author | wenzelm |
Mon, 21 Aug 2023 15:04:22 +0200 | |
changeset 78554 | 54991440905e |
parent 76217 | 8655344f1cf6 |
child 81125 | ec121999a9cb |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Cardinal.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
435 | 3 |
Copyright 1994 University of Cambridge |
13328 | 4 |
*) |
13221 | 5 |
|
60770 | 6 |
section\<open>Cardinal Numbers Without the Axiom of Choice\<close> |
435 | 7 |
|
68490
eb53f944c8cd
simplified ZF theory names (in contrast to 6a0801279f4c): session-qualification already achieves disjointness;
wenzelm
parents:
67443
diff
changeset
|
8 |
theory Cardinal imports OrderType Finite Nat Sum begin |
13221 | 9 |
|
24893 | 10 |
definition |
435 | 11 |
(*least ordinal operator*) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
12 |
Least :: "(i\<Rightarrow>o) \<Rightarrow> i" (binder \<open>\<mu> \<close> 10) where |
76214 | 13 |
"Least(P) \<equiv> THE i. Ord(i) \<and> P(i) \<and> (\<forall>j. j<i \<longrightarrow> \<not>P(j))" |
435 | 14 |
|
24893 | 15 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
16 |
eqpoll :: "[i,i] \<Rightarrow> o" (infixl \<open>\<approx>\<close> 50) where |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
17 |
"A \<approx> B \<equiv> \<exists>f. f \<in> bij(A,B)" |
435 | 18 |
|
24893 | 19 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
20 |
lepoll :: "[i,i] \<Rightarrow> o" (infixl \<open>\<lesssim>\<close> 50) where |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
21 |
"A \<lesssim> B \<equiv> \<exists>f. f \<in> inj(A,B)" |
435 | 22 |
|
24893 | 23 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
24 |
lesspoll :: "[i,i] \<Rightarrow> o" (infixl \<open>\<prec>\<close> 50) where |
76214 | 25 |
"A \<prec> B \<equiv> A \<lesssim> B \<and> \<not>(A \<approx> B)" |
832 | 26 |
|
24893 | 27 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
28 |
cardinal :: "i\<Rightarrow>i" (\<open>|_|\<close>) where |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
29 |
"|A| \<equiv> (\<mu> i. i \<approx> A)" |
435 | 30 |
|
24893 | 31 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
32 |
Finite :: "i\<Rightarrow>o" where |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
33 |
"Finite(A) \<equiv> \<exists>n\<in>nat. A \<approx> n" |
435 | 34 |
|
24893 | 35 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
36 |
Card :: "i\<Rightarrow>o" where |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
37 |
"Card(i) \<equiv> (i = |i|)" |
435 | 38 |
|
14565 | 39 |
|
60770 | 40 |
subsection\<open>The Schroeder-Bernstein Theorem\<close> |
41 |
text\<open>See Davey and Priestly, page 106\<close> |
|
13221 | 42 |
|
43 |
(** Lemma: Banach's Decomposition Theorem **) |
|
44 |
||
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
45 |
lemma decomp_bnd_mono: "bnd_mono(X, \<lambda>W. X - g``(Y - f``W))" |
13221 | 46 |
by (rule bnd_monoI, blast+) |
47 |
||
48 |
lemma Banach_last_equation: |
|
46953 | 49 |
"g \<in> Y->X |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
50 |
\<Longrightarrow> g``(Y - f`` lfp(X, \<lambda>W. X - g``(Y - f``W))) = |
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
51 |
X - lfp(X, \<lambda>W. X - g``(Y - f``W))" |
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
52 |
apply (rule_tac P = "\<lambda>u. v = X-u" for v |
13221 | 53 |
in decomp_bnd_mono [THEN lfp_unfold, THEN ssubst]) |
54 |
apply (simp add: double_complement fun_is_rel [THEN image_subset]) |
|
55 |
done |
|
56 |
||
57 |
lemma decomposition: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
58 |
"\<lbrakk>f \<in> X->Y; g \<in> Y->X\<rbrakk> \<Longrightarrow> |
76214 | 59 |
\<exists>XA XB YA YB. (XA \<inter> XB = 0) \<and> (XA \<union> XB = X) \<and> |
60 |
(YA \<inter> YB = 0) \<and> (YA \<union> YB = Y) \<and> |
|
61 |
f``XA=YA \<and> g``YB=XB" |
|
13221 | 62 |
apply (intro exI conjI) |
63 |
apply (rule_tac [6] Banach_last_equation) |
|
64 |
apply (rule_tac [5] refl) |
|
46820 | 65 |
apply (assumption | |
13221 | 66 |
rule Diff_disjoint Diff_partition fun_is_rel image_subset lfp_subset)+ |
67 |
done |
|
68 |
||
69 |
lemma schroeder_bernstein: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
70 |
"\<lbrakk>f \<in> inj(X,Y); g \<in> inj(Y,X)\<rbrakk> \<Longrightarrow> \<exists>h. h \<in> bij(X,Y)" |
46820 | 71 |
apply (insert decomposition [of f X Y g]) |
13221 | 72 |
apply (simp add: inj_is_fun) |
73 |
apply (blast intro!: restrict_bij bij_disjoint_Un intro: bij_converse_bij) |
|
46820 | 74 |
(* The instantiation of exI to @{term"restrict(f,XA) \<union> converse(restrict(g,YB))"} |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
75 |
is forced by the context\<And>*) |
13221 | 76 |
done |
77 |
||
78 |
||
79 |
(** Equipollence is an equivalence relation **) |
|
80 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
81 |
lemma bij_imp_eqpoll: "f \<in> bij(A,B) \<Longrightarrow> A \<approx> B" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
82 |
unfolding eqpoll_def |
13221 | 83 |
apply (erule exI) |
84 |
done |
|
85 |
||
61394 | 86 |
(*A \<approx> A*) |
45602 | 87 |
lemmas eqpoll_refl = id_bij [THEN bij_imp_eqpoll, simp] |
13221 | 88 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
89 |
lemma eqpoll_sym: "X \<approx> Y \<Longrightarrow> Y \<approx> X" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
90 |
unfolding eqpoll_def |
13221 | 91 |
apply (blast intro: bij_converse_bij) |
92 |
done |
|
93 |
||
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
94 |
lemma eqpoll_trans [trans]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
95 |
"\<lbrakk>X \<approx> Y; Y \<approx> Z\<rbrakk> \<Longrightarrow> X \<approx> Z" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
96 |
unfolding eqpoll_def |
13221 | 97 |
apply (blast intro: comp_bij) |
98 |
done |
|
99 |
||
100 |
(** Le-pollence is a partial ordering **) |
|
101 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
102 |
lemma subset_imp_lepoll: "X<=Y \<Longrightarrow> X \<lesssim> Y" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
103 |
unfolding lepoll_def |
13221 | 104 |
apply (rule exI) |
105 |
apply (erule id_subset_inj) |
|
106 |
done |
|
107 |
||
45602 | 108 |
lemmas lepoll_refl = subset_refl [THEN subset_imp_lepoll, simp] |
13221 | 109 |
|
45602 | 110 |
lemmas le_imp_lepoll = le_imp_subset [THEN subset_imp_lepoll] |
13221 | 111 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
112 |
lemma eqpoll_imp_lepoll: "X \<approx> Y \<Longrightarrow> X \<lesssim> Y" |
13221 | 113 |
by (unfold eqpoll_def bij_def lepoll_def, blast) |
114 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
115 |
lemma lepoll_trans [trans]: "\<lbrakk>X \<lesssim> Y; Y \<lesssim> Z\<rbrakk> \<Longrightarrow> X \<lesssim> Z" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
116 |
unfolding lepoll_def |
13221 | 117 |
apply (blast intro: comp_inj) |
118 |
done |
|
119 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
120 |
lemma eq_lepoll_trans [trans]: "\<lbrakk>X \<approx> Y; Y \<lesssim> Z\<rbrakk> \<Longrightarrow> X \<lesssim> Z" |
46953 | 121 |
by (blast intro: eqpoll_imp_lepoll lepoll_trans) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
122 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
123 |
lemma lepoll_eq_trans [trans]: "\<lbrakk>X \<lesssim> Y; Y \<approx> Z\<rbrakk> \<Longrightarrow> X \<lesssim> Z" |
46953 | 124 |
by (blast intro: eqpoll_imp_lepoll lepoll_trans) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
125 |
|
13221 | 126 |
(*Asymmetry law*) |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
127 |
lemma eqpollI: "\<lbrakk>X \<lesssim> Y; Y \<lesssim> X\<rbrakk> \<Longrightarrow> X \<approx> Y" |
76217 | 128 |
unfolding lepoll_def eqpoll_def |
13221 | 129 |
apply (elim exE) |
130 |
apply (rule schroeder_bernstein, assumption+) |
|
131 |
done |
|
132 |
||
133 |
lemma eqpollE: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
134 |
"\<lbrakk>X \<approx> Y; \<lbrakk>X \<lesssim> Y; Y \<lesssim> X\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
46820 | 135 |
by (blast intro: eqpoll_imp_lepoll eqpoll_sym) |
13221 | 136 |
|
76214 | 137 |
lemma eqpoll_iff: "X \<approx> Y \<longleftrightarrow> X \<lesssim> Y \<and> Y \<lesssim> X" |
13221 | 138 |
by (blast intro: eqpollI elim!: eqpollE) |
