| author | wenzelm | 
| Fri, 01 Mar 2019 17:00:55 +0100 | |
| changeset 69852 | 54243334edcf | 
| parent 69597 | ff784d5a5bfb | 
| child 70723 | 4e39d87c9737 | 
| permissions | -rw-r--r-- | 
| 62479 | 1 | (* Title: HOL/Nonstandard_Analysis/NSComplex.thy | 
| 41959 | 2 | Author: Jacques D. Fleuriot, University of Edinburgh | 
| 3 | Author: Lawrence C Paulson | |
| 27468 | 4 | *) | 
| 5 | ||
| 64435 | 6 | section \<open>Nonstandard Complex Numbers\<close> | 
| 27468 | 7 | |
| 8 | theory NSComplex | |
| 64435 | 9 | imports NSA | 
| 27468 | 10 | begin | 
| 11 | ||
| 42463 | 12 | type_synonym hcomplex = "complex star" | 
| 27468 | 13 | |
| 64435 | 14 | abbreviation hcomplex_of_complex :: "complex \<Rightarrow> complex star" | 
| 15 | where "hcomplex_of_complex \<equiv> star_of" | |
| 27468 | 16 | |
| 64435 | 17 | abbreviation hcmod :: "complex star \<Rightarrow> real star" | 
| 18 | where "hcmod \<equiv> hnorm" | |
| 27468 | 19 | |
| 20 | ||
| 64435 | 21 | subsubsection \<open>Real and Imaginary parts\<close> | 
| 22 | ||
| 23 | definition hRe :: "hcomplex \<Rightarrow> hypreal" | |
| 24 | where "hRe = *f* Re" | |
| 25 | ||
| 26 | definition hIm :: "hcomplex \<Rightarrow> hypreal" | |
| 27 | where "hIm = *f* Im" | |
| 28 | ||
| 27468 | 29 | |
| 64435 | 30 | subsubsection \<open>Imaginary unit\<close> | 
| 31 | ||
| 32 | definition iii :: hcomplex | |
| 33 | where "iii = star_of \<i>" | |
| 27468 | 34 | |
| 64435 | 35 | |
| 36 | subsubsection \<open>Complex conjugate\<close> | |
| 37 | ||
| 38 | definition hcnj :: "hcomplex \<Rightarrow> hcomplex" | |
| 39 | where "hcnj = *f* cnj" | |
| 27468 | 40 | |
| 41 | ||
| 64435 | 42 | subsubsection \<open>Argand\<close> | 
| 27468 | 43 | |
| 64435 | 44 | definition hsgn :: "hcomplex \<Rightarrow> hcomplex" | 
| 45 | where "hsgn = *f* sgn" | |
| 27468 | 46 | |
| 64435 | 47 | definition harg :: "hcomplex \<Rightarrow> hypreal" | 
| 48 | where "harg = *f* arg" | |
| 27468 | 49 | |
| 64435 | 50 | definition \<comment> \<open>abbreviation for \<open>cos a + i sin a\<close>\<close> | 
| 51 | hcis :: "hypreal \<Rightarrow> hcomplex" | |
| 52 | where "hcis = *f* cis" | |
| 27468 | 53 | |
| 64435 | 54 | |
| 55 | subsubsection \<open>Injection from hyperreals\<close> | |
| 27468 | 56 | |
| 64435 | 57 | abbreviation hcomplex_of_hypreal :: "hypreal \<Rightarrow> hcomplex" | 
| 58 | where "hcomplex_of_hypreal \<equiv> of_hypreal" | |
| 27468 | 59 | |
| 64435 | 60 | definition \<comment> \<open>abbreviation for \<open>r * (cos a + i sin a)\<close>\<close> | 
| 61 | hrcis :: "hypreal \<Rightarrow> hypreal \<Rightarrow> hcomplex" | |
| 62 | where "hrcis = *f2* rcis" | |
| 27468 | 63 | |
| 64 | ||
| 64435 | 65 | subsubsection \<open>\<open>e ^ (x + iy)\<close>\<close> | 
| 27468 | 66 | |
| 64435 | 67 | definition hExp :: "hcomplex \<Rightarrow> hcomplex" | 
| 68 | where "hExp = *f* exp" | |
| 27468 | 69 | |
| 64435 | 70 | definition HComplex :: "hypreal \<Rightarrow> hypreal \<Rightarrow> hcomplex" | 
| 71 | where "HComplex = *f2* Complex" | |
| 27468 | 72 | |
| 73 | lemmas hcomplex_defs [transfer_unfold] = | |
| 74 | hRe_def hIm_def iii_def hcnj_def hsgn_def harg_def hcis_def | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58878diff
changeset | 75 | hrcis_def hExp_def HComplex_def | 
| 27468 | 76 | |
| 77 | lemma Standard_hRe [simp]: "x \<in> Standard \<Longrightarrow> hRe x \<in> Standard" | |
| 64435 | 78 | by (simp add: hcomplex_defs) | 
| 27468 | 79 | |
| 80 | lemma Standard_hIm [simp]: "x \<in> Standard \<Longrightarrow> hIm x \<in> Standard" | |
| 64435 | 81 | by (simp add: hcomplex_defs) | 
| 27468 | 82 | |
| 83 | lemma Standard_iii [simp]: "iii \<in> Standard" | |
| 64435 | 84 | by (simp add: hcomplex_defs) | 
| 27468 | 85 | |
| 86 | lemma Standard_hcnj [simp]: "x \<in> Standard \<Longrightarrow> hcnj x \<in> Standard" | |
