1476 |
definition |
28562 | 1477 |
diff_matrix_def [code del]: "A - B = combine_matrix (op -) A B" |
25764 | 1478 |
|
1479 |
instance .. |
|
1480 |
||
1481 |
end |
|
1482 |
||
1483 |
instantiation matrix :: ("{plus, times, zero}") times |
|
1484 |
begin |
|
1485 |
||
1486 |
definition |
|
28562 | 1487 |
times_matrix_def [code del]: "A * B = mult_matrix (op *) (op +) A B" |
14940 | 1488 |
|
25764 | 1489 |
instance .. |
1490 |
||
1491 |
end |
|
1492 |
||
27653 | 1493 |
instantiation matrix :: ("{lattice, uminus, zero}") abs |
25764 | 1494 |
begin |
14940 | 1495 |
|
25764 | 1496 |
definition |
28562 | 1497 |
abs_matrix_def [code del]: "abs (A \<Colon> 'a matrix) = sup A (- A)" |
25764 | 1498 |
|
1499 |
instance .. |
|
1500 |
||
1501 |
end |
|
23879 | 1502 |
|
27653 | 1503 |
instance matrix :: (monoid_add) monoid_add |
1504 |
proof |
|
1505 |
fix A B C :: "'a matrix" |
|
14940 | 1506 |
show "A + B + C = A + (B + C)" |
1507 |
apply (simp add: plus_matrix_def) |
|
1508 |
apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec]) |
|
1509 |
apply (simp_all add: add_assoc) |
|
1510 |
done |
|
27653 | 1511 |
show "0 + A = A" |
1512 |
apply (simp add: plus_matrix_def) |
|
1513 |
apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec]) |
|
1514 |
apply (simp) |
|
1515 |
done |
|
1516 |
show "A + 0 = A" |
|
1517 |
apply (simp add: plus_matrix_def) |
|
1518 |
apply (rule combine_matrix_zero_r_neutral [simplified zero_r_neutral_def, THEN spec]) |
|
1519 |
apply (simp) |
|
1520 |
done |
|
1521 |
qed |
|
1522 |
||
1523 |
instance matrix :: (comm_monoid_add) comm_monoid_add |
|
1524 |
proof |
|
1525 |
fix A B :: "'a matrix" |
|
14940 | 1526 |
show "A + B = B + A" |
1527 |
apply (simp add: plus_matrix_def) |
|
1528 |
apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec]) |
|
1529 |
apply (simp_all add: add_commute) |
|
1530 |
done |
|
1531 |
show "0 + A = A" |
|
1532 |
apply (simp add: plus_matrix_def) |
|
1533 |
apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec]) |
|
1534 |
apply (simp) |
|
1535 |
done |
|
27653 | 1536 |
qed |
1537 |
||
1538 |
instance matrix :: (group_add) group_add |
|
1539 |
proof |
|
1540 |
fix A B :: "'a matrix" |
|
1541 |
show "- A + A = 0" |
|
1542 |
by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) |
|
1543 |
show "A - B = A + - B" |
|
1544 |
by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject [symmetric] ext diff_minus) |
|
1545 |
qed |
|
1546 |
||
1547 |
instance matrix :: (ab_group_add) ab_group_add |
|
1548 |
proof |
|
1549 |
fix A B :: "'a matrix" |
|
14940 | 1550 |
show "- A + A = 0" |
1551 |
by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) |
|
1552 |
show "A - B = A + - B" |
|
1553 |
by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) |
|
27653 | 1554 |
qed |
1555 |
||
1556 |
instance matrix :: (pordered_ab_group_add) pordered_ab_group_add |
|
1557 |
proof |
|
1558 |
fix A B C :: "'a matrix" |
|
14940 | 1559 |
assume "A <= B" |
1560 |
then show "C + A <= C + B" |
|
1561 |
apply (simp add: plus_matrix_def) |
|
1562 |
apply (rule le_left_combine_matrix) |
|
1563 |
apply (simp_all) |
|
1564 |
done |
|
1565 |
qed |
|
27653 | 1566 |
|
1567 |
instance matrix :: (lordered_ab_group_add) lordered_ab_group_add_meet .. |
|
1568 |
instance matrix :: (lordered_ab_group_add) lordered_ab_group_add_join .. |
