author | wenzelm |
Tue, 03 Mar 2009 14:07:43 +0100 | |
changeset 30211 | 556d1810cdad |
parent 29987 | 391dcbd7e4dd |
child 30242 | aea5d7fa7ef5 |
permissions | -rw-r--r-- |
21164 | 1 |
(* Title : Deriv.thy |
2 |
ID : $Id$ |
|
3 |
Author : Jacques D. Fleuriot |
|
4 |
Copyright : 1998 University of Cambridge |
|
5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
|
6 |
GMVT by Benjamin Porter, 2005 |
|
7 |
*) |
|
8 |
||
9 |
header{* Differentiation *} |
|
10 |
||
11 |
theory Deriv |
|
29987 | 12 |
imports Lim |
21164 | 13 |
begin |
14 |
||
22984 | 15 |
text{*Standard Definitions*} |
21164 | 16 |
|
17 |
definition |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
18 |
deriv :: "['a::real_normed_field \<Rightarrow> 'a, 'a, 'a] \<Rightarrow> bool" |
21164 | 19 |
--{*Differentiation: D is derivative of function f at x*} |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21239
diff
changeset
|
20 |
("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
21 |
"DERIV f x :> D = ((%h. (f(x + h) - f x) / h) -- 0 --> D)" |
21164 | 22 |
|
23 |
consts |
|
24 |
Bolzano_bisect :: "[real*real=>bool, real, real, nat] => (real*real)" |
|
25 |
primrec |
|
26 |
"Bolzano_bisect P a b 0 = (a,b)" |
|
27 |
"Bolzano_bisect P a b (Suc n) = |
|
28 |
(let (x,y) = Bolzano_bisect P a b n |
|
29 |
in if P(x, (x+y)/2) then ((x+y)/2, y) |
|
30 |
else (x, (x+y)/2))" |
|
31 |
||
32 |
||
33 |
subsection {* Derivatives *} |
|
34 |
||
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
35 |
lemma DERIV_iff: "(DERIV f x :> D) = ((%h. (f(x + h) - f(x))/h) -- 0 --> D)" |
21164 | 36 |
by (simp add: deriv_def) |
37 |
||
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
38 |
lemma DERIV_D: "DERIV f x :> D ==> (%h. (f(x + h) - f(x))/h) -- 0 --> D" |
21164 | 39 |
by (simp add: deriv_def) |
40 |
||
41 |
lemma DERIV_const [simp]: "DERIV (\<lambda>x. k) x :> 0" |
|
42 |
by (simp add: deriv_def) |
|
43 |
||
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23044
diff
changeset
|
44 |
lemma DERIV_ident [simp]: "DERIV (\<lambda>x. x) x :> 1" |
23398 | 45 |
by (simp add: deriv_def cong: LIM_cong) |
21164 | 46 |
|
47 |
lemma add_diff_add: |
|
48 |
fixes a b c d :: "'a::ab_group_add" |
|
49 |
shows "(a + c) - (b + d) = (a - b) + (c - d)" |
|
50 |
by simp |
|
51 |
||
52 |
lemma DERIV_add: |
|
53 |
"\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x + g x) x :> D + E" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
54 |
by (simp only: deriv_def add_diff_add add_divide_distrib LIM_add) |
21164 | 55 |
|
56 |
lemma DERIV_minus: |
|
57 |
"DERIV f x :> D \<Longrightarrow> DERIV (\<lambda>x. - f x) x :> - D" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
58 |
by (simp only: deriv_def minus_diff_minus divide_minus_left LIM_minus) |
21164 | 59 |
|
60 |
lemma DERIV_diff: |
|
61 |
"\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x - g x) x :> D - E" |
|
62 |
by (simp only: diff_def DERIV_add DERIV_minus) |
|
63 |
||
64 |
lemma DERIV_add_minus: |
|
65 |
"\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x + - g x) x :> D + - E" |
|
66 |
by (simp only: DERIV_add DERIV_minus) |
|
67 |
||
68 |
lemma DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x" |
|
69 |
proof (unfold isCont_iff) |
|
70 |
assume "DERIV f x :> D" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
71 |
hence "(\<lambda>h. (f(x+h) - f(x)) / h) -- 0 --> D" |
21164 | 72 |