139 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
140 |
lemma lepoll_0_is_0: "A \<lesssim> 0 \<Longrightarrow> A = 0" |
76217 | 141 |
unfolding lepoll_def inj_def |
13221 | 142 |
apply (blast dest: apply_type) |
143 |
done |
|
144 |
||
46820 | 145 |
(*@{term"0 \<lesssim> Y"}*) |
45602 | 146 |
lemmas empty_lepollI = empty_subsetI [THEN subset_imp_lepoll] |
13221 | 147 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
148 |
lemma lepoll_0_iff: "A \<lesssim> 0 \<longleftrightarrow> A=0" |
13221 | 149 |
by (blast intro: lepoll_0_is_0 lepoll_refl) |
150 |
||
46820 | 151 |
lemma Un_lepoll_Un: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
152 |
"\<lbrakk>A \<lesssim> B; C \<lesssim> D; B \<inter> D = 0\<rbrakk> \<Longrightarrow> A \<union> C \<lesssim> B \<union> D" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
153 |
unfolding lepoll_def |
13221 | 154 |
apply (blast intro: inj_disjoint_Un) |
155 |
done |
|
156 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
157 |
(*A \<approx> 0 \<Longrightarrow> A=0*) |
45602 | 158 |
lemmas eqpoll_0_is_0 = eqpoll_imp_lepoll [THEN lepoll_0_is_0] |
13221 | 159 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
160 |
lemma eqpoll_0_iff: "A \<approx> 0 \<longleftrightarrow> A=0" |
13221 | 161 |
by (blast intro: eqpoll_0_is_0 eqpoll_refl) |
162 |
||
46820 | 163 |
lemma eqpoll_disjoint_Un: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
164 |
"\<lbrakk>A \<approx> B; C \<approx> D; A \<inter> C = 0; B \<inter> D = 0\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
165 |
\<Longrightarrow> A \<union> C \<approx> B \<union> D" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
166 |
unfolding eqpoll_def |
13221 | 167 |
apply (blast intro: bij_disjoint_Un) |
168 |
done |
|
169 |
||
170 |
||
60770 | 171 |
subsection\<open>lesspoll: contributions by Krzysztof Grabczewski\<close> |
13221 | 172 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
173 |
lemma lesspoll_not_refl: "\<not> (i \<prec> i)" |
46820 | 174 |
by (simp add: lesspoll_def) |
13221 | 175 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
176 |
lemma lesspoll_irrefl [elim!]: "i \<prec> i \<Longrightarrow> P" |
46820 | 177 |
by (simp add: lesspoll_def) |
13221 | 178 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
179 |
lemma lesspoll_imp_lepoll: "A \<prec> B \<Longrightarrow> A \<lesssim> B" |
13221 | 180 |
by (unfold lesspoll_def, blast) |
181 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
182 |
lemma lepoll_well_ord: "\<lbrakk>A \<lesssim> B; well_ord(B,r)\<rbrakk> \<Longrightarrow> \<exists>s. well_ord(A,s)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
183 |
unfolding lepoll_def |
13221 | 184 |
apply (blast intro: well_ord_rvimage) |
185 |
done |
|
186 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
187 |
lemma lepoll_iff_leqpoll: "A \<lesssim> B \<longleftrightarrow> A \<prec> B | A \<approx> B" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
188 |
unfolding lesspoll_def |
13221 | 189 |
apply (blast intro!: eqpollI elim!: eqpollE) |
190 |
done |
|
191 |
||
46820 | 192 |
lemma inj_not_surj_succ: |
47042 | 193 |
assumes fi: "f \<in> inj(A, succ(m))" and fns: "f \<notin> surj(A, succ(m))" |
194 |
shows "\<exists>f. f \<in> inj(A,m)" |
|
195 |
proof - |
|
196 |
from fi [THEN inj_is_fun] fns |
|
197 |
obtain y where y: "y \<in> succ(m)" "\<And>x. x\<in>A \<Longrightarrow> f ` x \<noteq> y" |
|
198 |
by (auto simp add: surj_def) |
|
199 |
show ?thesis |
|
200 |
proof |
|
201 |
show "(\<lambda>z\<in>A. if f`z = m then y else f`z) \<in> inj(A, m)" using y fi |
|
202 |
by (simp add: inj_def) |
|
203 |
(auto intro!: if_type [THEN lam_type] intro: Pi_type dest: apply_funtype) |
|
204 |
qed |
|
205 |
qed |
|
13221 | 206 |
|
207 |
(** Variations on transitivity **) |
|
208 |
||
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
209 |
lemma lesspoll_trans [trans]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
210 |
"\<lbrakk>X \<prec> Y; Y \<prec> Z\<rbrakk> \<Longrightarrow> X \<prec> Z" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
211 |
unfolding lesspoll_def |
13221 | 212 |
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans) |
213 |
done |
|
214 |
||
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
215 |
lemma lesspoll_trans1 [trans]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
216 |
"\<lbrakk>X \<lesssim> Y; Y \<prec> Z\<rbrakk> \<Longrightarrow> X \<prec> Z" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
217 |
unfolding lesspoll_def |
13221 | 218 |
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans) |
219 |
done |
|
220 |
||
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
221 |
lemma lesspoll_trans2 [trans]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
222 |
"\<lbrakk>X \<prec> Y; Y \<lesssim> Z\<rbrakk> \<Longrightarrow> X \<prec> Z" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
223 |
unfolding lesspoll_def |
13221 | 224 |
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans) |
225 |
done |
|
226 |
||
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
227 |
lemma eq_lesspoll_trans [trans]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
228 |
"\<lbrakk>X \<approx> Y; Y \<prec> Z\<rbrakk> \<Longrightarrow> X \<prec> Z" |
46953 | 229 |
by (blast intro: eqpoll_imp_lepoll lesspoll_trans1) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
230 |
|
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
231 |
lemma lesspoll_eq_trans [trans]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
232 |
"\<lbrakk>X \<prec> Y; Y \<approx> Z\<rbrakk> \<Longrightarrow> X \<prec> Z" |
46953 | 233 |
by (blast intro: eqpoll_imp_lepoll lesspoll_trans2) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
234 |
|
13221 | 235 |
|
61394 | 236 |
(** \<mu> -- the least number operator [from HOL/Univ.ML] **) |
13221 | 237 |
|
46820 | 238 |
lemma Least_equality: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
239 |
"\<lbrakk>P(i); Ord(i); \<And>x. x<i \<Longrightarrow> \<not>P(x)\<rbrakk> \<Longrightarrow> (\<mu> x. P(x)) = i" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
240 |
unfolding Least_def |
13221 | 241 |
apply (rule the_equality, blast) |
242 |
apply (elim conjE) |
|
243 |
apply (erule Ord_linear_lt, assumption, blast+) |
|
244 |
done |
|
245 |
||
47016 | 246 |
lemma LeastI: |
247 |
assumes P: "P(i)" and i: "Ord(i)" shows "P(\<mu> x. P(x))" |
|
248 |
proof - |
|
249 |
{ from i have "P(i) \<Longrightarrow> P(\<mu> x. P(x))" |
|
250 |
proof (induct i rule: trans_induct) |
|
251 |
case (step i) |
|
252 |
show ?case |
|
253 |
proof (cases "P(\<mu> a. P(a))") |
|
254 |
case True thus ?thesis . |
|
255 |
next |
|
256 |
case False |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
257 |
hence "\<And>x. x \<in> i \<Longrightarrow> \<not>P(x)" using step |
47016 | 258 |
by blast |
47018 | 259 |
hence "(\<mu> a. P(a)) = i" using step |
260 |
by (blast intro: Least_equality ltD) |
|
261 |
thus ?thesis using step.prems |
|
47016 | 262 |
by simp |
263 |
qed |
|
264 |
qed |
|
265 |
} |
|
266 |
thus ?thesis using P . |
|
267 |
qed |
|
13221 | 268 |
|
60770 | 269 |
text\<open>The proof is almost identical to the one above!\<close> |
47018 | 270 |
lemma Least_le: |
271 |
assumes P: "P(i)" and i: "Ord(i)" shows "(\<mu> x. P(x)) \<le> i" |
|
272 |
proof - |
|
273 |
{ from i have "P(i) \<Longrightarrow> (\<mu> x. P(x)) \<le> i" |
|
274 |
proof (induct i rule: trans_induct) |
|
275 |
case (step i) |
|
276 |
show ?case |
|
277 |
proof (cases "(\<mu> a. P(a)) \<le> i") |
|
278 |
case True thus ?thesis . |
|
279 |
next |
|
280 |
case False |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
281 |
hence "\<And>x. x \<in> i \<Longrightarrow> \<not> (\<mu> a. P(a)) \<le> i" using step |
47018 | 282 |
by blast |
283 |
hence "(\<mu> a. P(a)) = i" using step |
|
284 |
by (blast elim: ltE intro: ltI Least_equality lt_trans1) |
|
285 |
thus ?thesis using step |
|
286 |
by simp |
|
287 |
qed |
|
288 |
qed |
|
289 |
} |
|
290 |
thus ?thesis using P . |
|
291 |
qed |
|
13221 | 292 |
|
61394 | 293 |
(*\<mu> really is the smallest*) |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
294 |
lemma less_LeastE: "\<lbrakk>P(i); i < (\<mu> x. P(x))\<rbrakk> \<Longrightarrow> Q" |
13221 | 295 |