| 64435 | 87 | by (simp add: hcomplex_defs) | 
| 27468 | 88 | |
| 89 | lemma Standard_hsgn [simp]: "x \<in> Standard \<Longrightarrow> hsgn x \<in> Standard" | |
| 64435 | 90 | by (simp add: hcomplex_defs) | 
| 27468 | 91 | |
| 92 | lemma Standard_harg [simp]: "x \<in> Standard \<Longrightarrow> harg x \<in> Standard" | |
| 64435 | 93 | by (simp add: hcomplex_defs) | 
| 27468 | 94 | |
| 95 | lemma Standard_hcis [simp]: "r \<in> Standard \<Longrightarrow> hcis r \<in> Standard" | |
| 64435 | 96 | by (simp add: hcomplex_defs) | 
| 27468 | 97 | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58878diff
changeset | 98 | lemma Standard_hExp [simp]: "x \<in> Standard \<Longrightarrow> hExp x \<in> Standard" | 
| 64435 | 99 | by (simp add: hcomplex_defs) | 
| 27468 | 100 | |
| 64435 | 101 | lemma Standard_hrcis [simp]: "r \<in> Standard \<Longrightarrow> s \<in> Standard \<Longrightarrow> hrcis r s \<in> Standard" | 
| 102 | by (simp add: hcomplex_defs) | |
| 27468 | 103 | |
| 64435 | 104 | lemma Standard_HComplex [simp]: "r \<in> Standard \<Longrightarrow> s \<in> Standard \<Longrightarrow> HComplex r s \<in> Standard" | 
| 105 | by (simp add: hcomplex_defs) | |
| 27468 | 106 | |
| 107 | lemma hcmod_def: "hcmod = *f* cmod" | |
| 64435 | 108 | by (rule hnorm_def) | 
| 27468 | 109 | |
| 110 | ||
| 64435 | 111 | subsection \<open>Properties of Nonstandard Real and Imaginary Parts\<close> | 
| 27468 | 112 | |
| 64435 | 113 | lemma hcomplex_hRe_hIm_cancel_iff: "\<And>w z. w = z \<longleftrightarrow> hRe w = hRe z \<and> hIm w = hIm z" | 
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 114 | by transfer (rule complex_eq_iff) | 
| 27468 | 115 | |
| 64435 | 116 | lemma hcomplex_equality [intro?]: "\<And>z w. hRe z = hRe w \<Longrightarrow> hIm z = hIm w \<Longrightarrow> z = w" | 
| 68499 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 paulson <lp15@cam.ac.uk> parents: 
65274diff
changeset | 117 | by transfer (rule complex_eqI) | 
| 27468 | 118 | |
| 119 | lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0" | |
| 64435 | 120 | by transfer simp | 
| 27468 | 121 | |
| 122 | lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0" | |
| 64435 | 123 | by transfer simp | 
| 27468 | 124 | |
| 125 | lemma hcomplex_hRe_one [simp]: "hRe 1 = 1" | |
| 64435 | 126 | by transfer simp | 
| 27468 | 127 | |
| 128 | lemma hcomplex_hIm_one [simp]: "hIm 1 = 0" | |
| 64435 | 129 | by transfer simp | 
| 130 | ||
| 131 | ||
| 132 | subsection \<open>Addition for Nonstandard Complex Numbers\<close> | |
| 133 | ||
| 134 | lemma hRe_add: "\<And>x y. hRe (x + y) = hRe x + hRe y" | |
| 135 | by transfer simp | |
| 136 | ||
| 137 | lemma hIm_add: "\<And>x y. hIm (x + y) = hIm x + hIm y" | |
| 138 | by transfer simp | |
| 27468 | 139 | |
| 140 | ||
| 64435 | 141 | subsection \<open>More Minus Laws\<close> | 
| 27468 | 142 | |
| 64435 | 143 | lemma hRe_minus: "\<And>z. hRe (- z) = - hRe z" | 
| 144 | by transfer (rule uminus_complex.sel) | |
| 27468 | 145 | |
| 64435 | 146 | lemma hIm_minus: "\<And>z. hIm (- z) = - hIm z" | 
| 147 | by transfer (rule uminus_complex.sel) | |
| 27468 | 148 | |
| 64435 | 149 | lemma hcomplex_add_minus_eq_minus: "x + y = 0 \<Longrightarrow> x = - y" | 
| 150 | for x y :: hcomplex | |
| 151 | apply (drule minus_unique) | |
| 152 | apply (simp add: minus_equation_iff [of x y]) | |
| 153 | done | |
| 27468 | 154 | |
| 64435 | 155 | lemma hcomplex_i_mult_eq [simp]: "iii * iii = - 1" | 
| 156 | by transfer (rule i_squared) | |
| 27468 | 157 | |
| 64435 | 158 | lemma hcomplex_i_mult_left [simp]: "\<And>z. iii * (iii * z) = - z" | 
| 159 | by transfer (rule complex_i_mult_minus) | |
| 27468 | 160 | |
| 161 | lemma hcomplex_i_not_zero [simp]: "iii \<noteq> 0" | |
| 64435 | 162 | by transfer (rule complex_i_not_zero) | 
| 27468 | 163 | |
| 164 | ||