by (rule DERIV_D) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
73 |
hence "(\<lambda>h. (f(x+h) - f(x)) / h * h) -- 0 --> D * 0" |
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23044
diff
changeset
|
74 |
by (intro LIM_mult LIM_ident) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
75 |
hence "(\<lambda>h. (f(x+h) - f(x)) * (h / h)) -- 0 --> 0" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
76 |
by simp |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
77 |
hence "(\<lambda>h. f(x+h) - f(x)) -- 0 --> 0" |
23398 | 78 |
by (simp cong: LIM_cong) |
21164 | 79 |
thus "(\<lambda>h. f(x+h)) -- 0 --> f(x)" |
80 |
by (simp add: LIM_def) |
|
81 |
qed |
|
82 |
||
83 |
lemma DERIV_mult_lemma: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
84 |
fixes a b c d :: "'a::real_field" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
85 |
shows "(a * b - c * d) / h = a * ((b - d) / h) + ((a - c) / h) * d" |
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23441
diff
changeset
|
86 |
by (simp add: diff_minus add_divide_distrib [symmetric] ring_distribs) |
21164 | 87 |
|
88 |
lemma DERIV_mult': |
|
89 |
assumes f: "DERIV f x :> D" |
|
90 |
assumes g: "DERIV g x :> E" |
|
91 |
shows "DERIV (\<lambda>x. f x * g x) x :> f x * E + D * g x" |
|
92 |
proof (unfold deriv_def) |
|
93 |
from f have "isCont f x" |
|
94 |
by (rule DERIV_isCont) |
|
95 |
hence "(\<lambda>h. f(x+h)) -- 0 --> f x" |
|
96 |
by (simp only: isCont_iff) |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
97 |
hence "(\<lambda>h. f(x+h) * ((g(x+h) - g x) / h) + |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
98 |
((f(x+h) - f x) / h) * g x) |
21164 | 99 |
-- 0 --> f x * E + D * g x" |
22613 | 100 |
by (intro LIM_add LIM_mult LIM_const DERIV_D f g) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
101 |
thus "(\<lambda>h. (f(x+h) * g(x+h) - f x * g x) / h) |
21164 | 102 |
-- 0 --> f x * E + D * g x" |
103 |
by (simp only: DERIV_mult_lemma) |
|
104 |
qed |
|
105 |
||
106 |
lemma DERIV_mult: |
|
107 |
"[| DERIV f x :> Da; DERIV g x :> Db |] |
|
108 |
==> DERIV (%x. f x * g x) x :> (Da * g(x)) + (Db * f(x))" |
|
109 |
by (drule (1) DERIV_mult', simp only: mult_commute add_commute) |
|
110 |
||
111 |
lemma DERIV_unique: |
|
112 |
"[| DERIV f x :> D; DERIV f x :> E |] ==> D = E" |
|
113 |
apply (simp add: deriv_def) |
|
114 |
apply (blast intro: LIM_unique) |
|
115 |
done |
|
116 |
||
117 |
text{*Differentiation of finite sum*} |
|
118 |
||
119 |
lemma DERIV_sumr [rule_format (no_asm)]: |
|
120 |
"(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x)) |
|
121 |
--> DERIV (%x. \<Sum>n=m..<n::nat. f n x :: real) x :> (\<Sum>r=m..<n. f' r x)" |
|
122 |
apply (induct "n") |
|
123 |
apply (auto intro: DERIV_add) |
|
124 |
done |
|
125 |
||
126 |
text{*Alternative definition for differentiability*} |
|
127 |
||
128 |
lemma DERIV_LIM_iff: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
129 |
"((%h. (f(a + h) - f(a)) / h) -- 0 --> D) = |
21164 | 130 |
((%x. (f(x)-f(a)) / (x-a)) -- a --> D)" |
131 |
apply (rule iffI) |
|
132 |
apply (drule_tac k="- a" in LIM_offset) |
|
133 |
apply (simp add: diff_minus) |
|
134 |
apply (drule_tac k="a" in LIM_offset) |
|
135 |
apply (simp add: add_commute) |
|
136 |
done |
|
137 |
||
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
138 |
lemma DERIV_iff2: "(DERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) -- x --> D)" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