apply (rule Least_le [THEN [2] lt_trans2, THEN lt_irrefl], assumption+) |
46820 | 296 |
apply (simp add: lt_Ord) |
13221 | 297 |
done |
298 |
||
299 |
(*Easier to apply than LeastI: conclusion has only one occurrence of P*) |
|
300 |
lemma LeastI2: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
301 |
"\<lbrakk>P(i); Ord(i); \<And>j. P(j) \<Longrightarrow> Q(j)\<rbrakk> \<Longrightarrow> Q(\<mu> j. P(j))" |
46820 | 302 |
by (blast intro: LeastI ) |
13221 | 303 |
|
61394 | 304 |
(*If there is no such P then \<mu> is vacuously 0*) |
46820 | 305 |
lemma Least_0: |
76214 | 306 |
"\<lbrakk>\<not> (\<exists>i. Ord(i) \<and> P(i))\<rbrakk> \<Longrightarrow> (\<mu> x. P(x)) = 0" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
307 |
unfolding Least_def |
13221 | 308 |
apply (rule the_0, blast) |
309 |
done |
|
310 |
||
46847 | 311 |
lemma Ord_Least [intro,simp,TC]: "Ord(\<mu> x. P(x))" |
76214 | 312 |
proof (cases "\<exists>i. Ord(i) \<and> P(i)") |
47042 | 313 |
case True |
314 |
then obtain i where "P(i)" "Ord(i)" by auto |
|
315 |
hence " (\<mu> x. P(x)) \<le> i" by (rule Least_le) |
|
316 |
thus ?thesis |
|
317 |
by (elim ltE) |
|
318 |
next |
|
319 |
case False |
|
320 |
hence "(\<mu> x. P(x)) = 0" by (rule Least_0) |
|
321 |
thus ?thesis |
|
322 |
by auto |
|
323 |
qed |
|
13221 | 324 |
|
325 |
||
60770 | 326 |
subsection\<open>Basic Properties of Cardinals\<close> |
13221 | 327 |
|
328 |
(*Not needed for simplification, but helpful below*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
329 |
lemma Least_cong: "(\<And>y. P(y) \<longleftrightarrow> Q(y)) \<Longrightarrow> (\<mu> x. P(x)) = (\<mu> x. Q(x))" |
13221 | 330 |
by simp |
331 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
332 |
(*Need AC to get @{term"X \<lesssim> Y \<Longrightarrow> |X| \<le> |Y|"}; see well_ord_lepoll_imp_cardinal_le |
13221 | 333 |
Converse also requires AC, but see well_ord_cardinal_eqE*) |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
334 |
lemma cardinal_cong: "X \<approx> Y \<Longrightarrow> |X| = |Y|" |
76217 | 335 |
unfolding eqpoll_def cardinal_def |
13221 | 336 |
apply (rule Least_cong) |
337 |
apply (blast intro: comp_bij bij_converse_bij) |
|
338 |
done |
|
339 |
||
340 |
(*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*) |
|
46820 | 341 |
lemma well_ord_cardinal_eqpoll: |
47018 | 342 |
assumes r: "well_ord(A,r)" shows "|A| \<approx> A" |
343 |
proof (unfold cardinal_def) |
|
344 |
show "(\<mu> i. i \<approx> A) \<approx> A" |
|
345 |
by (best intro: LeastI Ord_ordertype ordermap_bij bij_converse_bij bij_imp_eqpoll r) |
|
346 |
qed |
|
13221 | 347 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
348 |
(* @{term"Ord(A) \<Longrightarrow> |A| \<approx> A"} *) |
13221 | 349 |
lemmas Ord_cardinal_eqpoll = well_ord_Memrel [THEN well_ord_cardinal_eqpoll] |
350 |
||
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
351 |
lemma Ord_cardinal_idem: "Ord(A) \<Longrightarrow> ||A|| = |A|" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
352 |
by (rule Ord_cardinal_eqpoll [THEN cardinal_cong]) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
353 |
|
13221 | 354 |
lemma well_ord_cardinal_eqE: |
46953 | 355 |
assumes woX: "well_ord(X,r)" and woY: "well_ord(Y,s)" and eq: "|X| = |Y|" |
46847 | 356 |
shows "X \<approx> Y" |
357 |
proof - |
|
46953 | 358 |
have "X \<approx> |X|" by (blast intro: well_ord_cardinal_eqpoll [OF woX] eqpoll_sym) |
46847 | 359 |
also have "... = |Y|" by (rule eq) |
46953 | 360 |
also have "... \<approx> Y" by (rule well_ord_cardinal_eqpoll [OF woY]) |
46847 | 361 |
finally show ?thesis . |
362 |
qed |
|
13221 | 363 |
|
364 |
lemma well_ord_cardinal_eqpoll_iff: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
365 |
"\<lbrakk>well_ord(X,r); well_ord(Y,s)\<rbrakk> \<Longrightarrow> |X| = |Y| \<longleftrightarrow> X \<approx> Y" |
13221 | 366 |
by (blast intro: cardinal_cong well_ord_cardinal_eqE) |
367 |
||
368 |
||
369 |
(** Observations from Kunen, page 28 **) |
|
370 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
371 |
lemma Ord_cardinal_le: "Ord(i) \<Longrightarrow> |i| \<le> i" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
372 |
unfolding cardinal_def |
13221 | 373 |
apply (erule eqpoll_refl [THEN Least_le]) |
374 |
done |
|
375 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
376 |
lemma Card_cardinal_eq: "Card(K) \<Longrightarrow> |K| = K" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
377 |
unfolding Card_def |
13221 | 378 |
apply (erule sym) |
379 |
done |
|
380 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
381 |
(* Could replace the @{term"\<not>(j \<approx> i)"} by @{term"\<not>(i \<preceq> j)"}. *) |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
382 |
lemma CardI: "\<lbrakk>Ord(i); \<And>j. j<i \<Longrightarrow> \<not>(j \<approx> i)\<rbrakk> \<Longrightarrow> Card(i)" |
76217 | 383 |
unfolding Card_def cardinal_def |
13221 | 384 |
apply (subst Least_equality) |
47018 | 385 |
apply (blast intro: eqpoll_refl)+ |
13221 | 386 |
done |
387 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
388 |
lemma Card_is_Ord: "Card(i) \<Longrightarrow> Ord(i)" |
76217 | 389 |
unfolding Card_def cardinal_def |
13221 | 390 |
apply (erule ssubst) |
391 |
apply (rule Ord_Least) |
|
392 |
done |
|
393 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
394 |
lemma Card_cardinal_le: "Card(K) \<Longrightarrow> K \<le> |K|" |
13221 | 395 |
apply (simp (no_asm_simp) add: Card_is_Ord Card_cardinal_eq) |
396 |
done |
|
397 |
||
398 |
lemma Ord_cardinal [simp,intro!]: "Ord(|A|)" |
|
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
399 |
unfolding cardinal_def |
13221 | 400 |
apply (rule Ord_Least) |
401 |
done |
|
402 |
||
60770 | 403 |
text\<open>The cardinals are the initial ordinals.\<close> |
76214 | 404 |
lemma Card_iff_initial: "Card(K) \<longleftrightarrow> Ord(K) \<and> (\<forall>j. j<K \<longrightarrow> \<not> j \<approx> K)" |
47018 | 405 |
proof - |
406 |
{ fix j |
|
407 |
assume K: "Card(K)" "j \<approx> K" |
|
408 |
assume "j < K" |
|
409 |
also have "... = (\<mu> i. i \<approx> K)" using K |
|
410 |
by (simp add: Card_def cardinal_def) |
|
411 |
finally have "j < (\<mu> i. i \<approx> K)" . |
|
412 |
hence "False" using K |
|
413 |
by (best dest: less_LeastE) |
|
414 |
} |
|
415 |
then show ?thesis |
|
47042 | 416 |
by (blast intro: CardI Card_is_Ord) |
47018 | 417 |
qed |
13221 | 418 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
419 |
lemma lt_Card_imp_lesspoll: "\<lbrakk>Card(a); i<a\<rbrakk> \<Longrightarrow> i \<prec> a" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
420 |
unfolding lesspoll_def |
13221 | 421 |
apply (drule Card_iff_initial [THEN iffD1]) |
422 |
apply (blast intro!: leI [THEN le_imp_lepoll]) |
|
423 |
done |
|
424 |
||
425 |
lemma Card_0: "Card(0)" |
|
426 |
apply (rule Ord_0 [THEN CardI]) |
|
427 |
apply (blast elim!: ltE) |
|
428 |
done |
|
429 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
430 |
lemma Card_Un: "\<lbrakk>Card(K); Card(L)\<rbrakk> \<Longrightarrow> Card(K \<union> L)" |
13221 | 431 |
apply (rule Ord_linear_le [of K L]) |
432 |
apply (simp_all add: subset_Un_iff [THEN iffD1] Card_is_Ord le_imp_subset |
|
433 |
subset_Un_iff2 [THEN iffD1]) |
|
434 |
done |
|
435 |
||
436 |
(*Infinite unions of cardinals? See Devlin, Lemma 6.7, page 98*) |
|
437 |
||
47101 | 438 |
lemma Card_cardinal [iff]: "Card(|A|)" |
46847 | 439 |
proof (unfold cardinal_def) |
440 |
show "Card(\<mu> i. i \<approx> A)" |
|
76214 | 441 |
proof (cases "\<exists>i. Ord (i) \<and> i \<approx> A") |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61798
diff
changeset
|
442 |
case False thus ?thesis \<comment> \<open>degenerate case\<close> |
46847 | 443 |
by (simp add: Least_0 Card_0) |
444 |
next |
|
69593 | 445 |
case True \<comment> \<open>real case: \<^term>\<open>A\<close> is isomorphic to some ordinal\<close> |
46847 | 446 |
then obtain i where i: "Ord(i)" "i \<approx> A" by blast |
46953 | 447 |
show ?thesis |
46847 | 448 |
proof (rule CardI [OF Ord_Least], rule notI) |
449 |
fix j |
|
46953 | 450 |
assume j: "j < (\<mu> i. i \<approx> A)" |
46847 | 451 |
assume "j \<approx> (\<mu> i. i \<approx> A)" |
452 |
also have "... \<approx> A" using i by (auto intro: LeastI) |
|
453 |
