| author | wenzelm | 
| Fri, 01 Mar 2019 17:00:55 +0100 | |
| changeset 69852 | 54243334edcf | 
| parent 69597 | ff784d5a5bfb | 
| child 70228 | 2d5b122aa0ff | 
| permissions | -rw-r--r-- | 
| 62479 | 1 | (* Title: HOL/Nonstandard_Analysis/HLim.thy | 
| 41589 | 2 | Author: Jacques D. Fleuriot, University of Cambridge | 
| 3 | Author: Lawrence C Paulson | |
| 27468 | 4 | *) | 
| 5 | ||
| 64435 | 6 | section \<open>Limits and Continuity (Nonstandard)\<close> | 
| 27468 | 7 | |
| 8 | theory HLim | |
| 63579 | 9 | imports Star | 
| 10 | abbrevs "--->" = "\<midarrow>\<rightarrow>\<^sub>N\<^sub>S" | |
| 27468 | 11 | begin | 
| 12 | ||
| 64435 | 13 | text \<open>Nonstandard Definitions.\<close> | 
| 27468 | 14 | |
| 64435 | 15 | definition NSLIM :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 16 |     ("((_)/ \<midarrow>(_)/\<rightarrow>\<^sub>N\<^sub>S (_))" [60, 0, 60] 60)
 | |
| 17 | where "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<forall>x. x \<noteq> star_of a \<and> x \<approx> star_of a \<longrightarrow> ( *f* f) x \<approx> star_of L)" | |
| 27468 | 18 | |
| 64435 | 19 | definition isNSCont :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 20 | where \<comment> \<open>NS definition dispenses with limit notions\<close> | |
| 21 | "isNSCont f a \<longleftrightarrow> (\<forall>y. y \<approx> star_of a \<longrightarrow> ( *f* f) y \<approx> star_of (f a))" | |
| 27468 | 22 | |
| 64435 | 23 | definition isNSUCont :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> bool"
 | 
| 24 | where "isNSUCont f \<longleftrightarrow> (\<forall>x y. x \<approx> y \<longrightarrow> ( *f* f) x \<approx> ( *f* f) y)" | |
| 27468 | 25 | |
| 26 | ||
| 61975 | 27 | subsection \<open>Limits of Functions\<close> | 
| 27468 | 28 | |
| 64435 | 29 | lemma NSLIM_I: "(\<And>x. x \<noteq> star_of a \<Longrightarrow> x \<approx> star_of a \<Longrightarrow> starfun f x \<approx> star_of L) \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" | 
| 30 | by (simp add: NSLIM_def) | |
| 31 | ||
| 32 | lemma NSLIM_D: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> x \<noteq> star_of a \<Longrightarrow> x \<approx> star_of a \<Longrightarrow> starfun f x \<approx> star_of L" | |
| 33 | by (simp add: NSLIM_def) | |
| 27468 | 34 | |
| 64435 | 35 | text \<open>Proving properties of limits using nonstandard definition. | 
| 36 | The properties hold for standard limits as well!\<close> | |
| 27468 | 37 | |
| 64435 | 38 | lemma NSLIM_mult: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x * g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l * m)" | 
| 39 | for l m :: "'a::real_normed_algebra" | |
| 40 | by (auto simp add: NSLIM_def intro!: approx_mult_HFinite) | |
| 27468 | 41 | |
| 64435 | 42 | lemma starfun_scaleR [simp]: "starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))" | 
| 43 | by transfer (rule refl) | |
| 27468 | 44 | |
| 64435 | 45 | lemma NSLIM_scaleR: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l *\<^sub>R m)" | 
| 46 | by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite) | |
| 27468 | 47 | |
| 64435 | 48 | lemma NSLIM_add: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x + g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + m)" | 
| 49 | by (auto simp add: NSLIM_def intro!: approx_add) | |
| 27468 | 50 | |
| 64435 | 51 | lemma NSLIM_const [simp]: "(\<lambda>x. k) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S k" | 
| 52 | by (simp add: NSLIM_def) | |
| 27468 | 53 | |