| 64435 | 165 | subsection \<open>More Multiplication Laws\<close> | 
| 27468 | 166 | |
| 64435 | 167 | lemma hcomplex_mult_minus_one: "- 1 * z = - z" | 
| 168 | for z :: hcomplex | |
| 169 | by simp | |
| 27468 | 170 | |
| 64435 | 171 | lemma hcomplex_mult_minus_one_right: "z * - 1 = - z" | 
| 172 | for z :: hcomplex | |
| 173 | by simp | |
| 27468 | 174 | |
| 64435 | 175 | lemma hcomplex_mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" | 
| 176 | for a b c :: hcomplex | |
| 177 | by simp | |
| 178 | ||
| 179 | lemma hcomplex_mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" | |
| 180 | for a b c :: hcomplex | |
| 181 | by simp | |
| 27468 | 182 | |
| 183 | ||
| 64435 | 184 | subsection \<open>Subtraction and Division\<close> | 
| 27468 | 185 | |
| 186 | (* TODO: delete *) | |
| 64435 | 187 | lemma hcomplex_diff_eq_eq [simp]: "x - y = z \<longleftrightarrow> x = z + y" | 
| 188 | for x y z :: hcomplex | |
| 189 | by (rule diff_eq_eq) | |
| 27468 | 190 | |
| 191 | ||
| 69597 | 192 | subsection \<open>Embedding Properties for \<^term>\<open>hcomplex_of_hypreal\<close> Map\<close> | 
| 64435 | 193 | |
| 194 | lemma hRe_hcomplex_of_hypreal [simp]: "\<And>z. hRe (hcomplex_of_hypreal z) = z" | |
| 195 | by transfer (rule Re_complex_of_real) | |
| 27468 | 196 | |
| 64435 | 197 | lemma hIm_hcomplex_of_hypreal [simp]: "\<And>z. hIm (hcomplex_of_hypreal z) = 0" | 
| 198 | by transfer (rule Im_complex_of_real) | |
| 27468 | 199 | |
| 64435 | 200 | lemma hcomplex_of_hypreal_epsilon_not_zero [simp]: "hcomplex_of_hypreal \<epsilon> \<noteq> 0" | 
| 201 | by (simp add: hypreal_epsilon_not_zero) | |
| 27468 | 202 | |
| 64435 | 203 | |
| 204 | subsection \<open>\<open>HComplex\<close> theorems\<close> | |
| 27468 | 205 | |
| 64435 | 206 | lemma hRe_HComplex [simp]: "\<And>x y. hRe (HComplex x y) = x" | 
| 207 | by transfer simp | |
| 27468 | 208 | |
| 64435 | 209 | lemma hIm_HComplex [simp]: "\<And>x y. hIm (HComplex x y) = y" | 
| 210 | by transfer simp | |
| 27468 | 211 | |
| 64435 | 212 | lemma hcomplex_surj [simp]: "\<And>z. HComplex (hRe z) (hIm z) = z" | 
| 213 | by transfer (rule complex_surj) | |
| 27468 | 214 | |
| 215 | lemma hcomplex_induct [case_names rect(*, induct type: hcomplex*)]: | |
| 64435 | 216 | "(\<And>x y. P (HComplex x y)) \<Longrightarrow> P z" | 
| 217 | by (rule hcomplex_surj [THEN subst]) blast | |
| 27468 | 218 | |
| 219 | ||
| 64435 | 220 | subsection \<open>Modulus (Absolute Value) of Nonstandard Complex Number\<close> | 
| 27468 | 221 | |
| 222 | lemma hcomplex_of_hypreal_abs: | |
| 64435 | 223 | "hcomplex_of_hypreal \<bar>x\<bar> = hcomplex_of_hypreal (hcmod (hcomplex_of_hypreal x))" | 
| 224 | by simp | |
| 27468 | 225 | |
| 64435 | 226 | lemma HComplex_inject [simp]: "\<And>x y x' y'. HComplex x y = HComplex x' y' \<longleftrightarrow> x = x' \<and> y = y'" | 
| 227 | by transfer (rule complex.inject) | |
| 27468 | 228 | |
| 229 | lemma HComplex_add [simp]: | |
| 64435 | 230 | "\<And>x1 y1 x2 y2. HComplex x1 y1 + HComplex x2 y2 = HComplex (x1 + x2) (y1 + y2)" | 
| 231 | by transfer (rule complex_add) | |
| 27468 | 232 | |
| 64435 | 233 | lemma HComplex_minus [simp]: "\<And>x y. - HComplex x y = HComplex (- x) (- y)" | 
| 234 | by transfer (rule complex_minus) | |
| 27468 | 235 | |
| 236 | lemma HComplex_diff [simp]: | |
| 64435 | 237 | "\<And>x1 y1 x2 y2. HComplex x1 y1 - HComplex x2 y2 = HComplex (x1 - x2) (y1 - y2)" | 
| 238 | by transfer (rule complex_diff) | |
| 27468 | 239 | |
| 240 | lemma HComplex_mult [simp]: | |
| 64435 | 241 | "\<And>x1 y1 x2 y2. HComplex x1 y1 * HComplex x2 y2 = HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" | 
| 242 | by transfer (rule complex_mult) | |
| 27468 | 243 | |
| 64435 | 244 | text \<open>\<open>HComplex_inverse\<close> is proved below.\<close> | 
| 27468 | 245 | |