finally have "j \<approx> A" . |
|
46953 | 454 |
thus False |
46847 | 455 |
by (rule less_LeastE [OF _ j]) |
456 |
qed |
|
457 |
qed |
|
458 |
qed |
|
13221 | 459 |
|
460 |
(*Kunen's Lemma 10.5*) |
|
46953 | 461 |
lemma cardinal_eq_lemma: |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
462 |
assumes i:"|i| \<le> j" and j: "j \<le> i" shows "|j| = |i|" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
463 |
proof (rule eqpollI [THEN cardinal_cong]) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
464 |
show "j \<lesssim> i" by (rule le_imp_lepoll [OF j]) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
465 |
next |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
466 |
have Oi: "Ord(i)" using j by (rule le_Ord2) |
46953 | 467 |
hence "i \<approx> |i|" |
468 |
by (blast intro: Ord_cardinal_eqpoll eqpoll_sym) |
|
469 |
also have "... \<lesssim> j" |
|
470 |
by (blast intro: le_imp_lepoll i) |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
471 |
finally show "i \<lesssim> j" . |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
472 |
qed |
13221 | 473 |
|
46953 | 474 |
lemma cardinal_mono: |
46877 | 475 |
assumes ij: "i \<le> j" shows "|i| \<le> |j|" |
47016 | 476 |
using Ord_cardinal [of i] Ord_cardinal [of j] |
477 |
proof (cases rule: Ord_linear_le) |
|
478 |
case le thus ?thesis . |
|
46877 | 479 |
next |
47016 | 480 |
case ge |
46877 | 481 |
have i: "Ord(i)" using ij |
46953 | 482 |
by (simp add: lt_Ord) |
483 |
have ci: "|i| \<le> j" |
|
484 |
by (blast intro: Ord_cardinal_le ij le_trans i) |
|
485 |
have "|i| = ||i||" |
|
486 |
by (auto simp add: Ord_cardinal_idem i) |
|
46877 | 487 |
also have "... = |j|" |
47016 | 488 |
by (rule cardinal_eq_lemma [OF ge ci]) |
46877 | 489 |
finally have "|i| = |j|" . |
490 |
thus ?thesis by simp |
|
491 |
qed |
|
13221 | 492 |
|
69593 | 493 |
text\<open>Since we have \<^term>\<open>|succ(nat)| \<le> |nat|\<close>, the converse of \<open>cardinal_mono\<close> fails!\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
494 |
lemma cardinal_lt_imp_lt: "\<lbrakk>|i| < |j|; Ord(i); Ord(j)\<rbrakk> \<Longrightarrow> i < j" |
13221 | 495 |
apply (rule Ord_linear2 [of i j], assumption+) |
496 |
apply (erule lt_trans2 [THEN lt_irrefl]) |
|
497 |
apply (erule cardinal_mono) |
|
498 |
done |
|
499 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
500 |
lemma Card_lt_imp_lt: "\<lbrakk>|i| < K; Ord(i); Card(K)\<rbrakk> \<Longrightarrow> i < K" |
46877 | 501 |
by (simp (no_asm_simp) add: cardinal_lt_imp_lt Card_is_Ord Card_cardinal_eq) |
13221 | 502 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
503 |
lemma Card_lt_iff: "\<lbrakk>Ord(i); Card(K)\<rbrakk> \<Longrightarrow> (|i| < K) \<longleftrightarrow> (i < K)" |
13221 | 504 |
by (blast intro: Card_lt_imp_lt Ord_cardinal_le [THEN lt_trans1]) |
505 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
506 |
lemma Card_le_iff: "\<lbrakk>Ord(i); Card(K)\<rbrakk> \<Longrightarrow> (K \<le> |i|) \<longleftrightarrow> (K \<le> i)" |
13269 | 507 |
by (simp add: Card_lt_iff Card_is_Ord Ord_cardinal not_lt_iff_le [THEN iff_sym]) |
13221 | 508 |
|
509 |
(*Can use AC or finiteness to discharge first premise*) |
|
72797
402afc68f2f9
A bunch of suggestions from Pedro Sánchez Terraf
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
510 |
lemma well_ord_lepoll_imp_cardinal_le: |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
511 |
assumes wB: "well_ord(B,r)" and AB: "A \<lesssim> B" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
512 |
shows "|A| \<le> |B|" |
47016 | 513 |
using Ord_cardinal [of A] Ord_cardinal [of B] |
514 |
proof (cases rule: Ord_linear_le) |
|
515 |
case le thus ?thesis . |
|
516 |
next |
|
517 |
case ge |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
518 |
from lepoll_well_ord [OF AB wB] |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
519 |
obtain s where s: "well_ord(A, s)" by blast |
46953 | 520 |
have "B \<approx> |B|" by (blast intro: wB eqpoll_sym well_ord_cardinal_eqpoll) |
47016 | 521 |
also have "... \<lesssim> |A|" by (rule le_imp_lepoll [OF ge]) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
522 |
also have "... \<approx> A" by (rule well_ord_cardinal_eqpoll [OF s]) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
523 |
finally have "B \<lesssim> A" . |
46953 | 524 |
hence "A \<approx> B" by (blast intro: eqpollI AB) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
525 |
hence "|A| = |B|" by (rule cardinal_cong) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
526 |
thus ?thesis by simp |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
527 |
qed |
13221 | 528 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
529 |
lemma lepoll_cardinal_le: "\<lbrakk>A \<lesssim> i; Ord(i)\<rbrakk> \<Longrightarrow> |A| \<le> i" |
13221 | 530 |
apply (rule le_trans) |
72797
402afc68f2f9
A bunch of suggestions from Pedro Sánchez Terraf
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
531 |
apply (erule well_ord_Memrel [THEN well_ord_lepoll_imp_cardinal_le], assumption) |
13221 | 532 |
apply (erule Ord_cardinal_le) |
533 |
done |
|
534 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
535 |
lemma lepoll_Ord_imp_eqpoll: "\<lbrakk>A \<lesssim> i; Ord(i)\<rbrakk> \<Longrightarrow> |A| \<approx> A" |
13221 | 536 |
by (blast intro: lepoll_cardinal_le well_ord_Memrel well_ord_cardinal_eqpoll dest!: lepoll_well_ord) |
537 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
538 |
lemma lesspoll_imp_eqpoll: "\<lbrakk>A \<prec> i; Ord(i)\<rbrakk> \<Longrightarrow> |A| \<approx> A" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
539 |
unfolding lesspoll_def |
13221 | 540 |
apply (blast intro: lepoll_Ord_imp_eqpoll) |
541 |
done |
|
542 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
543 |
lemma cardinal_subset_Ord: "\<lbrakk>A<=i; Ord(i)\<rbrakk> \<Longrightarrow> |A| \<subseteq> i" |
14046 | 544 |
apply (drule subset_imp_lepoll [THEN lepoll_cardinal_le]) |
545 |
apply (auto simp add: lt_def) |
|
546 |
apply (blast intro: Ord_trans) |
|
547 |
done |
|
13221 | 548 |
|
60770 | 549 |
subsection\<open>The finite cardinals\<close> |
13221 | 550 |
|
46820 | 551 |
lemma cons_lepoll_consD: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
552 |
"\<lbrakk>cons(u,A) \<lesssim> cons(v,B); u\<notin>A; v\<notin>B\<rbrakk> \<Longrightarrow> A \<lesssim> B" |
13221 | 553 |
apply (unfold lepoll_def inj_def, safe) |
46820 | 554 |
apply (rule_tac x = "\<lambda>x\<in>A. if f`x=v then f`u else f`x" in exI) |
13221 | 555 |
apply (rule CollectI) |
556 |
(*Proving it's in the function space A->B*) |
|
557 |
apply (rule if_type [THEN lam_type]) |
|
558 |
apply (blast dest: apply_funtype) |
|
559 |
apply (blast elim!: mem_irrefl dest: apply_funtype) |
|
560 |
(*Proving it's injective*) |
|
561 |
apply (simp (no_asm_simp)) |
|
562 |
apply blast |
|
563 |
done |
|
564 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
565 |
lemma cons_eqpoll_consD: "\<lbrakk>cons(u,A) \<approx> cons(v,B); u\<notin>A; v\<notin>B\<rbrakk> \<Longrightarrow> A \<approx> B" |
13221 | 566 |
apply (simp add: eqpoll_iff) |
567 |
apply (blast intro: cons_lepoll_consD) |
|
568 |
done |
|
569 |
||
570 |
(*Lemma suggested by Mike Fourman*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
571 |
lemma succ_lepoll_succD: "succ(m) \<lesssim> succ(n) \<Longrightarrow> m \<lesssim> n" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
572 |
unfolding succ_def |
13221 | 573 |
apply (erule cons_lepoll_consD) |
574 |
apply (rule mem_not_refl)+ |
|
575 |
done |
|
576 |
||
46877 | 577 |
|
46935 | 578 |
lemma nat_lepoll_imp_le: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
579 |
"m \<in> nat \<Longrightarrow> n \<in> nat \<Longrightarrow> m \<lesssim> n \<Longrightarrow> m \<le> n" |
46935 | 580 |
proof (induct m arbitrary: n rule: nat_induct) |
581 |
case 0 thus ?case by (blast intro!: nat_0_le) |
|
582 |
next |
|
583 |
case (succ m) |
|
60770 | 584 |
show ?case using \<open>n \<in> nat\<close> |
46935 | 585 |
proof (cases rule: natE) |
586 |
case 0 thus ?thesis using succ |
|
587 |
by (simp add: lepoll_def inj_def) |
|
588 |
next |
|
60770 | 589 |
case (succ n') thus ?thesis using succ.hyps \<open> succ(m) \<lesssim> n\<close> |
46935 | 590 |
by (blast intro!: succ_leI dest!: succ_lepoll_succD) |