| 64435 | 54 | lemma NSLIM_minus: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> (\<lambda>x. - f x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S -L" | 
| 55 | by (simp add: NSLIM_def) | |
| 27468 | 56 | |
| 64435 | 57 | lemma NSLIM_diff: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l - m)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51525diff
changeset | 58 | by (simp only: NSLIM_add NSLIM_minus diff_conv_add_uminus) | 
| 27468 | 59 | |
| 64435 | 60 | lemma NSLIM_add_minus: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m \<Longrightarrow> (\<lambda>x. f x + - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + -m)" | 
| 61 | by (simp only: NSLIM_add NSLIM_minus) | |
| 27468 | 62 | |
| 64435 | 63 | lemma NSLIM_inverse: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> L \<noteq> 0 \<Longrightarrow> (\<lambda>x. inverse (f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (inverse L)" | 
| 64 | for L :: "'a::real_normed_div_algebra" | |
| 65 | apply (simp add: NSLIM_def, clarify) | |
| 66 | apply (drule spec) | |
| 67 | apply (auto simp add: star_of_approx_inverse) | |
| 68 | done | |
| 27468 | 69 | |
| 70 | lemma NSLIM_zero: | |
| 64435 | 71 | assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" | 
| 72 | shows "(\<lambda>x. f(x) - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0" | |
| 27468 | 73 | proof - | 
| 61971 | 74 | have "(\<lambda>x. f x - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l - l" | 
| 27468 | 75 | by (rule NSLIM_diff [OF f NSLIM_const]) | 
| 64435 | 76 | then show ?thesis by simp | 
| 27468 | 77 | qed | 
| 78 | ||
| 64435 | 79 | lemma NSLIM_zero_cancel: "(\<lambda>x. f x - l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l" | 
| 64604 | 80 | apply (drule_tac g = "\<lambda>x. l" and m = l in NSLIM_add) | 
| 64435 | 81 | apply (auto simp add: add.assoc) | 
| 82 | done | |
| 27468 | 83 | |
| 64435 | 84 | lemma NSLIM_const_not_eq: "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" | 
| 85 | for a :: "'a::real_normed_algebra_1" | |
| 86 | apply (simp add: NSLIM_def) | |
| 87 | apply (rule_tac x="star_of a + of_hypreal \<epsilon>" in exI) | |
| 88 | apply (simp add: hypreal_epsilon_not_zero approx_def) | |
| 89 | done | |
| 27468 | 90 | |
| 64435 | 91 | lemma NSLIM_not_zero: "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0" | 
| 92 | for a :: "'a::real_normed_algebra_1" | |
| 93 | by (rule NSLIM_const_not_eq) | |
| 27468 | 94 | |
| 64435 | 95 | lemma NSLIM_const_eq: "(\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> k = L" | 
| 96 | for a :: "'a::real_normed_algebra_1" | |
| 97 | by (rule ccontr) (blast dest: NSLIM_const_not_eq) | |
| 98 | ||
| 99 | lemma NSLIM_unique: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S M \<Longrightarrow> L = M" | |
| 100 | for a :: "'a::real_normed_algebra_1" | |
| 101 | by (drule (1) NSLIM_diff) (auto dest!: NSLIM_const_eq) | |
| 27468 | 102 | |
| 64435 | 103 | lemma NSLIM_mult_zero: "f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 \<Longrightarrow> (\<lambda>x. f x * g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0" | 
| 104 | for f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" | |
| 105 | by (drule NSLIM_mult) auto | |
| 27468 | 106 | |
| 64435 | 107 | lemma NSLIM_self: "(\<lambda>x. x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S a" | 
| 108 | by (simp add: NSLIM_def) | |
| 27468 | 109 | |
| 110 | ||