139 |
by (simp add: deriv_def diff_minus [symmetric] DERIV_LIM_iff) |
21164 | 140 |
|
141 |
lemma inverse_diff_inverse: |
|
142 |
"\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk> |
|
143 |
\<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)" |
|
29667 | 144 |
by (simp add: algebra_simps) |
21164 | 145 |
|
146 |
lemma DERIV_inverse_lemma: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
147 |
"\<lbrakk>a \<noteq> 0; b \<noteq> (0::'a::real_normed_field)\<rbrakk> |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
148 |
\<Longrightarrow> (inverse a - inverse b) / h |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
149 |
= - (inverse a * ((a - b) / h) * inverse b)" |
21164 | 150 |
by (simp add: inverse_diff_inverse) |
151 |
||
152 |
lemma DERIV_inverse': |
|
153 |
assumes der: "DERIV f x :> D" |
|
154 |
assumes neq: "f x \<noteq> 0" |
|
155 |
shows "DERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x) * D * inverse (f x))" |
|
156 |
(is "DERIV _ _ :> ?E") |
|
157 |
proof (unfold DERIV_iff2) |
|
158 |
from der have lim_f: "f -- x --> f x" |
|
159 |
by (rule DERIV_isCont [unfolded isCont_def]) |
|
160 |
||
161 |
from neq have "0 < norm (f x)" by simp |
|
162 |
with LIM_D [OF lim_f] obtain s |
|
163 |
where s: "0 < s" |
|
164 |
and less_fx: "\<And>z. \<lbrakk>z \<noteq> x; norm (z - x) < s\<rbrakk> |
|
165 |
\<Longrightarrow> norm (f z - f x) < norm (f x)" |
|
166 |
by fast |
|
167 |
||
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
168 |
show "(\<lambda>z. (inverse (f z) - inverse (f x)) / (z - x)) -- x --> ?E" |
21164 | 169 |
proof (rule LIM_equal2 [OF s]) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
170 |
fix z |
21164 | 171 |
assume "z \<noteq> x" "norm (z - x) < s" |
172 |
hence "norm (f z - f x) < norm (f x)" by (rule less_fx) |
|
173 |
hence "f z \<noteq> 0" by auto |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
174 |
thus "(inverse (f z) - inverse (f x)) / (z - x) = |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
175 |
- (inverse (f z) * ((f z - f x) / (z - x)) * inverse (f x))" |
21164 | 176 |
using neq by (rule DERIV_inverse_lemma) |
177 |
next |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
178 |
from der have "(\<lambda>z. (f z - f x) / (z - x)) -- x --> D" |
21164 | 179 |
by (unfold DERIV_iff2) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
180 |
thus "(\<lambda>z. - (inverse (f z) * ((f z - f x) / (z - x)) * inverse (f x))) |
21164 | 181 |
-- x --> ?E" |
22613 | 182 |
by (intro LIM_mult LIM_inverse LIM_minus LIM_const lim_f neq) |
21164 | 183 |
qed |
184 |
qed |
|
185 |
||
186 |
lemma DERIV_divide: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
187 |
"\<lbrakk>DERIV f x :> D; DERIV g x :> E; g x \<noteq> 0\<rbrakk> |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
188 |
\<Longrightarrow> DERIV (\<lambda>x. f x / g x) x :> (D * g x - f x * E) / (g x * g x)" |
21164 | 189 |
apply (subgoal_tac "f x * - (inverse (g x) * E * inverse (g x)) + |
190 |
D * inverse (g x) = (D * g x - f x * E) / (g x * g x)") |
|
191 |
apply (erule subst) |
|
192 |
apply (unfold divide_inverse) |
|
193 |
apply (erule DERIV_mult') |
|
194 |
apply (erule (1) DERIV_inverse') |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23441
diff
changeset
|
195 |
apply (simp add: ring_distribs nonzero_inverse_mult_distrib) |
21164 | 196 |