591 |
qed |
|
592 |
qed |
|
13221 | 593 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
594 |
lemma nat_eqpoll_iff: "\<lbrakk>m \<in> nat; n \<in> nat\<rbrakk> \<Longrightarrow> m \<approx> n \<longleftrightarrow> m = n" |
13221 | 595 |
apply (rule iffI) |
596 |
apply (blast intro: nat_lepoll_imp_le le_anti_sym elim!: eqpollE) |
|
597 |
apply (simp add: eqpoll_refl) |
|
598 |
done |
|
599 |
||
600 |
(*The object of all this work: every natural number is a (finite) cardinal*) |
|
46820 | 601 |
lemma nat_into_Card: |
47042 | 602 |
assumes n: "n \<in> nat" shows "Card(n)" |
603 |
proof (unfold Card_def cardinal_def, rule sym) |
|
604 |
have "Ord(n)" using n by auto |
|
605 |
moreover |
|
606 |
{ fix i |
|
607 |
assume "i < n" "i \<approx> n" |
|
608 |
hence False using n |
|
609 |
by (auto simp add: lt_nat_in_nat [THEN nat_eqpoll_iff]) |
|
610 |
} |
|
611 |
ultimately show "(\<mu> i. i \<approx> n) = n" by (auto intro!: Least_equality) |
|
612 |
qed |
|
13221 | 613 |
|
614 |
lemmas cardinal_0 = nat_0I [THEN nat_into_Card, THEN Card_cardinal_eq, iff] |
|
615 |
lemmas cardinal_1 = nat_1I [THEN nat_into_Card, THEN Card_cardinal_eq, iff] |
|
616 |
||
617 |
||
618 |
(*Part of Kunen's Lemma 10.6*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
619 |
lemma succ_lepoll_natE: "\<lbrakk>succ(n) \<lesssim> n; n \<in> nat\<rbrakk> \<Longrightarrow> P" |
13221 | 620 |
by (rule nat_lepoll_imp_le [THEN lt_irrefl], auto) |
621 |
||
46820 | 622 |
lemma nat_lepoll_imp_ex_eqpoll_n: |
76214 | 623 |
"\<lbrakk>n \<in> nat; nat \<lesssim> X\<rbrakk> \<Longrightarrow> \<exists>Y. Y \<subseteq> X \<and> n \<approx> Y" |
76217 | 624 |
unfolding lepoll_def eqpoll_def |
13221 | 625 |
apply (fast del: subsetI subsetCE |
626 |
intro!: subset_SIs |
|
627 |
dest!: Ord_nat [THEN [2] OrdmemD, THEN [2] restrict_inj] |
|
46820 | 628 |
elim!: restrict_bij |
13221 | 629 |
inj_is_fun [THEN fun_is_rel, THEN image_subset]) |
630 |
done |
|
631 |
||
632 |
||
61394 | 633 |
(** \<lesssim>, \<prec> and natural numbers **) |
13221 | 634 |
|
46877 | 635 |
lemma lepoll_succ: "i \<lesssim> succ(i)" |
636 |
by (blast intro: subset_imp_lepoll) |
|
637 |
||
46820 | 638 |
lemma lepoll_imp_lesspoll_succ: |
46877 | 639 |
assumes A: "A \<lesssim> m" and m: "m \<in> nat" |
640 |
shows "A \<prec> succ(m)" |
|
641 |
proof - |
|
46953 | 642 |
{ assume "A \<approx> succ(m)" |
46877 | 643 |
hence "succ(m) \<approx> A" by (rule eqpoll_sym) |
644 |
also have "... \<lesssim> m" by (rule A) |
|
645 |
finally have "succ(m) \<lesssim> m" . |
|
646 |
hence False by (rule succ_lepoll_natE) (rule m) } |
|
647 |
moreover have "A \<lesssim> succ(m)" by (blast intro: lepoll_trans A lepoll_succ) |
|
46953 | 648 |
ultimately show ?thesis by (auto simp add: lesspoll_def) |
46877 | 649 |
qed |
650 |
||
651 |
lemma lesspoll_succ_imp_lepoll: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
652 |
"\<lbrakk>A \<prec> succ(m); m \<in> nat\<rbrakk> \<Longrightarrow> A \<lesssim> m" |
76217 | 653 |
unfolding lesspoll_def lepoll_def eqpoll_def bij_def |
46877 | 654 |
apply (auto dest: inj_not_surj_succ) |
13221 | 655 |
done |
656 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
657 |
lemma lesspoll_succ_iff: "m \<in> nat \<Longrightarrow> A \<prec> succ(m) \<longleftrightarrow> A \<lesssim> m" |
13221 | 658 |
by (blast intro!: lepoll_imp_lesspoll_succ lesspoll_succ_imp_lepoll) |
659 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
660 |
lemma lepoll_succ_disj: "\<lbrakk>A \<lesssim> succ(m); m \<in> nat\<rbrakk> \<Longrightarrow> A \<lesssim> m | A \<approx> succ(m)" |
13221 | 661 |
apply (rule disjCI) |
662 |
apply (rule lesspoll_succ_imp_lepoll) |
|
663 |
prefer 2 apply assumption |
|
664 |
apply (simp (no_asm_simp) add: lesspoll_def) |
|
665 |
done |
|
666 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
667 |
lemma lesspoll_cardinal_lt: "\<lbrakk>A \<prec> i; Ord(i)\<rbrakk> \<Longrightarrow> |A| < i" |
13221 | 668 |
apply (unfold lesspoll_def, clarify) |
669 |
apply (frule lepoll_cardinal_le, assumption) |
|
670 |
apply (blast intro: well_ord_Memrel well_ord_cardinal_eqpoll [THEN eqpoll_sym] |
|
671 |
dest: lepoll_well_ord elim!: leE) |
|
672 |
done |
|
673 |
||
674 |
||
60770 | 675 |
subsection\<open>The first infinite cardinal: Omega, or nat\<close> |
13221 | 676 |
|
677 |
(*This implies Kunen's Lemma 10.6*) |
|
46877 | 678 |
lemma lt_not_lepoll: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
679 |
assumes n: "n<i" "n \<in> nat" shows "\<not> i \<lesssim> n" |
46877 | 680 |
proof - |
681 |
{ assume i: "i \<lesssim> n" |
|
682 |
have "succ(n) \<lesssim> i" using n |
|
46953 | 683 |
by (elim ltE, blast intro: Ord_succ_subsetI [THEN subset_imp_lepoll]) |
46877 | 684 |
also have "... \<lesssim> n" by (rule i) |
685 |
finally have "succ(n) \<lesssim> n" . |
|
686 |
hence False by (rule succ_lepoll_natE) (rule n) } |
|
687 |
thus ?thesis by auto |
|
688 |
qed |
|
13221 | 689 |
|
61798 | 690 |
text\<open>A slightly weaker version of \<open>nat_eqpoll_iff\<close>\<close> |
46877 | 691 |
lemma Ord_nat_eqpoll_iff: |
692 |
assumes i: "Ord(i)" and n: "n \<in> nat" shows "i \<approx> n \<longleftrightarrow> i=n" |
|
47016 | 693 |
using i nat_into_Ord [OF n] |
694 |
proof (cases rule: Ord_linear_lt) |
|
695 |
case lt |
|
46877 | 696 |
hence "i \<in> nat" by (rule lt_nat_in_nat) (rule n) |
46953 | 697 |
thus ?thesis by (simp add: nat_eqpoll_iff n) |
46877 | 698 |
next |
47016 | 699 |
case eq |
46953 | 700 |
thus ?thesis by (simp add: eqpoll_refl) |
46877 | 701 |
next |
47016 | 702 |
case gt |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
703 |
hence "\<not> i \<lesssim> n" using n by (rule lt_not_lepoll) |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
704 |
hence "\<not> i \<approx> n" using n by (blast intro: eqpoll_imp_lepoll) |
60770 | 705 |
moreover have "i \<noteq> n" using \<open>n<i\<close> by auto |
46877 | 706 |
ultimately show ?thesis by blast |
707 |
qed |
|
13221 | 708 |
|
709 |
lemma Card_nat: "Card(nat)" |
|
46877 | 710 |
proof - |
711 |
{ fix i |
|
46953 | 712 |
assume i: "i < nat" "i \<approx> nat" |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
713 |
hence "\<not> nat \<lesssim> i" |
46953 | 714 |
by (simp add: lt_def lt_not_lepoll) |
715 |
hence False using i |
|
46877 | 716 |
by (simp add: eqpoll_iff) |
717 |
} |
|
46953 | 718 |
hence "(\<mu> i. i \<approx> nat) = nat" by (blast intro: Least_equality eqpoll_refl) |
46877 | 719 |
thus ?thesis |
46953 | 720 |
by (auto simp add: Card_def cardinal_def) |
46877 | 721 |
qed |
13221 | 722 |
|
723 |
(*Allows showing that |i| is a limit cardinal*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
724 |
lemma nat_le_cardinal: "nat \<le> i \<Longrightarrow> nat \<le> |i|" |
13221 | 725 |
apply (rule Card_nat [THEN Card_cardinal_eq, THEN subst]) |
726 |
apply (erule cardinal_mono) |
|
727 |
done |
|
728 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
729 |
lemma n_lesspoll_nat: "n \<in> nat \<Longrightarrow> n \<prec> nat" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
730 |
by (blast intro: Ord_nat Card_nat ltI lt_Card_imp_lesspoll) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
731 |
|
13221 | 732 |
|
60770 | 733 |
subsection\<open>Towards Cardinal Arithmetic\<close> |
13221 | 734 |
(** Congruence laws for successor, cardinal addition and multiplication **) |
735 |
||
736 |
(*Congruence law for cons under equipollence*) |
|
46820 | 737 |
lemma cons_lepoll_cong: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
738 |
"\<lbrakk>A \<lesssim> B; b \<notin> B\<rbrakk> \<Longrightarrow> cons(a,A) \<lesssim> cons(b,B)" |
13221 | 739 |
apply (unfold lepoll_def, safe) |
46820 | 740 |
apply (rule_tac x = "\<lambda>y\<in>cons (a,A) . if y=a then b else f`y" in exI) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
741 |
apply (rule_tac d = "\<lambda>z. if z \<in> B then converse (f) `z else a" in lam_injective) |
46820 | 742 |
apply (safe elim!: consE') |
13221 | 743 |
apply simp_all |
46820 | 744 |
apply (blast intro: inj_is_fun [THEN apply_type])+ |
13221 | 745 |
done |
746 |
||
747 |
lemma cons_eqpoll_cong: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
748 |
"\<lbrakk>A \<approx> B; a \<notin> A; b \<notin> B\<rbrakk> \<Longrightarrow> cons(a,A) \<approx> cons(b,B)" |