|
14593 | 1569 |
|
27653 | 1570 |
instance matrix :: (ring) ring |
14940 | 1571 |
proof |
27653 | 1572 |
fix A B C :: "'a matrix" |
14940 | 1573 |
show "A * B * C = A * (B * C)" |
1574 |
apply (simp add: times_matrix_def) |
|
1575 |
apply (rule mult_matrix_assoc) |
|
29667 | 1576 |
apply (simp_all add: associative_def algebra_simps) |
14940 | 1577 |
done |
1578 |
show "(A + B) * C = A * C + B * C" |
|
1579 |
apply (simp add: times_matrix_def plus_matrix_def) |
|
1580 |
apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec]) |
|
29667 | 1581 |
apply (simp_all add: associative_def commutative_def algebra_simps) |
14940 | 1582 |
done |
1583 |
show "A * (B + C) = A * B + A * C" |
|
1584 |
apply (simp add: times_matrix_def plus_matrix_def) |
|
1585 |
apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec]) |
|
29667 | 1586 |
apply (simp_all add: associative_def commutative_def algebra_simps) |
27653 | 1587 |
done |
1588 |
qed |
|
1589 |
||
1590 |
instance matrix :: (pordered_ring) pordered_ring |
|
1591 |
proof |
|
1592 |
fix A B C :: "'a matrix" |
|
14940 | 1593 |
assume a: "A \<le> B" |
1594 |
assume b: "0 \<le> C" |
|
1595 |
from a b show "C * A \<le> C * B" |
|
1596 |
apply (simp add: times_matrix_def) |
|
1597 |
apply (rule le_left_mult) |
|
1598 |
apply (simp_all add: add_mono mult_left_mono) |
|
1599 |
done |
|
1600 |
from a b show "A * C \<le> B * C" |
|
1601 |
apply (simp add: times_matrix_def) |
|
1602 |
apply (rule le_right_mult) |
|
1603 |
apply (simp_all add: add_mono mult_right_mono) |
|
1604 |
done |
|
27653 | 1605 |
qed |
1606 |
||
1607 |
instance matrix :: (lordered_ring) lordered_ring |
|
1608 |
proof |
|
1609 |
fix A B C :: "('a :: lordered_ring) matrix" |
|
1610 |
show "abs A = sup A (-A)" |
|
1611 |
by (simp add: abs_matrix_def) |
|
1612 |
qed |
|
14593 | 1613 |
|
25303
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
haftmann
parents:
23879
diff
changeset
|
1614 |
lemma Rep_matrix_add[simp]: |
27653 | 1615 |
"Rep_matrix ((a::('a::monoid_add)matrix)+b) j i = (Rep_matrix a j i) + (Rep_matrix b j i)" |
1616 |
by (simp add: plus_matrix_def) |
|
14593 | 1617 |
|
27653 | 1618 |
lemma Rep_matrix_mult: "Rep_matrix ((a::('a::ring) matrix) * b) j i = |
14940 | 1619 |
foldseq (op +) (% k. (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))" |
1620 |
apply (simp add: times_matrix_def) |
|
1621 |
apply (simp add: Rep_mult_matrix) |
|
1622 |
done |
|
14593 | 1623 |
|
27653 | 1624 |
lemma apply_matrix_add: "! x y. f (x+y) = (f x) + (f y) \<Longrightarrow> f 0 = (0::'a) |
1625 |
\<Longrightarrow> apply_matrix f ((a::('a::monoid_add) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)" |
|
14940 | 1626 |
apply (subst Rep_matrix_inject[symmetric]) |
14593 | 1627 |
apply (rule ext)+ |
14940 | 1628 |
apply (simp) |
1629 |
done |
|
14593 | 1630 |
|
27653 | 1631 |
lemma singleton_matrix_add: "singleton_matrix j i ((a::_::monoid_add)+b) = (singleton_matrix j i a) + (singleton_matrix j i b)" |
14940 | 1632 |
apply (subst Rep_matrix_inject[symmetric]) |
1633 |
apply (rule ext)+ |
|
1634 |
apply (simp) |
|
1635 |
done |
|
14593 | 1636 |
|
27653 | 1637 |
lemma nrows_mult: "nrows ((A::('a::ring) matrix) * B) <= nrows A" |
14593 | 1638 |
by (simp add: times_matrix_def mult_nrows) |