| 64435 | 246 | lemma hcomplex_of_hypreal_eq: "\<And>r. hcomplex_of_hypreal r = HComplex r 0" | 
| 247 | by transfer (rule complex_of_real_def) | |
| 27468 | 248 | |
| 249 | lemma HComplex_add_hcomplex_of_hypreal [simp]: | |
| 64435 | 250 | "\<And>x y r. HComplex x y + hcomplex_of_hypreal r = HComplex (x + r) y" | 
| 251 | by transfer (rule Complex_add_complex_of_real) | |
| 27468 | 252 | |
| 253 | lemma hcomplex_of_hypreal_add_HComplex [simp]: | |
| 64435 | 254 | "\<And>r x y. hcomplex_of_hypreal r + HComplex x y = HComplex (r + x) y" | 
| 255 | by transfer (rule complex_of_real_add_Complex) | |
| 27468 | 256 | |
| 257 | lemma HComplex_mult_hcomplex_of_hypreal: | |
| 64435 | 258 | "\<And>x y r. HComplex x y * hcomplex_of_hypreal r = HComplex (x * r) (y * r)" | 
| 259 | by transfer (rule Complex_mult_complex_of_real) | |
| 27468 | 260 | |
| 261 | lemma hcomplex_of_hypreal_mult_HComplex: | |
| 64435 | 262 | "\<And>r x y. hcomplex_of_hypreal r * HComplex x y = HComplex (r * x) (r * y)" | 
| 263 | by transfer (rule complex_of_real_mult_Complex) | |
| 27468 | 264 | |
| 64435 | 265 | lemma i_hcomplex_of_hypreal [simp]: "\<And>r. iii * hcomplex_of_hypreal r = HComplex 0 r" | 
| 266 | by transfer (rule i_complex_of_real) | |
| 27468 | 267 | |
| 64435 | 268 | lemma hcomplex_of_hypreal_i [simp]: "\<And>r. hcomplex_of_hypreal r * iii = HComplex 0 r" | 
| 269 | by transfer (rule complex_of_real_i) | |
| 27468 | 270 | |
| 271 | ||
| 64435 | 272 | subsection \<open>Conjugation\<close> | 
| 27468 | 273 | |
| 64435 | 274 | lemma hcomplex_hcnj_cancel_iff [iff]: "\<And>x y. hcnj x = hcnj y \<longleftrightarrow> x = y" | 
| 275 | by transfer (rule complex_cnj_cancel_iff) | |
| 27468 | 276 | |
| 64435 | 277 | lemma hcomplex_hcnj_hcnj [simp]: "\<And>z. hcnj (hcnj z) = z" | 
| 278 | by transfer (rule complex_cnj_cnj) | |
| 27468 | 279 | |
| 280 | lemma hcomplex_hcnj_hcomplex_of_hypreal [simp]: | |
| 64435 | 281 | "\<And>x. hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x" | 
| 282 | by transfer (rule complex_cnj_complex_of_real) | |
| 27468 | 283 | |
| 64435 | 284 | lemma hcomplex_hmod_hcnj [simp]: "\<And>z. hcmod (hcnj z) = hcmod z" | 
| 285 | by transfer (rule complex_mod_cnj) | |
| 27468 | 286 | |
| 64435 | 287 | lemma hcomplex_hcnj_minus: "\<And>z. hcnj (- z) = - hcnj z" | 
| 288 | by transfer (rule complex_cnj_minus) | |
| 27468 | 289 | |
| 64435 | 290 | lemma hcomplex_hcnj_inverse: "\<And>z. hcnj (inverse z) = inverse (hcnj z)" | 
| 291 | by transfer (rule complex_cnj_inverse) | |
| 27468 | 292 | |
| 64435 | 293 | lemma hcomplex_hcnj_add: "\<And>w z. hcnj (w + z) = hcnj w + hcnj z" | 
| 294 | by transfer (rule complex_cnj_add) | |
| 27468 | 295 | |
| 64435 | 296 | lemma hcomplex_hcnj_diff: "\<And>w z. hcnj (w - z) = hcnj w - hcnj z" | 
| 297 | by transfer (rule complex_cnj_diff) | |
| 27468 | 298 | |
| 64435 | 299 | lemma hcomplex_hcnj_mult: "\<And>w z. hcnj (w * z) = hcnj w * hcnj z" | 
| 300 | by transfer (rule complex_cnj_mult) | |
| 27468 | 301 | |
| 64435 | 302 | lemma hcomplex_hcnj_divide: "\<And>w z. hcnj (w / z) = hcnj w / hcnj z" | 
| 303 | by transfer (rule complex_cnj_divide) | |
| 27468 | 304 | |
| 305 | lemma hcnj_one [simp]: "hcnj 1 = 1" | |
| 64435 | 306 | by transfer (rule complex_cnj_one) | 
| 27468 | 307 | |
| 308 | lemma hcomplex_hcnj_zero [simp]: "hcnj 0 = 0" | |
| 64435 | 309 | by transfer (rule complex_cnj_zero) | 
| 27468 | 310 | |
| 64435 | 311 | lemma hcomplex_hcnj_zero_iff [iff]: "\<And>z. hcnj z = 0 \<longleftrightarrow> z = 0" | 
| 312 | by transfer (rule complex_cnj_zero_iff) | |
| 27468 | 313 | |
| 64435 | 314 | lemma hcomplex_mult_hcnj: "\<And>z. z * hcnj z = hcomplex_of_hypreal ((hRe z)\<^sup>2 + (hIm z)\<^sup>2)" | 
| 315 | by transfer (rule complex_mult_cnj) | |
| 27468 | 316 | |
| 317 | ||