13221 | 749 |
by (simp add: eqpoll_iff cons_lepoll_cong) |
750 |
||
751 |
lemma cons_lepoll_cons_iff: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
752 |
"\<lbrakk>a \<notin> A; b \<notin> B\<rbrakk> \<Longrightarrow> cons(a,A) \<lesssim> cons(b,B) \<longleftrightarrow> A \<lesssim> B" |
13221 | 753 |
by (blast intro: cons_lepoll_cong cons_lepoll_consD) |
754 |
||
755 |
lemma cons_eqpoll_cons_iff: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
756 |
"\<lbrakk>a \<notin> A; b \<notin> B\<rbrakk> \<Longrightarrow> cons(a,A) \<approx> cons(b,B) \<longleftrightarrow> A \<approx> B" |
13221 | 757 |
by (blast intro: cons_eqpoll_cong cons_eqpoll_consD) |
758 |
||
759 |
lemma singleton_eqpoll_1: "{a} \<approx> 1" |
|
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
760 |
unfolding succ_def |
13221 | 761 |
apply (blast intro!: eqpoll_refl [THEN cons_eqpoll_cong]) |
762 |
done |
|
763 |
||
764 |
lemma cardinal_singleton: "|{a}| = 1" |
|
765 |
apply (rule singleton_eqpoll_1 [THEN cardinal_cong, THEN trans]) |
|
766 |
apply (simp (no_asm) add: nat_into_Card [THEN Card_cardinal_eq]) |
|
767 |
done |
|
768 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
769 |
lemma not_0_is_lepoll_1: "A \<noteq> 0 \<Longrightarrow> 1 \<lesssim> A" |
13221 | 770 |
apply (erule not_emptyE) |
771 |
apply (rule_tac a = "cons (x, A-{x}) " in subst) |
|
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
772 |
apply (rule_tac [2] a = "cons(0,0)" and P= "\<lambda>y. y \<lesssim> cons (x, A-{x})" in subst) |
13221 | 773 |
prefer 3 apply (blast intro: cons_lepoll_cong subset_imp_lepoll, auto) |
774 |
done |
|
775 |
||
776 |
(*Congruence law for succ under equipollence*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
777 |
lemma succ_eqpoll_cong: "A \<approx> B \<Longrightarrow> succ(A) \<approx> succ(B)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
778 |
unfolding succ_def |
13221 | 779 |
apply (simp add: cons_eqpoll_cong mem_not_refl) |
780 |
done |
|
781 |
||
782 |
(*Congruence law for + under equipollence*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
783 |
lemma sum_eqpoll_cong: "\<lbrakk>A \<approx> C; B \<approx> D\<rbrakk> \<Longrightarrow> A+B \<approx> C+D" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
784 |
unfolding eqpoll_def |
13221 | 785 |
apply (blast intro!: sum_bij) |
786 |
done |
|
787 |
||
788 |
(*Congruence law for * under equipollence*) |
|
46820 | 789 |
lemma prod_eqpoll_cong: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
790 |
"\<lbrakk>A \<approx> C; B \<approx> D\<rbrakk> \<Longrightarrow> A*B \<approx> C*D" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
791 |
unfolding eqpoll_def |
13221 | 792 |
apply (blast intro!: prod_bij) |
793 |
done |
|
794 |
||
46820 | 795 |
lemma inj_disjoint_eqpoll: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
796 |
"\<lbrakk>f \<in> inj(A,B); A \<inter> B = 0\<rbrakk> \<Longrightarrow> A \<union> (B - range(f)) \<approx> B" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
797 |
unfolding eqpoll_def |
13221 | 798 |
apply (rule exI) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
799 |
apply (rule_tac c = "\<lambda>x. if x \<in> A then f`x else x" |
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
800 |
and d = "\<lambda>y. if y \<in> range (f) then converse (f) `y else y" |
13221 | 801 |
in lam_bijective) |
802 |
apply (blast intro!: if_type inj_is_fun [THEN apply_type]) |
|
803 |
apply (simp (no_asm_simp) add: inj_converse_fun [THEN apply_funtype]) |
|
46820 | 804 |
apply (safe elim!: UnE') |
13221 | 805 |
apply (simp_all add: inj_is_fun [THEN apply_rangeI]) |
46820 | 806 |
apply (blast intro: inj_converse_fun [THEN apply_type])+ |
13221 | 807 |
done |
808 |
||
809 |
||
60770 | 810 |
subsection\<open>Lemmas by Krzysztof Grabczewski\<close> |
13356 | 811 |
|
812 |
(*New proofs using cons_lepoll_cons. Could generalise from succ to cons.*) |
|
13221 | 813 |
|
69593 | 814 |
text\<open>If \<^term>\<open>A\<close> has at most \<^term>\<open>n+1\<close> elements and \<^term>\<open>a \<in> A\<close> |
815 |
then \<^term>\<open>A-{a}\<close> has at most \<^term>\<open>n\<close>.\<close> |
|
46820 | 816 |
lemma Diff_sing_lepoll: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
817 |
"\<lbrakk>a \<in> A; A \<lesssim> succ(n)\<rbrakk> \<Longrightarrow> A - {a} \<lesssim> n" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
818 |
unfolding succ_def |
13221 | 819 |
apply (rule cons_lepoll_consD) |
820 |
apply (rule_tac [3] mem_not_refl) |
|
821 |
apply (erule cons_Diff [THEN ssubst], safe) |
|
822 |
done |
|
823 |
||
69593 | 824 |
text\<open>If \<^term>\<open>A\<close> has at least \<^term>\<open>n+1\<close> elements then \<^term>\<open>A-{a}\<close> has at least \<^term>\<open>n\<close>.\<close> |
46820 | 825 |
lemma lepoll_Diff_sing: |
46877 | 826 |
assumes A: "succ(n) \<lesssim> A" shows "n \<lesssim> A - {a}" |
827 |
proof - |
|
828 |
have "cons(n,n) \<lesssim> A" using A |
|
829 |
by (unfold succ_def) |
|
46953 | 830 |
also have "... \<lesssim> cons(a, A-{a})" |
46877 | 831 |
by (blast intro: subset_imp_lepoll) |
832 |
finally have "cons(n,n) \<lesssim> cons(a, A-{a})" . |
|
833 |
thus ?thesis |
|
46953 | 834 |
by (blast intro: cons_lepoll_consD mem_irrefl) |
46877 | 835 |
qed |
13221 | 836 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
837 |
lemma Diff_sing_eqpoll: "\<lbrakk>a \<in> A; A \<approx> succ(n)\<rbrakk> \<Longrightarrow> A - {a} \<approx> n" |
46820 | 838 |
by (blast intro!: eqpollI |
839 |
elim!: eqpollE |
|
13221 | 840 |
intro: Diff_sing_lepoll lepoll_Diff_sing) |
841 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
842 |
lemma lepoll_1_is_sing: "\<lbrakk>A \<lesssim> 1; a \<in> A\<rbrakk> \<Longrightarrow> A = {a}" |
13221 | 843 |
apply (frule Diff_sing_lepoll, assumption) |
844 |
apply (drule lepoll_0_is_0) |
|
845 |
apply (blast elim: equalityE) |
|
846 |
done |
|
847 |
||
46820 | 848 |
lemma Un_lepoll_sum: "A \<union> B \<lesssim> A+B" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
849 |
unfolding lepoll_def |
46877 | 850 |
apply (rule_tac x = "\<lambda>x\<in>A \<union> B. if x\<in>A then Inl (x) else Inr (x)" in exI) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
851 |
apply (rule_tac d = "\<lambda>z. snd (z)" in lam_injective) |
46820 | 852 |
apply force |
13221 | 853 |
apply (simp add: Inl_def Inr_def) |
854 |
done |
|
855 |
||
856 |
lemma well_ord_Un: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
857 |
"\<lbrakk>well_ord(X,R); well_ord(Y,S)\<rbrakk> \<Longrightarrow> \<exists>T. well_ord(X \<union> Y, T)" |
46820 | 858 |
by (erule well_ord_radd [THEN Un_lepoll_sum [THEN lepoll_well_ord]], |
13221 | 859 |
assumption) |
860 |
||
861 |
(*Krzysztof Grabczewski*) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
862 |
lemma disj_Un_eqpoll_sum: "A \<inter> B = 0 \<Longrightarrow> A \<union> B \<approx> A + B" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
863 |
unfolding eqpoll_def |
46877 | 864 |
apply (rule_tac x = "\<lambda>a\<in>A \<union> B. if a \<in> A then Inl (a) else Inr (a)" in exI) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
865 |
apply (rule_tac d = "\<lambda>z. case (\<lambda>x. x, \<lambda>x. x, z)" in lam_bijective) |
13221 | 866 |
apply auto |
867 |
done |
|
868 |
||
869 |
||
60770 | 870 |
subsection \<open>Finite and infinite sets\<close> |
13221 | 871 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
872 |
lemma eqpoll_imp_Finite_iff: "A \<approx> B \<Longrightarrow> Finite(A) \<longleftrightarrow> Finite(B)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
873 |
unfolding Finite_def |
47018 | 874 |
apply (blast intro: eqpoll_trans eqpoll_sym) |
875 |
done |
|
876 |
||
13244 | 877 |
lemma Finite_0 [simp]: "Finite(0)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
878 |
unfolding Finite_def |
13221 | 879 |
apply (blast intro!: eqpoll_refl nat_0I) |
880 |
done |
|
881 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
882 |
lemma Finite_cons: "Finite(x) \<Longrightarrow> Finite(cons(y,x))" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
883 |
unfolding Finite_def |
47018 | 884 |
apply (case_tac "y \<in> x") |
885 |
apply (simp add: cons_absorb) |
|
886 |
apply (erule bexE) |