apply (simp add: mult_ac) |
197 |
done |
|
198 |
||
199 |
lemma DERIV_power_Suc: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
200 |
fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,recpower}" |
21164 | 201 |
assumes f: "DERIV f x :> D" |
23431
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
huffman
parents:
23413
diff
changeset
|
202 |
shows "DERIV (\<lambda>x. f x ^ Suc n) x :> (1 + of_nat n) * (D * f x ^ n)" |
21164 | 203 |
proof (induct n) |
204 |
case 0 |
|
205 |
show ?case by (simp add: power_Suc f) |
|
206 |
case (Suc k) |
|
207 |
from DERIV_mult' [OF f Suc] show ?case |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23441
diff
changeset
|
208 |
apply (simp only: of_nat_Suc ring_distribs mult_1_left) |
29667 | 209 |
apply (simp only: power_Suc algebra_simps) |
21164 | 210 |
done |
211 |
qed |
|
212 |
||
213 |
lemma DERIV_power: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
214 |
fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,recpower}" |
21164 | 215 |
assumes f: "DERIV f x :> D" |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
216 |
shows "DERIV (\<lambda>x. f x ^ n) x :> of_nat n * (D * f x ^ (n - Suc 0))" |
21164 | 217 |
by (cases "n", simp, simp add: DERIV_power_Suc f) |
218 |
||
219 |
||
29975 | 220 |
text {* Caratheodory formulation of derivative at a point *} |
21164 | 221 |
|
222 |
lemma CARAT_DERIV: |
|
223 |
"(DERIV f x :> l) = |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
224 |
(\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isCont g x & g x = l)" |
21164 | 225 |
(is "?lhs = ?rhs") |
226 |
proof |
|
227 |
assume der: "DERIV f x :> l" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
228 |
show "\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) \<and> isCont g x \<and> g x = l" |
21164 | 229 |
proof (intro exI conjI) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
230 |
let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))" |
23413
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
nipkow
parents:
23412
diff
changeset
|
231 |
show "\<forall>z. f z - f x = ?g z * (z-x)" by simp |
21164 | 232 |
show "isCont ?g x" using der |
233 |
by (simp add: isCont_iff DERIV_iff diff_minus |
|
234 |
cong: LIM_equal [rule_format]) |
|
235 |
show "?g x = l" by simp |
|
236 |
qed |
|
237 |
next |
|
238 |
assume "?rhs" |
|
239 |
then obtain g where |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
240 |
"(\<forall>z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast |
21164 | 241 |
thus "(DERIV f x :> l)" |
23413
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
nipkow
parents:
23412
diff
changeset
|
242 |
by (auto simp add: isCont_iff DERIV_iff cong: LIM_cong) |
21164 | 243 |
qed |
244 |
||
245 |
lemma DERIV_chain': |
|
246 |
assumes f: "DERIV f x :> D" |
|
247 |
assumes g: "DERIV g (f x) :> E" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
248 |
shows "DERIV (\<lambda>x. g (f x)) x :> E * D" |
21164 | 249 |
proof (unfold DERIV_iff2) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
250 |
obtain d where d: "\<forall>y. g y - g (f x) = d y * (y - f x)" |
21164 | 251 |
and cont_d: "isCont d (f x)" and dfx: "d (f x) = E" |
252 |
using CARAT_DERIV [THEN iffD1, OF g] by fast |
|
253 |
from f have "f -- x --> f x" |
|
254 |
by (rule DERIV_isCont [unfolded isCont_def]) |
|
255 |
with cont_d have "(\<lambda>z. d (f z)) -- x --> d (f x)" |
|
21239 | 256 |