| 69597 | 318 | subsection \<open>More Theorems about the Function \<^term>\<open>hcmod\<close>\<close> | 
| 64435 | 319 | |
| 320 | lemma hcmod_hcomplex_of_hypreal_of_nat [simp]: | |
| 321 | "hcmod (hcomplex_of_hypreal (hypreal_of_nat n)) = hypreal_of_nat n" | |
| 322 | by simp | |
| 323 | ||
| 324 | lemma hcmod_hcomplex_of_hypreal_of_hypnat [simp]: | |
| 325 | "hcmod (hcomplex_of_hypreal(hypreal_of_hypnat n)) = hypreal_of_hypnat n" | |
| 326 | by simp | |
| 327 | ||
| 328 | lemma hcmod_mult_hcnj: "\<And>z. hcmod (z * hcnj z) = (hcmod z)\<^sup>2" | |
| 329 | by transfer (rule complex_mod_mult_cnj) | |
| 27468 | 330 | |
| 64435 | 331 | lemma hcmod_triangle_ineq2 [simp]: "\<And>a b. hcmod (b + a) - hcmod b \<le> hcmod a" | 
| 332 | by transfer (rule complex_mod_triangle_ineq2) | |
| 333 | ||
| 334 | lemma hcmod_diff_ineq [simp]: "\<And>a b. hcmod a - hcmod b \<le> hcmod (a + b)" | |
| 335 | by transfer (rule norm_diff_ineq) | |
| 336 | ||
| 27468 | 337 | |
| 64435 | 338 | subsection \<open>Exponentiation\<close> | 
| 339 | ||
| 340 | lemma hcomplexpow_0 [simp]: "z ^ 0 = 1" | |
| 341 | for z :: hcomplex | |
| 342 | by (rule power_0) | |
| 343 | ||
| 344 | lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = z * (z ^ n)" | |
| 345 | for z :: hcomplex | |
| 346 | by (rule power_Suc) | |
| 27468 | 347 | |
| 53077 | 348 | lemma hcomplexpow_i_squared [simp]: "iii\<^sup>2 = -1" | 
| 64435 | 349 | by transfer (rule power2_i) | 
| 27468 | 350 | |
| 64435 | 351 | lemma hcomplex_of_hypreal_pow: "\<And>x. hcomplex_of_hypreal (x ^ n) = hcomplex_of_hypreal x ^ n" | 
| 352 | by transfer (rule of_real_power) | |
| 27468 | 353 | |
| 64435 | 354 | lemma hcomplex_hcnj_pow: "\<And>z. hcnj (z ^ n) = hcnj z ^ n" | 
| 355 | by transfer (rule complex_cnj_power) | |
| 27468 | 356 | |
| 64435 | 357 | lemma hcmod_hcomplexpow: "\<And>x. hcmod (x ^ n) = hcmod x ^ n" | 
| 358 | by transfer (rule norm_power) | |
| 27468 | 359 | |
| 360 | lemma hcpow_minus: | |
| 64435 | 361 | "\<And>x n. (- x :: hcomplex) pow n = (if ( *p* even) n then (x pow n) else - (x pow n))" | 
| 362 | by transfer simp | |
| 27468 | 363 | |
| 64435 | 364 | lemma hcpow_mult: "(r * s) pow n = (r pow n) * (s pow n)" | 
| 365 | for r s :: hcomplex | |
| 58787 | 366 | by (fact hyperpow_mult) | 
| 27468 | 367 | |
| 64435 | 368 | lemma hcpow_zero2 [simp]: "\<And>n. 0 pow (hSuc n) = (0::'a::semiring_1 star)" | 
| 60867 | 369 | by transfer (rule power_0_Suc) | 
| 27468 | 370 | |
| 64435 | 371 | lemma hcpow_not_zero [simp,intro]: "\<And>r n. r \<noteq> 0 \<Longrightarrow> r pow n \<noteq> (0::hcomplex)" | 
| 60867 | 372 | by (fact hyperpow_not_zero) | 
| 27468 | 373 | |
| 64435 | 374 | lemma hcpow_zero_zero: "r pow n = 0 \<Longrightarrow> r = 0" | 
| 375 | for r :: hcomplex | |
| 60867 | 376 | by (blast intro: ccontr dest: hcpow_not_zero) | 
| 27468 | 377 | |
| 64435 | 378 | |
| 69597 | 379 | subsection \<open>The Function \<^term>\<open>hsgn\<close>\<close> | 
| 27468 | 380 | |
| 381 | lemma hsgn_zero [simp]: "hsgn 0 = 0" | |
| 64435 | 382 | by transfer (rule sgn_zero) | 
| 27468 | 383 | |
| 384 | lemma hsgn_one [simp]: "hsgn 1 = 1" | |
| 64435 | 385 | by transfer (rule sgn_one) | 
| 27468 | 386 | |
| 64435 | 387 | lemma hsgn_minus: "\<And>z. hsgn (- z) = - hsgn z" | 
| 388 | by transfer (rule sgn_minus) | |
| 27468 | 389 | |
| 64435 | 390 | lemma hsgn_eq: "\<And>z. hsgn z = z / hcomplex_of_hypreal (hcmod z)" | 
| 391 | by transfer (rule sgn_eq) | |
| 27468 | 392 | |
| 64435 | 393 | lemma hcmod_i: "\<And>x y. hcmod (HComplex x y) = ( *f* sqrt) (x\<^sup>2 + y\<^sup>2)" | 
| 394 | by transfer (rule complex_norm) | |
| 27468 | 395 | |
| 396 | lemma hcomplex_eq_cancel_iff1 [simp]: | |
| 64435 | 397 | "hcomplex_of_hypreal xa = HComplex x y \<longleftrightarrow> xa = x \<and> y = 0" | 
| 398 | by (simp add: hcomplex_of_hypreal_eq) | |
| 27468 | 399 | |