|
887 |
apply (rule bexI) |
|
888 |
apply (erule_tac [2] nat_succI) |
|
889 |
apply (simp (no_asm_simp) add: succ_def cons_eqpoll_cong mem_not_refl) |
|
890 |
done |
|
891 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
892 |
lemma Finite_succ: "Finite(x) \<Longrightarrow> Finite(succ(x))" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
893 |
unfolding succ_def |
47018 | 894 |
apply (erule Finite_cons) |
13221 | 895 |
done |
896 |
||
47018 | 897 |
lemma lepoll_nat_imp_Finite: |
898 |
assumes A: "A \<lesssim> n" and n: "n \<in> nat" shows "Finite(A)" |
|
899 |
proof - |
|
900 |
have "A \<lesssim> n \<Longrightarrow> Finite(A)" using n |
|
901 |
proof (induct n) |
|
902 |
case 0 |
|
903 |
hence "A = 0" by (rule lepoll_0_is_0) |
|
904 |
thus ?case by simp |
|
905 |
next |
|
906 |
case (succ n) |
|
907 |
hence "A \<lesssim> n \<or> A \<approx> succ(n)" by (blast dest: lepoll_succ_disj) |
|
908 |
thus ?case using succ by (auto simp add: Finite_def) |
|
909 |
qed |
|
910 |
thus ?thesis using A . |
|
911 |
qed |
|
912 |
||
46820 | 913 |
lemma lesspoll_nat_is_Finite: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
914 |
"A \<prec> nat \<Longrightarrow> Finite(A)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
915 |
unfolding Finite_def |
46820 | 916 |
apply (blast dest: ltD lesspoll_cardinal_lt |
13221 | 917 |
lesspoll_imp_eqpoll [THEN eqpoll_sym]) |
918 |
done |
|
919 |
||
46820 | 920 |
lemma lepoll_Finite: |
46877 | 921 |
assumes Y: "Y \<lesssim> X" and X: "Finite(X)" shows "Finite(Y)" |
922 |
proof - |
|
46953 | 923 |
obtain n where n: "n \<in> nat" "X \<approx> n" using X |
924 |
by (auto simp add: Finite_def) |
|
46877 | 925 |
have "Y \<lesssim> X" by (rule Y) |
926 |
also have "... \<approx> n" by (rule n) |
|
927 |
finally have "Y \<lesssim> n" . |
|
928 |
thus ?thesis using n by (simp add: lepoll_nat_imp_Finite) |
|
929 |
qed |
|
13221 | 930 |
|
45602 | 931 |
lemmas subset_Finite = subset_imp_lepoll [THEN lepoll_Finite] |
13221 | 932 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
933 |
lemma Finite_cons_iff [iff]: "Finite(cons(y,x)) \<longleftrightarrow> Finite(x)" |
13244 | 934 |
by (blast intro: Finite_cons subset_Finite) |
935 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
936 |
lemma Finite_succ_iff [iff]: "Finite(succ(x)) \<longleftrightarrow> Finite(x)" |
13244 | 937 |
by (simp add: succ_def) |
938 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
939 |
lemma Finite_Int: "Finite(A) | Finite(B) \<Longrightarrow> Finite(A \<inter> B)" |
47018 | 940 |
by (blast intro: subset_Finite) |
941 |
||
942 |
lemmas Finite_Diff = Diff_subset [THEN subset_Finite] |
|
943 |
||
46820 | 944 |
lemma nat_le_infinite_Ord: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
945 |
"\<lbrakk>Ord(i); \<not> Finite(i)\<rbrakk> \<Longrightarrow> nat \<le> i" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
946 |
unfolding Finite_def |
13221 | 947 |
apply (erule Ord_nat [THEN [2] Ord_linear2]) |
948 |
prefer 2 apply assumption |
|
949 |
apply (blast intro!: eqpoll_refl elim!: ltE) |
|
950 |
done |
|
951 |
||
46820 | 952 |
lemma Finite_imp_well_ord: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
953 |
"Finite(A) \<Longrightarrow> \<exists>r. well_ord(A,r)" |
76217 | 954 |
unfolding Finite_def eqpoll_def |
13221 | 955 |
apply (blast intro: well_ord_rvimage bij_is_inj well_ord_Memrel nat_into_Ord) |
956 |
done |
|
957 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
958 |
lemma succ_lepoll_imp_not_empty: "succ(x) \<lesssim> y \<Longrightarrow> y \<noteq> 0" |
13244 | 959 |
by (fast dest!: lepoll_0_is_0) |
960 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
961 |
lemma eqpoll_succ_imp_not_empty: "x \<approx> succ(n) \<Longrightarrow> x \<noteq> 0" |
13244 | 962 |
by (fast elim!: eqpoll_sym [THEN eqpoll_0_is_0, THEN succ_neq_0]) |
963 |
||
964 |
lemma Finite_Fin_lemma [rule_format]: |
|
76214 | 965 |
"n \<in> nat \<Longrightarrow> \<forall>A. (A\<approx>n \<and> A \<subseteq> X) \<longrightarrow> A \<in> Fin(X)" |
13244 | 966 |
apply (induct_tac n) |
967 |
apply (rule allI) |
|
968 |
apply (fast intro!: Fin.emptyI dest!: eqpoll_imp_lepoll [THEN lepoll_0_is_0]) |
|
969 |
apply (rule allI) |
|
970 |
apply (rule impI) |
|
971 |
apply (erule conjE) |
|
972 |
apply (rule eqpoll_succ_imp_not_empty [THEN not_emptyE], assumption) |
|
973 |
apply (frule Diff_sing_eqpoll, assumption) |
|
974 |
apply (erule allE) |
|
975 |
apply (erule impE, fast) |
|
976 |
apply (drule subsetD, assumption) |
|
977 |
apply (drule Fin.consI, assumption) |
|
978 |
apply (simp add: cons_Diff) |
|
979 |
done |
|
980 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
981 |
lemma Finite_Fin: "\<lbrakk>Finite(A); A \<subseteq> X\<rbrakk> \<Longrightarrow> A \<in> Fin(X)" |
46820 | 982 |
by (unfold Finite_def, blast intro: Finite_Fin_lemma) |
13244 | 983 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
984 |
lemma Fin_lemma [rule_format]: "n \<in> nat \<Longrightarrow> \<forall>A. A \<approx> n \<longrightarrow> A \<in> Fin(A)" |
13244 | 985 |
apply (induct_tac n) |
986 |
apply (simp add: eqpoll_0_iff, clarify) |
|
46953 | 987 |
apply (subgoal_tac "\<exists>u. u \<in> A") |
13244 | 988 |
apply (erule exE) |
46471 | 989 |
apply (rule Diff_sing_eqpoll [elim_format]) |
13244 | 990 |
prefer 2 apply assumption |
991 |
apply assumption |
|
13784 | 992 |
apply (rule_tac b = A in cons_Diff [THEN subst], assumption) |
13244 | 993 |
apply (rule Fin.consI, blast) |
994 |
apply (blast intro: subset_consI [THEN Fin_mono, THEN subsetD]) |
|
995 |
(*Now for the lemma assumed above*) |
|
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
996 |
unfolding eqpoll_def |
13244 | 997 |
apply (blast intro: bij_converse_bij [THEN bij_is_fun, THEN apply_type]) |
998 |
done |
|
999 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1000 |
lemma Finite_into_Fin: "Finite(A) \<Longrightarrow> A \<in> Fin(A)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
1001 |
unfolding Finite_def |
13244 | 1002 |
apply (blast intro: Fin_lemma) |
1003 |
done |
|
1004 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1005 |
lemma Fin_into_Finite: "A \<in> Fin(U) \<Longrightarrow> Finite(A)" |
13244 | 1006 |
by (fast intro!: Finite_0 Finite_cons elim: Fin_induct) |
1007 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
1008 |
lemma Finite_Fin_iff: "Finite(A) \<longleftrightarrow> A \<in> Fin(A)" |
13244 | 1009 |
by (blast intro: Finite_into_Fin Fin_into_Finite) |
1010 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1011 |
lemma Finite_Un: "\<lbrakk>Finite(A); Finite(B)\<rbrakk> \<Longrightarrow> Finite(A \<union> B)" |
46820 | 1012 |
by (blast intro!: Fin_into_Finite Fin_UnI |
13244 | 1013 |
dest!: Finite_into_Fin |
46820 | 1014 |
intro: Un_upper1 [THEN Fin_mono, THEN subsetD] |
13244 | 1015 |
Un_upper2 [THEN Fin_mono, THEN subsetD]) |
1016 |
||
76214 | 1017 |
lemma Finite_Un_iff [simp]: "Finite(A \<union> B) \<longleftrightarrow> (Finite(A) \<and> Finite(B))" |
46820 | 1018 |
by (blast intro: subset_Finite Finite_Un) |
14883 | 1019 |
|
60770 | 1020 |
text\<open>The converse must hold too.\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1021 |
lemma Finite_Union: "\<lbrakk>\<forall>y\<in>X. Finite(y); Finite(X)\<rbrakk> \<Longrightarrow> Finite(\<Union>(X))" |
13244 | 1022 |
apply (simp add: Finite_Fin_iff) |
1023 |
apply (rule Fin_UnionI) |
|
1024 |
apply (erule Fin_induct, simp) |
|
1025 |
apply (blast intro: Fin.consI Fin_mono [THEN [2] rev_subsetD]) |
|
1026 |
done |
|
1027 |
||
1028 |
(* Induction principle for Finite(A), by Sidi Ehmety *) |
|
13524 | 1029 |
lemma Finite_induct [case_names 0 cons, induct set: Finite]: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1030 |
"\<lbrakk>Finite(A); P(0); |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1031 |
\<And>x B. \<lbrakk>Finite(B); x \<notin> B; P(B)\<rbrakk> \<Longrightarrow> P(cons(x, B))\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1032 |
\<Longrightarrow> P(A)" |
46820 | 1033 |
apply (erule Finite_into_Fin [THEN Fin_induct]) |
13244 | 1034 |
apply (blast intro: Fin_into_Finite)+ |
1035 |
done |
|
1036 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1037 |