by (rule isCont_LIM_compose) |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
257 |
hence "(\<lambda>z. d (f z) * ((f z - f x) / (z - x))) |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
258 |
-- x --> d (f x) * D" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
259 |
by (rule LIM_mult [OF _ f [unfolded DERIV_iff2]]) |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
260 |
thus "(\<lambda>z. (g (f z) - g (f x)) / (z - x)) -- x --> E * D" |
21164 | 261 |
by (simp add: d dfx real_scaleR_def) |
262 |
qed |
|
263 |
||
264 |
(* let's do the standard proof though theorem *) |
|
265 |
(* LIM_mult2 follows from a NS proof *) |
|
266 |
||
267 |
lemma DERIV_cmult: |
|
268 |
"DERIV f x :> D ==> DERIV (%x. c * f x) x :> c*D" |
|
269 |
by (drule DERIV_mult' [OF DERIV_const], simp) |
|
270 |
||
271 |
(* standard version *) |
|
272 |
lemma DERIV_chain: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (f o g) x :> Da * Db" |
|
273 |
by (drule (1) DERIV_chain', simp add: o_def real_scaleR_def mult_commute) |
|
274 |
||
275 |
lemma DERIV_chain2: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (%x. f (g x)) x :> Da * Db" |
|
276 |
by (auto dest: DERIV_chain simp add: o_def) |
|
277 |
||
278 |
(*derivative of linear multiplication*) |
|
279 |
lemma DERIV_cmult_Id [simp]: "DERIV (op * c) x :> c" |
|
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23044
diff
changeset
|
280 |
by (cut_tac c = c and x = x in DERIV_ident [THEN DERIV_cmult], simp) |
21164 | 281 |
|
282 |
lemma DERIV_pow: "DERIV (%x. x ^ n) x :> real n * (x ^ (n - Suc 0))" |
|
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23044
diff
changeset
|
283 |
apply (cut_tac DERIV_power [OF DERIV_ident]) |
21164 | 284 |
apply (simp add: real_scaleR_def real_of_nat_def) |
285 |
done |
|
286 |
||
287 |
text{*Power of -1*} |
|
288 |
||
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
289 |
lemma DERIV_inverse: |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
290 |
fixes x :: "'a::{real_normed_field,recpower}" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
291 |
shows "x \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ Suc (Suc 0)))" |
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23044
diff
changeset
|
292 |
by (drule DERIV_inverse' [OF DERIV_ident]) (simp add: power_Suc) |
21164 | 293 |
|
294 |
text{*Derivative of inverse*} |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
295 |
lemma DERIV_inverse_fun: |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
296 |
fixes x :: "'a::{real_normed_field,recpower}" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
297 |
shows "[| DERIV f x :> d; f(x) \<noteq> 0 |] |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
298 |
==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
299 |
by (drule (1) DERIV_inverse') (simp add: mult_ac power_Suc nonzero_inverse_mult_distrib) |
21164 | 300 |
|
301 |
text{*Derivative of quotient*} |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
302 |
lemma DERIV_quotient: |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
303 |
fixes x :: "'a::{real_normed_field,recpower}" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
304 |
shows "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> 0 |] |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
305 |
==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ Suc (Suc 0))" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