| 69597 | 111 | subsubsection \<open>Equivalence of \<^term>\<open>filterlim\<close> and \<^term>\<open>NSLIM\<close>\<close> | 
| 27468 | 112 | |
| 113 | lemma LIM_NSLIM: | |
| 64435 | 114 | assumes f: "f \<midarrow>a\<rightarrow> L" | 
| 115 | shows "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" | |
| 27468 | 116 | proof (rule NSLIM_I) | 
| 117 | fix x | |
| 118 | assume neq: "x \<noteq> star_of a" | |
| 119 | assume approx: "x \<approx> star_of a" | |
| 120 | have "starfun f x - star_of L \<in> Infinitesimal" | |
| 121 | proof (rule InfinitesimalI2) | |
| 64435 | 122 | fix r :: real | 
| 123 | assume r: "0 < r" | |
| 124 | from LIM_D [OF f r] obtain s | |
| 125 | where s: "0 < s" and less_r: "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < s \<Longrightarrow> norm (f x - L) < r" | |
| 27468 | 126 | by fast | 
| 127 | from less_r have less_r': | |
| 64435 | 128 | "\<And>x. x \<noteq> star_of a \<Longrightarrow> hnorm (x - star_of a) < star_of s \<Longrightarrow> | 
| 129 | hnorm (starfun f x - star_of L) < star_of r" | |
| 27468 | 130 | by transfer | 
| 131 | from approx have "x - star_of a \<in> Infinitesimal" | |
| 64435 | 132 | by (simp only: approx_def) | 
| 133 | then have "hnorm (x - star_of a) < star_of s" | |
| 27468 | 134 | using s by (rule InfinitesimalD2) | 
| 135 | with neq show "hnorm (starfun f x - star_of L) < star_of r" | |
| 136 | by (rule less_r') | |
| 137 | qed | |
| 64435 | 138 | then show "starfun f x \<approx> star_of L" | 
| 27468 | 139 | by (unfold approx_def) | 
| 140 | qed | |
| 141 | ||
| 142 | lemma NSLIM_LIM: | |
| 64435 | 143 | assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" | 
| 144 | shows "f \<midarrow>a\<rightarrow> L" | |
| 27468 | 145 | proof (rule LIM_I) | 
| 64435 | 146 | fix r :: real | 
| 147 | assume r: "0 < r" | |
| 148 | have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s \<longrightarrow> | |
| 149 | hnorm (starfun f x - star_of L) < star_of r" | |
| 27468 | 150 | proof (rule exI, safe) | 
| 64435 | 151 | show "0 < \<epsilon>" | 
| 152 | by (rule hypreal_epsilon_gt_zero) | |
| 27468 | 153 | next | 
| 64435 | 154 | fix x | 
| 155 | assume neq: "x \<noteq> star_of a" | |
| 61981 | 156 | assume "hnorm (x - star_of a) < \<epsilon>" | 
| 64435 | 157 | with Infinitesimal_epsilon have "x - star_of a \<in> Infinitesimal" | 
| 27468 | 158 | by (rule hnorm_less_Infinitesimal) | 
| 64435 | 159 | then have "x \<approx> star_of a" | 
| 27468 | 160 | by (unfold approx_def) | 
| 161 | with f neq have "starfun f x \<approx> star_of L" | |
| 162 | by (rule NSLIM_D) | |
| 64435 | 163 | then have "starfun f x - star_of L \<in> Infinitesimal" | 
| 27468 | 164 | by (unfold approx_def) | 
| 64435 | 165 | then show "hnorm (starfun f x - star_of L) < star_of r" | 
| 27468 | 166 | using r by (rule InfinitesimalD2) | 
| 167 | qed | |
| 64435 | 168 | then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r" | 
| 27468 | 169 | by transfer | 
| 170 | qed | |
| 171 | ||
| 64435 | 172 | theorem LIM_NSLIM_iff: "f \<midarrow>x\<rightarrow> L \<longleftrightarrow> f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L" | 
| 173 | by (blast intro: LIM_NSLIM NSLIM_LIM) | |
| 27468 | 174 | |
| 175 | ||
| 61975 | 176 | subsection \<open>Continuity\<close> | 
| 27468 | 177 | |
| 64435 | 178 | lemma isNSContD: "isNSCont f a \<Longrightarrow> y \<approx> star_of a \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)" | 
| 179 | by (simp add: isNSCont_def) | |
| 180 | ||