(*Sidi Ehmety. The contrapositive says \<not>Finite(A) \<Longrightarrow> \<not>Finite(A-{a}) *) |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1038 |
lemma Diff_sing_Finite: "Finite(A - {a}) \<Longrightarrow> Finite(A)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
1039 |
unfolding Finite_def |
46877 | 1040 |
apply (case_tac "a \<in> A") |
13244 | 1041 |
apply (subgoal_tac [2] "A-{a}=A", auto) |
1042 |
apply (rule_tac x = "succ (n) " in bexI) |
|
76214 | 1043 |
apply (subgoal_tac "cons (a, A - {a}) = A \<and> cons (n, n) = succ (n) ") |
13784 | 1044 |
apply (drule_tac a = a and b = n in cons_eqpoll_cong) |
13244 | 1045 |
apply (auto dest: mem_irrefl) |
1046 |
done |
|
1047 |
||
1048 |
(*Sidi Ehmety. And the contrapositive of this says |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1049 |
\<lbrakk>\<not>Finite(A); Finite(B)\<rbrakk> \<Longrightarrow> \<not>Finite(A-B) *) |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1050 |
lemma Diff_Finite [rule_format]: "Finite(B) \<Longrightarrow> Finite(A-B) \<longrightarrow> Finite(A)" |
13244 | 1051 |
apply (erule Finite_induct, auto) |
46953 | 1052 |
apply (case_tac "x \<in> A") |
13244 | 1053 |
apply (subgoal_tac [2] "A-cons (x, B) = A - B") |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13524
diff
changeset
|
1054 |
apply (subgoal_tac "A - cons (x, B) = (A - B) - {x}", simp) |
13244 | 1055 |
apply (drule Diff_sing_Finite, auto) |
1056 |
done |
|
1057 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1058 |
lemma Finite_RepFun: "Finite(A) \<Longrightarrow> Finite(RepFun(A,f))" |
13244 | 1059 |
by (erule Finite_induct, simp_all) |
1060 |
||
1061 |
lemma Finite_RepFun_iff_lemma [rule_format]: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1062 |
"\<lbrakk>Finite(x); \<And>x y. f(x)=f(y) \<Longrightarrow> x=y\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1063 |
\<Longrightarrow> \<forall>A. x = RepFun(A,f) \<longrightarrow> Finite(A)" |
13244 | 1064 |
apply (erule Finite_induct) |
46820 | 1065 |
apply clarify |
13244 | 1066 |
apply (case_tac "A=0", simp) |
46820 | 1067 |
apply (blast del: allE, clarify) |
1068 |
apply (subgoal_tac "\<exists>z\<in>A. x = f(z)") |
|
1069 |
prefer 2 apply (blast del: allE elim: equalityE, clarify) |
|
13244 | 1070 |
apply (subgoal_tac "B = {f(u) . u \<in> A - {z}}") |
46820 | 1071 |
apply (blast intro: Diff_sing_Finite) |
59788 | 1072 |
apply (thin_tac "\<forall>A. P(A) \<longrightarrow> Finite(A)" for P) |
46820 | 1073 |
apply (rule equalityI) |
1074 |
apply (blast intro: elim: equalityE) |
|
1075 |
apply (blast intro: elim: equalityCE) |
|
13244 | 1076 |
done |
1077 |
||
60770 | 1078 |
text\<open>I don't know why, but if the premise is expressed using meta-connectives |
1079 |
then the simplifier cannot prove it automatically in conditional rewriting.\<close> |
|
13244 | 1080 |
lemma Finite_RepFun_iff: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1081 |
"(\<forall>x y. f(x)=f(y) \<longrightarrow> x=y) \<Longrightarrow> Finite(RepFun(A,f)) \<longleftrightarrow> Finite(A)" |
46820 | 1082 |
by (blast intro: Finite_RepFun Finite_RepFun_iff_lemma [of _ f]) |
13244 | 1083 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1084 |
lemma Finite_Pow: "Finite(A) \<Longrightarrow> Finite(Pow(A))" |
46820 | 1085 |
apply (erule Finite_induct) |
1086 |
apply (simp_all add: Pow_insert Finite_Un Finite_RepFun) |
|
13244 | 1087 |
done |
1088 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1089 |
lemma Finite_Pow_imp_Finite: "Finite(Pow(A)) \<Longrightarrow> Finite(A)" |
13244 | 1090 |
apply (subgoal_tac "Finite({{x} . x \<in> A})") |
46820 | 1091 |
apply (simp add: Finite_RepFun_iff ) |
1092 |
apply (blast intro: subset_Finite) |
|
13244 | 1093 |
done |
1094 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
1095 |
lemma Finite_Pow_iff [iff]: "Finite(Pow(A)) \<longleftrightarrow> Finite(A)" |
13244 | 1096 |
by (blast intro: Finite_Pow Finite_Pow_imp_Finite) |
1097 |
||
47101 | 1098 |
lemma Finite_cardinal_iff: |
1099 |
assumes i: "Ord(i)" shows "Finite(|i|) \<longleftrightarrow> Finite(i)" |
|
1100 |
by (auto simp add: Finite_def) (blast intro: eqpoll_trans eqpoll_sym Ord_cardinal_eqpoll [OF i])+ |
|
13244 | 1101 |
|
13221 | 1102 |
|
1103 |
(*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered |
|
1104 |
set is well-ordered. Proofs simplified by lcp. *) |
|
1105 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1106 |
lemma nat_wf_on_converse_Memrel: "n \<in> nat \<Longrightarrow> wf[n](converse(Memrel(n)))" |
47018 | 1107 |
proof (induct n rule: nat_induct) |
1108 |
case 0 thus ?case by (blast intro: wf_onI) |
|
1109 |
next |
|
1110 |
case (succ x) |
|
1111 |
hence wfx: "\<And>Z. Z = 0 \<or> (\<exists>z\<in>Z. \<forall>y. z \<in> y \<and> z \<in> x \<and> y \<in> x \<and> z \<in> x \<longrightarrow> y \<notin> Z)" |
|
69593 | 1112 |
by (simp add: wf_on_def wf_def) \<comment> \<open>not easy to erase the duplicate \<^term>\<open>z \<in> x\<close>!\<close> |
47018 | 1113 |
show ?case |
1114 |
proof (rule wf_onI) |
|
1115 |
fix Z u |
|
1116 |
assume Z: "u \<in> Z" "\<forall>z\<in>Z. \<exists>y\<in>Z. \<langle>y, z\<rangle> \<in> converse(Memrel(succ(x)))" |
|
1117 |
show False |
|
1118 |
proof (cases "x \<in> Z") |
|
1119 |
case True thus False using Z |
|
1120 |
by (blast elim: mem_irrefl mem_asym) |
|
1121 |
next |
|
1122 |
case False thus False using wfx [of Z] Z |
|
1123 |
by blast |
|
1124 |
qed |
|
1125 |
qed |
|
1126 |
qed |
|
13221 | 1127 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1128 |
lemma nat_well_ord_converse_Memrel: "n \<in> nat \<Longrightarrow> well_ord(n,converse(Memrel(n)))" |
13221 | 1129 |
apply (frule Ord_nat [THEN Ord_in_Ord, THEN well_ord_Memrel]) |
47018 | 1130 |
apply (simp add: well_ord_def tot_ord_converse nat_wf_on_converse_Memrel) |
13221 | 1131 |
done |
1132 |
||
1133 |
lemma well_ord_converse: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1134 |
"\<lbrakk>well_ord(A,r); |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1135 |
well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r))))\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1136 |
\<Longrightarrow> well_ord(A,converse(r))" |
13221 | 1137 |
apply (rule well_ord_Int_iff [THEN iffD1]) |
1138 |
apply (frule ordermap_bij [THEN bij_is_inj, THEN well_ord_rvimage], assumption) |
|
1139 |
apply (simp add: rvimage_converse converse_Int converse_prod |
|
1140 |
ordertype_ord_iso [THEN ord_iso_rvimage_eq]) |
|
1141 |
done |
|
1142 |
||
1143 |
lemma ordertype_eq_n: |
|
46953 | 1144 |
assumes r: "well_ord(A,r)" and A: "A \<approx> n" and n: "n \<in> nat" |
46877 | 1145 |
shows "ordertype(A,r) = n" |
1146 |
proof - |
|
46953 | 1147 |
have "ordertype(A,r) \<approx> A" |
1148 |
by (blast intro: bij_imp_eqpoll bij_converse_bij ordermap_bij r) |
|
46877 | 1149 |
also have "... \<approx> n" by (rule A) |
1150 |
finally have "ordertype(A,r) \<approx> n" . |
|
1151 |
thus ?thesis |
|
46953 | 1152 |
by (simp add: Ord_nat_eqpoll_iff Ord_ordertype n r) |
46877 | 1153 |
qed |
13221 | 1154 |
|
46820 | 1155 |
lemma Finite_well_ord_converse: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1156 |
"\<lbrakk>Finite(A); well_ord(A,r)\<rbrakk> \<Longrightarrow> well_ord(A,converse(r))" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
1157 |
unfolding Finite_def |
13221 | 1158 |
apply (rule well_ord_converse, assumption) |
1159 |
apply (blast dest: ordertype_eq_n intro!: nat_well_ord_converse_Memrel) |
|
1160 |
done |
|
1161 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1162 |
lemma nat_into_Finite: "n \<in> nat \<Longrightarrow> Finite(n)" |
47018 | 1163 |
by (auto simp add: Finite_def intro: eqpoll_refl) |
13221 | 1164 |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
72797
diff
changeset
|
1165 |
lemma nat_not_Finite: "\<not> Finite(nat)" |
46877 | 1166 |
proof - |
1167 |
{ fix n |
|
1168 |
assume n: "n \<in> nat" "nat \<approx> n" |
|
46953 | 1169 |
have "n \<in> nat" by (rule n) |
46877 | 1170 |
also have "... = n" using n |
46953 | 1171 |
by (simp add: Ord_nat_eqpoll_iff Ord_nat) |
46877 | 1172 |
finally have "n \<in> n" . |
46953 | 1173 |
hence False |
1174 |
by (blast elim: mem_irrefl) |
|
46877 | 1175 |
} |
1176 |
thus ?thesis |
|
46953 | 1177 |
by (auto simp add: Finite_def) |
46877 | 1178 |
qed |
14076 | 1179 |
|
435 | 1180 |
end |