| 400 | lemma hcomplex_eq_cancel_iff2 [simp]: | |
| 64435 | 401 | "HComplex x y = hcomplex_of_hypreal xa \<longleftrightarrow> x = xa \<and> y = 0" | 
| 402 | by (simp add: hcomplex_of_hypreal_eq) | |
| 27468 | 403 | |
| 64435 | 404 | lemma HComplex_eq_0 [simp]: "\<And>x y. HComplex x y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 405 | by transfer (rule Complex_eq_0) | |
| 27468 | 406 | |
| 64435 | 407 | lemma HComplex_eq_1 [simp]: "\<And>x y. HComplex x y = 1 \<longleftrightarrow> x = 1 \<and> y = 0" | 
| 408 | by transfer (rule Complex_eq_1) | |
| 27468 | 409 | |
| 410 | lemma i_eq_HComplex_0_1: "iii = HComplex 0 1" | |
| 64435 | 411 | by transfer (simp add: complex_eq_iff) | 
| 27468 | 412 | |
| 64435 | 413 | lemma HComplex_eq_i [simp]: "\<And>x y. HComplex x y = iii \<longleftrightarrow> x = 0 \<and> y = 1" | 
| 414 | by transfer (rule Complex_eq_i) | |
| 27468 | 415 | |
| 64435 | 416 | lemma hRe_hsgn [simp]: "\<And>z. hRe (hsgn z) = hRe z / hcmod z" | 
| 417 | by transfer (rule Re_sgn) | |
| 27468 | 418 | |
| 64435 | 419 | lemma hIm_hsgn [simp]: "\<And>z. hIm (hsgn z) = hIm z / hcmod z" | 
| 420 | by transfer (rule Im_sgn) | |
| 27468 | 421 | |
| 64435 | 422 | lemma HComplex_inverse: "\<And>x y. inverse (HComplex x y) = HComplex (x / (x\<^sup>2 + y\<^sup>2)) (- y / (x\<^sup>2 + y\<^sup>2))" | 
| 423 | by transfer (rule complex_inverse) | |
| 27468 | 424 | |
| 64435 | 425 | lemma hRe_mult_i_eq[simp]: "\<And>y. hRe (iii * hcomplex_of_hypreal y) = 0" | 
| 426 | by transfer simp | |
| 27468 | 427 | |
| 64435 | 428 | lemma hIm_mult_i_eq [simp]: "\<And>y. hIm (iii * hcomplex_of_hypreal y) = y" | 
| 429 | by transfer simp | |
| 27468 | 430 | |
| 64435 | 431 | lemma hcmod_mult_i [simp]: "\<And>y. hcmod (iii * hcomplex_of_hypreal y) = \<bar>y\<bar>" | 
| 432 | by transfer (simp add: norm_complex_def) | |
| 27468 | 433 | |
| 64435 | 434 | lemma hcmod_mult_i2 [simp]: "\<And>y. hcmod (hcomplex_of_hypreal y * iii) = \<bar>y\<bar>" | 
| 435 | by transfer (simp add: norm_complex_def) | |
| 27468 | 436 | |
| 437 | ||
| 64435 | 438 | subsubsection \<open>\<open>harg\<close>\<close> | 
| 439 | ||
| 440 | lemma cos_harg_i_mult_zero [simp]: "\<And>y. y \<noteq> 0 \<Longrightarrow> ( *f* cos) (harg (HComplex 0 y)) = 0" | |
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
64435diff
changeset | 441 | by transfer (simp add: Complex_eq) | 
| 64435 | 442 | |
| 443 | ||
| 444 | subsection \<open>Polar Form for Nonstandard Complex Numbers\<close> | |
| 445 | ||
| 446 | lemma complex_split_polar2: "\<forall>n. \<exists>r a. (z n) = complex_of_real r * Complex (cos a) (sin a)" | |
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
64435diff
changeset | 447 | unfolding Complex_eq by (auto intro: complex_split_polar) | 
| 27468 | 448 | |
| 449 | lemma hcomplex_split_polar: | |
| 64435 | 450 | "\<And>z. \<exists>r a. z = hcomplex_of_hypreal r * (HComplex (( *f* cos) a) (( *f* sin) a))" | 
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
64435diff
changeset | 451 | by transfer (simp add: Complex_eq complex_split_polar) | 
| 27468 | 452 | |
| 453 | lemma hcis_eq: | |
| 64435 | 454 | "\<And>a. hcis a = hcomplex_of_hypreal (( *f* cos) a) + iii * hcomplex_of_hypreal (( *f* sin) a)" | 
| 455 | by transfer (simp add: complex_eq_iff) | |
| 27468 | 456 | |
| 64435 | 457 | lemma hrcis_Ex: "\<And>z. \<exists>r a. z = hrcis r a" | 
| 458 | by transfer (rule rcis_Ex) | |
| 27468 | 459 | |
| 460 | lemma hRe_hcomplex_polar [simp]: | |
| 64435 | 461 | "\<And>r a. hRe (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = r * ( *f* cos) a" | 
| 462 | by transfer simp | |
| 27468 | 463 | |
| 64435 | 464 | lemma hRe_hrcis [simp]: "\<And>r a. hRe (hrcis r a) = r * ( *f* cos) a" | 
| 465 | by transfer (rule Re_rcis) | |
| 27468 | 466 | |
| 467 | lemma hIm_hcomplex_polar [simp]: | |