| 181 | lemma isNSCont_NSLIM: "isNSCont f a \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a)" | |
| 182 | by (simp add: isNSCont_def NSLIM_def) | |
| 27468 | 183 | |
| 64435 | 184 | lemma NSLIM_isNSCont: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) \<Longrightarrow> isNSCont f a" | 
| 185 | apply (auto simp add: isNSCont_def NSLIM_def) | |
| 186 | apply (case_tac "y = star_of a") | |
| 187 | apply auto | |
| 188 | done | |
| 27468 | 189 | |
| 64435 | 190 | text \<open>NS continuity can be defined using NS Limit in | 
| 191 | similar fashion to standard definition of continuity.\<close> | |
| 192 | lemma isNSCont_NSLIM_iff: "isNSCont f a \<longleftrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a)" | |
| 193 | by (blast intro: isNSCont_NSLIM NSLIM_isNSCont) | |
| 27468 | 194 | |
| 64435 | 195 | text \<open>Hence, NS continuity can be given in terms of standard limit.\<close> | 
| 196 | lemma isNSCont_LIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow> (f a))" | |
| 197 | by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff) | |
| 27468 | 198 | |
| 64435 | 199 | text \<open>Moreover, it's trivial now that NS continuity | 
| 200 | is equivalent to standard continuity.\<close> | |
| 201 | lemma isNSCont_isCont_iff: "isNSCont f a \<longleftrightarrow> isCont f a" | |
| 202 | by (simp add: isCont_def) (rule isNSCont_LIM_iff) | |
| 27468 | 203 | |
| 64435 | 204 | text \<open>Standard continuity \<open>\<Longrightarrow>\<close> NS continuity.\<close> | 
| 205 | lemma isCont_isNSCont: "isCont f a \<Longrightarrow> isNSCont f a" | |
| 206 | by (erule isNSCont_isCont_iff [THEN iffD2]) | |
| 27468 | 207 | |
| 64604 | 208 | text \<open>NS continuity \<open>\<Longrightarrow>\<close> Standard continuity.\<close> | 
| 209 | lemma isNSCont_isCont: "isNSCont f a \<Longrightarrow> isCont f a" | |
| 64435 | 210 | by (erule isNSCont_isCont_iff [THEN iffD1]) | 
| 27468 | 211 | |
| 64435 | 212 | |
| 213 | text \<open>Alternative definition of continuity.\<close> | |
| 27468 | 214 | |
| 64435 | 215 | text \<open>Prove equivalence between NS limits -- | 
| 216 | seems easier than using standard definition.\<close> | |
| 217 | lemma NSLIM_h_iff: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L" | |
| 218 | apply (simp add: NSLIM_def, auto) | |
| 219 | apply (drule_tac x = "star_of a + x" in spec) | |
| 220 | apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp) | |
| 221 | apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]]) | |
| 222 | apply (erule_tac [3] approx_minus_iff2 [THEN iffD1]) | |
| 223 | prefer 2 apply (simp add: add.commute) | |
| 224 | apply (rule_tac x = x in star_cases) | |
| 225 | apply (rule_tac [2] x = x in star_cases) | |
| 226 | apply (auto simp add: starfun star_of_def star_n_minus star_n_add add.assoc star_n_zero_num) | |
| 227 | done | |
| 27468 | 228 | |
| 64435 | 229 | lemma NSLIM_isCont_iff: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S f a \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S f a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51525diff
changeset | 230 | by (fact NSLIM_h_iff) | 
| 27468 | 231 | |
| 64435 | 232 | lemma isNSCont_minus: "isNSCont f a \<Longrightarrow> isNSCont (\<lambda>x. - f x) a" | 
| 233 | by (simp add: isNSCont_def) | |
| 27468 | 234 | |
| 64435 | 235 | lemma isNSCont_inverse: "isNSCont f x \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> isNSCont (\<lambda>x. inverse (f x)) x" | 
| 236 | for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra" | |