306 |
by (drule (2) DERIV_divide) (simp add: mult_commute power_Suc) |
21164 | 307 |
|
29975 | 308 |
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" |
309 |
by auto |
|
310 |
||
22984 | 311 |
|
312 |
subsection {* Differentiability predicate *} |
|
21164 | 313 |
|
29169 | 314 |
definition |
315 |
differentiable :: "['a::real_normed_field \<Rightarrow> 'a, 'a] \<Rightarrow> bool" |
|
316 |
(infixl "differentiable" 60) where |
|
317 |
"f differentiable x = (\<exists>D. DERIV f x :> D)" |
|
318 |
||
319 |
lemma differentiableE [elim?]: |
|
320 |
assumes "f differentiable x" |
|
321 |
obtains df where "DERIV f x :> df" |
|
322 |
using prems unfolding differentiable_def .. |
|
323 |
||
21164 | 324 |
lemma differentiableD: "f differentiable x ==> \<exists>D. DERIV f x :> D" |
325 |
by (simp add: differentiable_def) |
|
326 |
||
327 |
lemma differentiableI: "DERIV f x :> D ==> f differentiable x" |
|
328 |
by (force simp add: differentiable_def) |
|
329 |
||
29169 | 330 |
lemma differentiable_ident [simp]: "(\<lambda>x. x) differentiable x" |
331 |
by (rule DERIV_ident [THEN differentiableI]) |
|
332 |
||
333 |
lemma differentiable_const [simp]: "(\<lambda>z. a) differentiable x" |
|
334 |
by (rule DERIV_const [THEN differentiableI]) |
|
21164 | 335 |
|
29169 | 336 |
lemma differentiable_compose: |
337 |
assumes f: "f differentiable (g x)" |
|
338 |
assumes g: "g differentiable x" |
|
339 |
shows "(\<lambda>x. f (g x)) differentiable x" |
|
340 |
proof - |
|
341 |
from `f differentiable (g x)` obtain df where "DERIV f (g x) :> df" .. |
|
342 |
moreover |
|
343 |
from `g differentiable x` obtain dg where "DERIV g x :> dg" .. |
|
344 |
ultimately |
|
345 |
have "DERIV (\<lambda>x. f (g x)) x :> df * dg" by (rule DERIV_chain2) |
|
346 |
thus ?thesis by (rule differentiableI) |
|
347 |
qed |
|
348 |
||
349 |
lemma differentiable_sum [simp]: |
|
21164 | 350 |
assumes "f differentiable x" |
351 |
and "g differentiable x" |
|
352 |
shows "(\<lambda>x. f x + g x) differentiable x" |
|
353 |
proof - |
|
29169 | 354 |
from `f differentiable x` obtain df where "DERIV f x :> df" .. |
355 |
moreover |
|
356 |
from `g differentiable x` obtain dg where "DERIV g x :> dg" .. |
|
357 |
ultimately |
|
358 |
have "DERIV (\<lambda>x. f x + g x) x :> df + dg" by (rule DERIV_add) |
|
359 |
thus ?thesis by (rule differentiableI) |
|
360 |
qed |
|
361 |
||
362 |
lemma differentiable_minus [simp]: |
|
363 |
assumes "f differentiable x" |
|
364 |
shows "(\<lambda>x. - f x) differentiable x" |
|
365 |
proof - |
|
366 |
from `f differentiable x` obtain df where "DERIV f x :> df" .. |
|
367 |
hence "DERIV (\<lambda>x. - f x) x :> - df" by (rule DERIV_minus) |
|
368 |
thus ?thesis by (rule differentiableI) |
|
21164 | 369 |
qed |
370 |
||
29169 | 371 |
lemma differentiable_diff [simp]: |
21164 | 372 |
assumes "f differentiable x" |
29169 | 373 |
assumes "g differentiable x" |
21164 | 374 |
shows "(\<lambda>x. f x - g x) differentiable x" |
29169 | 375 |
unfolding diff_minus using prems by simp |
376 |
||
377 |
lemma differentiable_mult [simp]: |
|
378 |
assumes "f differentiable x" |
|
379 |
assumes "g differentiable x" |
|
380 |
shows "(\<lambda>x. f x * g x) differentiable x" |
|
21164 | 381 |
proof - |
29169 | 382 |
from `f differentiable x` obtain df where "DERIV f x :> df" .. |
21164 | 383 |
moreover |
29169 | 384 |