| 64435 | 468 | "\<And>r a. hIm (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = r * ( *f* sin) a" | 
| 469 | by transfer simp | |
| 27468 | 470 | |
| 64435 | 471 | lemma hIm_hrcis [simp]: "\<And>r a. hIm (hrcis r a) = r * ( *f* sin) a" | 
| 472 | by transfer (rule Im_rcis) | |
| 27468 | 473 | |
| 64435 | 474 | lemma hcmod_unit_one [simp]: "\<And>a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1" | 
| 475 | by transfer (simp add: cmod_unit_one) | |
| 27468 | 476 | |
| 477 | lemma hcmod_complex_polar [simp]: | |
| 64435 | 478 | "\<And>r a. hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = \<bar>r\<bar>" | 
| 65274 
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
 paulson <lp15@cam.ac.uk> parents: 
64435diff
changeset | 479 | by transfer (simp add: Complex_eq cmod_complex_polar) | 
| 27468 | 480 | |
| 64435 | 481 | lemma hcmod_hrcis [simp]: "\<And>r a. hcmod(hrcis r a) = \<bar>r\<bar>" | 
| 482 | by transfer (rule complex_mod_rcis) | |
| 27468 | 483 | |
| 64435 | 484 | text \<open>\<open>(r1 * hrcis a) * (r2 * hrcis b) = r1 * r2 * hrcis (a + b)\<close>\<close> | 
| 485 | ||
| 486 | lemma hcis_hrcis_eq: "\<And>a. hcis a = hrcis 1 a" | |
| 487 | by transfer (rule cis_rcis_eq) | |
| 27468 | 488 | declare hcis_hrcis_eq [symmetric, simp] | 
| 489 | ||
| 64435 | 490 | lemma hrcis_mult: "\<And>a b r1 r2. hrcis r1 a * hrcis r2 b = hrcis (r1 * r2) (a + b)" | 
| 491 | by transfer (rule rcis_mult) | |
| 27468 | 492 | |
| 64435 | 493 | lemma hcis_mult: "\<And>a b. hcis a * hcis b = hcis (a + b)" | 
| 494 | by transfer (rule cis_mult) | |
| 27468 | 495 | |
| 496 | lemma hcis_zero [simp]: "hcis 0 = 1" | |
| 64435 | 497 | by transfer (rule cis_zero) | 
| 27468 | 498 | |
| 64435 | 499 | lemma hrcis_zero_mod [simp]: "\<And>a. hrcis 0 a = 0" | 
| 500 | by transfer (rule rcis_zero_mod) | |
| 27468 | 501 | |
| 64435 | 502 | lemma hrcis_zero_arg [simp]: "\<And>r. hrcis r 0 = hcomplex_of_hypreal r" | 
| 503 | by transfer (rule rcis_zero_arg) | |
| 27468 | 504 | |
| 64435 | 505 | lemma hcomplex_i_mult_minus [simp]: "\<And>x. iii * (iii * x) = - x" | 
| 506 | by transfer (rule complex_i_mult_minus) | |
| 27468 | 507 | |
| 508 | lemma hcomplex_i_mult_minus2 [simp]: "iii * iii * x = - x" | |
| 64435 | 509 | by simp | 
| 27468 | 510 | |
| 511 | lemma hcis_hypreal_of_nat_Suc_mult: | |
| 64435 | 512 | "\<And>a. hcis (hypreal_of_nat (Suc n) * a) = hcis a * hcis (hypreal_of_nat n * a)" | 
| 513 | by transfer (simp add: distrib_right cis_mult) | |
| 27468 | 514 | |
| 64435 | 515 | lemma NSDeMoivre: "\<And>a. (hcis a) ^ n = hcis (hypreal_of_nat n * a)" | 
| 516 | by transfer (rule DeMoivre) | |
| 27468 | 517 | |
| 518 | lemma hcis_hypreal_of_hypnat_Suc_mult: | |
| 64435 | 519 | "\<And>a n. hcis (hypreal_of_hypnat (n + 1) * a) = hcis a * hcis (hypreal_of_hypnat n * a)" | 
| 520 | by transfer (simp add: distrib_right cis_mult) | |
| 27468 | 521 | |
| 64435 | 522 | lemma NSDeMoivre_ext: "\<And>a n. (hcis a) pow n = hcis (hypreal_of_hypnat n * a)" | 
| 523 | by transfer (rule DeMoivre) | |
| 524 | ||
| 525 | lemma NSDeMoivre2: "\<And>a r. (hrcis r a) ^ n = hrcis (r ^ n) (hypreal_of_nat n * a)" | |
| 526 | by transfer (rule DeMoivre2) | |
| 27468 | 527 | |
| 64435 | 528 | lemma DeMoivre2_ext: "\<And>a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal_of_hypnat n * a)" | 
| 529 | by transfer (rule DeMoivre2) | |
| 27468 | 530 | |
| 64435 | 531 | lemma hcis_inverse [simp]: "\<And>a. inverse (hcis a) = hcis (- a)" | 
| 532 | by transfer (rule cis_inverse) | |
| 27468 | 533 | |
| 64435 | 534 | lemma hrcis_inverse: "\<And>a r. inverse (hrcis r a) = hrcis (inverse r) (- a)" | 
| 535 | by transfer (simp add: rcis_inverse inverse_eq_divide [symmetric]) | |
| 27468 | 536 | |
| 64435 | 537 | lemma hRe_hcis [simp]: "\<And>a. hRe (hcis a) = ( *f* cos) a" | 
| 538 | by transfer simp | |