| 68611 | 237 | using NSLIM_inverse NSLIM_isNSCont isNSCont_NSLIM by blast | 
| 27468 | 238 | |
| 64435 | 239 | lemma isNSCont_const [simp]: "isNSCont (\<lambda>x. k) a" | 
| 240 | by (simp add: isNSCont_def) | |
| 27468 | 241 | |
| 64435 | 242 | lemma isNSCont_abs [simp]: "isNSCont abs a" | 
| 243 | for a :: real | |
| 244 | by (auto simp: isNSCont_def intro: approx_hrabs simp: starfun_rabs_hrabs) | |
| 27468 | 245 | |
| 246 | ||
| 61975 | 247 | subsection \<open>Uniform Continuity\<close> | 
| 27468 | 248 | |
| 64435 | 249 | lemma isNSUContD: "isNSUCont f \<Longrightarrow> x \<approx> y \<Longrightarrow> ( *f* f) x \<approx> ( *f* f) y" | 
| 250 | by (simp add: isNSUCont_def) | |
| 27468 | 251 | |
| 252 | lemma isUCont_isNSUCont: | |
| 253 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 64435 | 254 | assumes f: "isUCont f" | 
| 255 | shows "isNSUCont f" | |
| 256 | unfolding isNSUCont_def | |
| 257 | proof safe | |
| 27468 | 258 | fix x y :: "'a star" | 
| 259 | assume approx: "x \<approx> y" | |
| 260 | have "starfun f x - starfun f y \<in> Infinitesimal" | |
| 261 | proof (rule InfinitesimalI2) | |
| 64435 | 262 | fix r :: real | 
| 263 | assume r: "0 < r" | |
| 264 | with f obtain s where s: "0 < s" | |
| 265 | and less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r" | |
| 31338 
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
 huffman parents: 
28562diff
changeset | 266 | by (auto simp add: isUCont_def dist_norm) | 
| 27468 | 267 | from less_r have less_r': | 
| 64435 | 268 | "\<And>x y. hnorm (x - y) < star_of s \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" | 
| 27468 | 269 | by transfer | 
| 270 | from approx have "x - y \<in> Infinitesimal" | |
| 271 | by (unfold approx_def) | |
| 64435 | 272 | then have "hnorm (x - y) < star_of s" | 
| 27468 | 273 | using s by (rule InfinitesimalD2) | 
| 64435 | 274 | then show "hnorm (starfun f x - starfun f y) < star_of r" | 
| 27468 | 275 | by (rule less_r') | 
| 276 | qed | |
| 64435 | 277 | then show "starfun f x \<approx> starfun f y" | 
| 27468 | 278 | by (unfold approx_def) | 
| 279 | qed | |
| 280 | ||
| 281 | lemma isNSUCont_isUCont: | |
| 282 | fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" | |
| 64435 | 283 | assumes f: "isNSUCont f" | 
| 284 | shows "isUCont f" | |
| 285 | unfolding isUCont_def dist_norm | |
| 286 | proof safe | |
| 287 | fix r :: real | |
| 288 | assume r: "0 < r" | |
| 289 | have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" | |
| 27468 | 290 | proof (rule exI, safe) | 
| 64435 | 291 | show "0 < \<epsilon>" | 
| 292 | by (rule hypreal_epsilon_gt_zero) | |
| 27468 | 293 | next | 
| 294 | fix x y :: "'a star" | |
| 61981 | 295 | assume "hnorm (x - y) < \<epsilon>" | 
| 64435 | 296 | with Infinitesimal_epsilon have "x - y \<in> Infinitesimal" | 
| 27468 | 297 | by (rule hnorm_less_Infinitesimal) | 
| 64435 | 298 | then have "x \<approx> y" | 
| 27468 | 299 | by (unfold approx_def) | 
| 300 | with f have "starfun f x \<approx> starfun f y" | |
| 301 | by (simp add: isNSUCont_def) | |
| 64435 | 302 | then have "starfun f x - starfun f y \<in> Infinitesimal" | 
| 27468 | 303 | by (unfold approx_def) | 
| 64435 | 304 | then show "hnorm (starfun f x - starfun f y) < star_of r" | 
| 27468 | 305 | using r by (rule InfinitesimalD2) | 
| 306 | qed | |
| 64435 | 307 | then show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r" | 
| 27468 | 308 | by transfer | 
| 309 | qed | |
| 310 | ||
| 311 | end |