from `g differentiable x` obtain dg where "DERIV g x :> dg" .. |
385 |
ultimately |
|
386 |
have "DERIV (\<lambda>x. f x * g x) x :> df * g x + dg * f x" by (rule DERIV_mult) |
|
387 |
thus ?thesis by (rule differentiableI) |
|
21164 | 388 |
qed |
389 |
||
29169 | 390 |
lemma differentiable_inverse [simp]: |
391 |
assumes "f differentiable x" and "f x \<noteq> 0" |
|
392 |
shows "(\<lambda>x. inverse (f x)) differentiable x" |
|
21164 | 393 |
proof - |
29169 | 394 |
from `f differentiable x` obtain df where "DERIV f x :> df" .. |
395 |
hence "DERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x) * df * inverse (f x))" |
|
396 |
using `f x \<noteq> 0` by (rule DERIV_inverse') |
|
397 |
thus ?thesis by (rule differentiableI) |
|
21164 | 398 |
qed |
399 |
||
29169 | 400 |
lemma differentiable_divide [simp]: |
401 |
assumes "f differentiable x" |
|
402 |
assumes "g differentiable x" and "g x \<noteq> 0" |
|
403 |
shows "(\<lambda>x. f x / g x) differentiable x" |
|
404 |
unfolding divide_inverse using prems by simp |
|
405 |
||
406 |
lemma differentiable_power [simp]: |
|
407 |
fixes f :: "'a::{recpower,real_normed_field} \<Rightarrow> 'a" |
|
408 |
assumes "f differentiable x" |
|
409 |
shows "(\<lambda>x. f x ^ n) differentiable x" |
|
410 |
by (induct n, simp, simp add: power_Suc prems) |
|
411 |
||
22984 | 412 |
|
21164 | 413 |
subsection {* Nested Intervals and Bisection *} |
414 |
||
415 |
text{*Lemmas about nested intervals and proof by bisection (cf.Harrison). |
|
416 |
All considerably tidied by lcp.*} |
|
417 |
||
418 |
lemma lemma_f_mono_add [rule_format (no_asm)]: "(\<forall>n. (f::nat=>real) n \<le> f (Suc n)) --> f m \<le> f(m + no)" |
|
419 |
apply (induct "no") |
|
420 |
apply (auto intro: order_trans) |
|
421 |
done |
|
422 |
||
423 |
lemma f_inc_g_dec_Beq_f: "[| \<forall>n. f(n) \<le> f(Suc n); |
|
424 |
\<forall>n. g(Suc n) \<le> g(n); |
|
425 |
\<forall>n. f(n) \<le> g(n) |] |
|
426 |
==> Bseq (f :: nat \<Rightarrow> real)" |
|
427 |
apply (rule_tac k = "f 0" and K = "g 0" in BseqI2, rule allI) |
|
428 |
apply (induct_tac "n") |
|
429 |
apply (auto intro: order_trans) |
|
430 |
apply (rule_tac y = "g (Suc na)" in order_trans) |
|
431 |
apply (induct_tac [2] "na") |
|
432 |
apply (auto intro: order_trans) |
|
433 |
done |
|
434 |
||
435 |
lemma f_inc_g_dec_Beq_g: "[| \<forall>n. f(n) \<le> f(Suc n); |
|
436 |
\<forall>n. g(Suc n) \<le> g(n); |
|
437 |
\<forall>n. f(n) \<le> g(n) |] |
|
438 |
==> Bseq (g :: nat \<Rightarrow> real)" |
|
439 |
apply (subst Bseq_minus_iff [symmetric]) |
|
440 |
apply (rule_tac g = "%x. - (f x)" in f_inc_g_dec_Beq_f) |
|
441 |
apply auto |
|
442 |
done |
|
443 |
||
444 |
lemma f_inc_imp_le_lim: |
|
445 |
fixes f :: "nat \<Rightarrow> real" |
|
446 |
shows "\<lbrakk>\<forall>n. f n \<le> f (Suc n); convergent f\<rbrakk> \<Longrightarrow> f n \<le> lim f" |
|
447 |
apply (rule linorder_not_less [THEN iffD1]) |
|
448 |
apply (auto simp add: convergent_LIMSEQ_iff LIMSEQ_iff monoseq_Suc) |
|
449 |
apply (drule real_less_sum_gt_zero) |
|
450 |
apply (drule_tac x = "f n + - lim f" in spec, safe) |
|
451 |
apply (drule_tac P = "%na. no\<le>na --> ?Q na" and x = "no + n" in spec, auto) |
|
452 |
apply (subgoal_tac "lim f \<le> f (no + n) ") |
|
453 |
apply (drule_tac no=no and m=n in lemma_f_mono_add) |
|
454 |
apply (auto simp add: add_commute) |
|
455 |
apply (induct_tac "no") |
|
456 |
apply simp |
|
457 |