| 27468 | 539 | |
| 64435 | 540 | lemma hIm_hcis [simp]: "\<And>a. hIm (hcis a) = ( *f* sin) a" | 
| 541 | by transfer simp | |
| 27468 | 542 | |
| 64435 | 543 | lemma cos_n_hRe_hcis_pow_n: "( *f* cos) (hypreal_of_nat n * a) = hRe (hcis a ^ n)" | 
| 544 | by (simp add: NSDeMoivre) | |
| 27468 | 545 | |
| 64435 | 546 | lemma sin_n_hIm_hcis_pow_n: "( *f* sin) (hypreal_of_nat n * a) = hIm (hcis a ^ n)" | 
| 547 | by (simp add: NSDeMoivre) | |
| 27468 | 548 | |
| 64435 | 549 | lemma cos_n_hRe_hcis_hcpow_n: "( *f* cos) (hypreal_of_hypnat n * a) = hRe (hcis a pow n)" | 
| 550 | by (simp add: NSDeMoivre_ext) | |
| 27468 | 551 | |
| 64435 | 552 | lemma sin_n_hIm_hcis_hcpow_n: "( *f* sin) (hypreal_of_hypnat n * a) = hIm (hcis a pow n)" | 
| 553 | by (simp add: NSDeMoivre_ext) | |
| 27468 | 554 | |
| 64435 | 555 | lemma hExp_add: "\<And>a b. hExp (a + b) = hExp a * hExp b" | 
| 556 | by transfer (rule exp_add) | |
| 27468 | 557 | |
| 558 | ||
| 69597 | 559 | subsection \<open>\<^term>\<open>hcomplex_of_complex\<close>: the Injection from type \<^typ>\<open>complex\<close> to to \<^typ>\<open>hcomplex\<close>\<close> | 
| 27468 | 560 | |
| 63589 | 561 | lemma hcomplex_of_complex_i: "iii = hcomplex_of_complex \<i>" | 
| 64435 | 562 | by (rule iii_def) | 
| 27468 | 563 | |
| 64435 | 564 | lemma hRe_hcomplex_of_complex: "hRe (hcomplex_of_complex z) = hypreal_of_real (Re z)" | 
| 565 | by transfer (rule refl) | |
| 27468 | 566 | |
| 64435 | 567 | lemma hIm_hcomplex_of_complex: "hIm (hcomplex_of_complex z) = hypreal_of_real (Im z)" | 
| 568 | by transfer (rule refl) | |
| 27468 | 569 | |
| 64435 | 570 | lemma hcmod_hcomplex_of_complex: "hcmod (hcomplex_of_complex x) = hypreal_of_real (cmod x)" | 
| 571 | by transfer (rule refl) | |
| 27468 | 572 | |
| 573 | ||
| 64435 | 574 | subsection \<open>Numerals and Arithmetic\<close> | 
| 27468 | 575 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 576 | lemma hcomplex_of_hypreal_eq_hcomplex_of_complex: | 
| 64435 | 577 | "hcomplex_of_hypreal (hypreal_of_real x) = hcomplex_of_complex (complex_of_real x)" | 
| 578 | by transfer (rule refl) | |
| 27468 | 579 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44846diff
changeset | 580 | lemma hcomplex_hypreal_numeral: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44846diff
changeset | 581 | "hcomplex_of_complex (numeral w) = hcomplex_of_hypreal(numeral w)" | 
| 64435 | 582 | by transfer (rule of_real_numeral [symmetric]) | 
| 27468 | 583 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44846diff
changeset | 584 | lemma hcomplex_hypreal_neg_numeral: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
53077diff
changeset | 585 | "hcomplex_of_complex (- numeral w) = hcomplex_of_hypreal(- numeral w)" | 
| 64435 | 586 | by transfer (rule of_real_neg_numeral [symmetric]) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44846diff
changeset | 587 | |
| 64435 | 588 | lemma hcomplex_numeral_hcnj [simp]: "hcnj (numeral v :: hcomplex) = numeral v" | 
| 589 | by transfer (rule complex_cnj_numeral) | |
| 27468 | 590 | |
| 64435 | 591 | lemma hcomplex_numeral_hcmod [simp]: "hcmod (numeral v :: hcomplex) = (numeral v :: hypreal)" | 
| 592 | by transfer (rule norm_numeral) | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44846diff
changeset | 593 | |
| 64435 | 594 | lemma hcomplex_neg_numeral_hcmod [simp]: "hcmod (- numeral v :: hcomplex) = (numeral v :: hypreal)" | 
| 595 | by transfer (rule norm_neg_numeral) | |
| 27468 | 596 | |
| 64435 | 597 | lemma hcomplex_numeral_hRe [simp]: "hRe (numeral v :: hcomplex) = numeral v" | 
| 598 | by transfer (rule complex_Re_numeral) | |
| 27468 | 599 | |
| 64435 | 600 | lemma hcomplex_numeral_hIm [simp]: "hIm (numeral v :: hcomplex) = 0" | 
| 601 | by transfer (rule complex_Im_numeral) | |
| 27468 | 602 | |
| 603 | end |