1639 |
||
27653 | 1640 |
lemma ncols_mult: "ncols ((A::('a::ring) matrix) * B) <= ncols B" |
14593 | 1641 |
by (simp add: times_matrix_def mult_ncols) |
1642 |
||
22422
ee19cdb07528
stepping towards uniform lattice theory development in HOL
haftmann
parents:
21312
diff
changeset
|
1643 |
definition |
ee19cdb07528
stepping towards uniform lattice theory development in HOL
haftmann
parents:
21312
diff
changeset
|
1644 |
one_matrix :: "nat \<Rightarrow> ('a::{zero,one}) matrix" where |
ee19cdb07528
stepping towards uniform lattice theory development in HOL
haftmann
parents:
21312
diff
changeset
|
1645 |
"one_matrix n = Abs_matrix (% j i. if j = i & j < n then 1 else 0)" |
14593 | 1646 |
|
1647 |
lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)" |
|
1648 |
apply (simp add: one_matrix_def) |
|
15481 | 1649 |
apply (simplesubst RepAbs_matrix) |
14593 | 1650 |
apply (rule exI[of _ n], simp add: split_if)+ |
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15481
diff
changeset
|
1651 |
by (simp add: split_if) |
14593 | 1652 |
|
20633 | 1653 |
lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") |
14593 | 1654 |
proof - |
1655 |
have "?r <= n" by (simp add: nrows_le) |
|
14940 | 1656 |
moreover have "n <= ?r" by (simp add:le_nrows, arith) |
14593 | 1657 |
ultimately show "?r = n" by simp |
1658 |
qed |
|
1659 |
||
20633 | 1660 |
lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") |
14593 | 1661 |
proof - |
1662 |
have "?r <= n" by (simp add: ncols_le) |
|
1663 |
moreover have "n <= ?r" by (simp add: le_ncols, arith) |
|
1664 |
ultimately show "?r = n" by simp |
|
1665 |
qed |
|
1666 |
||
27653 | 1667 |
lemma one_matrix_mult_right[simp]: "ncols A <= n \<Longrightarrow> (A::('a::{ring_1}) matrix) * (one_matrix n) = A" |
14593 | 1668 |
apply (subst Rep_matrix_inject[THEN sym]) |
1669 |
apply (rule ext)+ |
|
1670 |
apply (simp add: times_matrix_def Rep_mult_matrix) |
|
1671 |
apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero]) |
|
1672 |
apply (simp_all) |
|
1673 |
by (simp add: max_def ncols) |
|
1674 |
||
27653 | 1675 |
lemma one_matrix_mult_left[simp]: "nrows A <= n \<Longrightarrow> (one_matrix n) * A = (A::('a::ring_1) matrix)" |
14593 | 1676 |
apply (subst Rep_matrix_inject[THEN sym]) |
1677 |
apply (rule ext)+ |
|
1678 |
apply (simp add: times_matrix_def Rep_mult_matrix) |
|
1679 |
apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero]) |
|
1680 |
apply (simp_all) |
|
1681 |
by (simp add: max_def nrows) |
|
1682 |
||
27653 | 1683 |
lemma transpose_matrix_mult: "transpose_matrix ((A::('a::comm_ring) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)" |
14940 | 1684 |
apply (simp add: times_matrix_def) |
1685 |
apply (subst transpose_mult_matrix) |
|
1686 |
apply (simp_all add: mult_commute) |
|
1687 |
done |
|
1688 |
||
27653 | 1689 |
lemma transpose_matrix_add: "transpose_matrix ((A::('a::monoid_add) matrix)+B) = transpose_matrix A + transpose_matrix B" |
14940 | 1690 |
by (simp add: plus_matrix_def transpose_combine_matrix) |
1691 |
||
27653 | 1692 |
lemma transpose_matrix_diff: "transpose_matrix ((A::('a::group_add) matrix)-B) = transpose_matrix A - transpose_matrix B" |
14940 | 1693 |
by (simp add: diff_matrix_def transpose_combine_matrix) |
1694 |
||
27653 | 1695 |
lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::group_add) matrix)) = - transpose_matrix (A::'a matrix)" |
14940 | 1696 |
by (simp add: minus_matrix_def transpose_apply_matrix) |
1697 |
||
1698 |
constdefs |
|
27653 | 1699 |
right_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" |
14940 | 1700 |
"right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \<and> nrows X \<le> ncols A" |
27653 | 1701 |
left_inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" |
14940 | 1702 |
"left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) \<and> ncols X \<le> nrows A" |
27653 | 1703 |
inverse_matrix :: "('a::{ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool" |
14940 | 1704 |
"inverse_matrix A X == (right_inverse_matrix A X) \<and> (left_inverse_matrix A X)" |
14593 | 1705 |
|
1706 |
lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X" |
|
1707 |
apply (insert ncols_mult[of A X], insert nrows_mult[of A X]) |
|
1708 |
by (simp add: right_inverse_matrix_def) |
|
1709 |
||
14940 | 1710 |
lemma left_inverse_matrix_dim: "left_inverse_matrix A Y \<Longrightarrow> ncols A = nrows Y" |
1711 |
apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A]) |
|
1712 |
by (simp add: left_inverse_matrix_def) |
|
1713 |
||
1714 |
lemma left_right_inverse_matrix_unique: |
|
1715 |
assumes "left_inverse_matrix A Y" "right_inverse_matrix A X" |
|
1716 |
shows "X = Y" |
|
1717 |
proof - |
|
1718 |
have "Y = Y * one_matrix (nrows A)" |
|
1719 |
apply (subst one_matrix_mult_right) |
|
1720 |
apply (insert prems) |
|
1721 |
by (simp_all add: left_inverse_matrix_def) |
|
1722 |
also have "\<dots> = Y * (A * X)" |
|
1723 |
apply (insert prems) |
|
1724 |
apply (frule right_inverse_matrix_dim) |
|
1725 |
by (simp add: right_inverse_matrix_def) |
|
1726 |
also have "\<dots> = (Y * A) * X" by (simp add: mult_assoc) |
|
1727 |
also have "\<dots> = X" |
|
1728 |
apply (insert prems) |
|
1729 |
apply (frule left_inverse_matrix_dim) |
|
1730 |
apply (simp_all add: left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left) |
|
1731 |
done |
|
1732 |
ultimately show "X = Y" by (simp) |
|
1733 |
qed |
|
1734 |
||
1735 |
lemma inverse_matrix_inject: "\<lbrakk> inverse_matrix A X; inverse_matrix A Y \<rbrakk> \<Longrightarrow> X = Y" |
|
1736 |
by (auto simp add: inverse_matrix_def left_right_inverse_matrix_unique) |
|
1737 |
||
1738 |
lemma one_matrix_inverse: "inverse_matrix (one_matrix n) (one_matrix n)" |
|
1739 |
by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def) |
|
1740 |
||
1741 |
lemma zero_imp_mult_zero: "(a::'a::ring) = 0 | b = 0 \<Longrightarrow> a * b = 0" |
|
1742 |
by auto |
|
1743 |
||
1744 |
lemma Rep_matrix_zero_imp_mult_zero: |
|
1745 |
"! j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0 \<Longrightarrow> A * B = (0::('a::lordered_ring) matrix)" |
|
1746 |
apply (subst Rep_matrix_inject[symmetric]) |
|
1747 |
apply (rule ext)+ |
|
1748 |
apply (auto simp add: Rep_matrix_mult foldseq_zero zero_imp_mult_zero) |
|
1749 |
done |
|
1750 |
||
27653 | 1751 |
lemma add_nrows: "nrows (A::('a::monoid_add) matrix) <= u \<Longrightarrow> nrows B <= u \<Longrightarrow> nrows (A + B) <= u" |
14940 | 1752 |
apply (simp add: plus_matrix_def) |
1753 |
apply (rule combine_nrows) |
|
1754 |
apply (simp_all) |
|
1755 |
done |
|
1756 |
||
27653 | 1757 |
lemma move_matrix_row_mult: "move_matrix ((A::('a::ring) matrix) * B) j 0 = (move_matrix A j 0) * B" |
14940 | 1758 |
apply (subst Rep_matrix_inject[symmetric]) |
1759 |
apply (rule ext)+ |
|
1760 |
apply (auto simp add: Rep_matrix_mult foldseq_zero) |
|
1761 |
apply (rule_tac foldseq_zerotail[symmetric]) |
|
1762 |
apply (auto simp add: nrows zero_imp_mult_zero max2) |
|
1763 |
apply (rule order_trans) |
|
1764 |
apply (rule ncols_move_matrix_le) |
|
1765 |
apply (simp add: max1) |
|
1766 |
done |
|
1767 |
||
27653 | 1768 |
lemma move_matrix_col_mult: "move_matrix ((A::('a::ring) matrix) * B) 0 i = A * (move_matrix B 0 i)" |
14940 | 1769 |
apply (subst Rep_matrix_inject[symmetric]) |
1770 |
apply (rule ext)+ |
|
1771 |
apply (auto simp add: Rep_matrix_mult foldseq_zero) |
|
1772 |
apply (rule_tac foldseq_zerotail[symmetric]) |
|
1773 |
apply (auto simp add: ncols zero_imp_mult_zero max1) |
|
1774 |
apply (rule order_trans) |
|
1775 |
apply (rule nrows_move_matrix_le) |
|
1776 |
apply (simp add: max2) |
|
1777 |
done |
|
1778 |
||
27653 | 1779 |
lemma move_matrix_add: "((move_matrix (A + B) j i)::(('a::monoid_add) matrix)) = (move_matrix A j i) + (move_matrix B j i)" |
14940 | 1780 |
apply (subst Rep_matrix_inject[symmetric]) |
1781 |
apply (rule ext)+ |
|
1782 |
apply (simp) |
|
1783 |
done |
|
1784 |
||
27653 | 1785 |
lemma move_matrix_mult: "move_matrix ((A::('a::ring) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)" |
14940 | 1786 |
by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult) |
1787 |
||
1788 |
constdefs |
|
27653 | 1789 |
scalar_mult :: "('a::ring) \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix" |
14940 | 1790 |
"scalar_mult a m == apply_matrix (op * a) m" |
1791 |
||
1792 |
lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0" |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1793 |
by (simp add: scalar_mult_def) |
14940 | 1794 |
|
1795 |
lemma scalar_mult_add: "scalar_mult y (a+b) = (scalar_mult y a) + (scalar_mult y b)" |
|
29667 | 1796 |
by (simp add: scalar_mult_def apply_matrix_add algebra_simps) |
14940 | 1797 |
|
1798 |
lemma Rep_scalar_mult[simp]: "Rep_matrix (scalar_mult y a) j i = y * (Rep_matrix a j i)" |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1799 |
by (simp add: scalar_mult_def) |
14940 | 1800 |
|
1801 |
lemma scalar_mult_singleton[simp]: "scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)" |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1802 |
apply (subst Rep_matrix_inject[symmetric]) |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1803 |
apply (rule ext)+ |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1804 |
apply (auto) |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1805 |
done |
14940 | 1806 |
|
27653 | 1807 |
lemma Rep_minus[simp]: "Rep_matrix (-(A::_::group_add)) x y = - (Rep_matrix A x y)" |
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1808 |
by (simp add: minus_matrix_def) |
14940 | 1809 |
|
27653 | 1810 |
lemma Rep_abs[simp]: "Rep_matrix (abs (A::_::lordered_ab_group_add)) x y = abs (Rep_matrix A x y)" |
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
22452
diff
changeset
|
1811 |
by (simp add: abs_lattice sup_matrix_def) |
14940 | 1812 |
|
14593 | 1813 |
end |