apply (auto intro: order_trans simp add: diff_minus abs_if) |
|
458 |
done |
|
459 |
||
460 |
lemma lim_uminus: "convergent g ==> lim (%x. - g x) = - (lim g)" |
|
461 |
apply (rule LIMSEQ_minus [THEN limI]) |
|
462 |
apply (simp add: convergent_LIMSEQ_iff) |
|
463 |
done |
|
464 |
||
465 |
lemma g_dec_imp_lim_le: |
|
466 |
fixes g :: "nat \<Rightarrow> real" |
|
467 |
shows "\<lbrakk>\<forall>n. g (Suc n) \<le> g(n); convergent g\<rbrakk> \<Longrightarrow> lim g \<le> g n" |
|
468 |
apply (subgoal_tac "- (g n) \<le> - (lim g) ") |
|
469 |
apply (cut_tac [2] f = "%x. - (g x)" in f_inc_imp_le_lim) |
|
470 |
apply (auto simp add: lim_uminus convergent_minus_iff [symmetric]) |
|
471 |
done |
|
472 |
||
473 |
lemma lemma_nest: "[| \<forall>n. f(n) \<le> f(Suc n); |
|
474 |
\<forall>n. g(Suc n) \<le> g(n); |
|
475 |
\<forall>n. f(n) \<le> g(n) |] |
|
476 |
==> \<exists>l m :: real. l \<le> m & ((\<forall>n. f(n) \<le> l) & f ----> l) & |
|
477 |
((\<forall>n. m \<le> g(n)) & g ----> m)" |
|
478 |
apply (subgoal_tac "monoseq f & monoseq g") |
|
479 |
prefer 2 apply (force simp add: LIMSEQ_iff monoseq_Suc) |
|
480 |
apply (subgoal_tac "Bseq f & Bseq g") |
|
481 |
prefer 2 apply (blast intro: f_inc_g_dec_Beq_f f_inc_g_dec_Beq_g) |
|
482 |
apply (auto dest!: Bseq_monoseq_convergent simp add: convergent_LIMSEQ_iff) |
|
483 |
apply (rule_tac x = "lim f" in exI) |
|
484 |
apply (rule_tac x = "lim g" in exI) |
|
485 |
apply (auto intro: LIMSEQ_le) |
|
486 |
apply (auto simp add: f_inc_imp_le_lim g_dec_imp_lim_le convergent_LIMSEQ_iff) |
|
487 |
done |
|
488 |
||
489 |
lemma lemma_nest_unique: "[| \<forall>n. f(n) \<le> f(Suc n); |
|
490 |
\<forall>n. g(Suc n) \<le> g(n); |
|
491 |
\<forall>n. f(n) \<le> g(n); |
|
492 |
(%n. f(n) - g(n)) ----> 0 |] |
|
493 |
==> \<exists>l::real. ((\<forall>n. f(n) \<le> l) & f ----> l) & |
|
494 |
((\<forall>n. l \<le> g(n)) & g ----> l)" |
|
495 |
apply (drule lemma_nest, auto) |
|
496 |
apply (subgoal_tac "l = m") |
|
497 |
apply (drule_tac [2] X = f in LIMSEQ_diff) |
|
498 |
apply (auto intro: LIMSEQ_unique) |
|
499 |
done |
|
500 |
||
501 |
text{*The universal quantifiers below are required for the declaration |
|
502 |
of @{text Bolzano_nest_unique} below.*} |
|
503 |
||
504 |
lemma Bolzano_bisect_le: |
|
505 |
"a \<le> b ==> \<forall>n. fst (Bolzano_bisect P a b n) \<le> snd (Bolzano_bisect P a b n)" |
|
506 |
apply (rule allI) |
|
507 |
apply (induct_tac "n") |
|
508 |
apply (auto simp add: Let_def split_def) |
|
509 |
done |
|
510 |
||
511 |
lemma Bolzano_bisect_fst_le_Suc: "a \<le> b ==> |
|
512 |
\<forall>n. fst(Bolzano_bisect P a b n) \<le> fst (Bolzano_bisect P a b (Suc n))" |
|
513 |
apply (rule allI) |
|
514 |
apply (induct_tac "n") |
|
515 |
apply (auto simp add: Bolzano_bisect_le Let_def split_def) |
|
516 |
done |
|
517 |
||
518 |
lemma Bolzano_bisect_Suc_le_snd: "a \<le> b ==> |
|
519 |
\<forall>n. snd(Bolzano_bisect P a b (Suc n)) \<le> snd (Bolzano_bisect P a b n)" |
|
520 |
apply (rule allI) |
|
521 |
apply (induct_tac "n") |
|
522 |
apply (auto simp add: Bolzano_bisect_le Let_def split_def) |
|
523 |
done |
|
524 |
||
525 |
lemma eq_divide_2_times_iff: "((x::real) = y / (2 * z)) = (2 * x = y/z)" |
|
526 |
apply (auto) |
|
527 |
apply (drule_tac f = "%u. (1/2) *u" in arg_cong) |
|
528 |
apply (simp) |
|
529 |
done |
|
530 |
||
531 |
lemma Bolzano_bisect_diff: |
|
532 |
"a \<le> b ==> |
|
533 |
snd(Bolzano_bisect P a b n) - fst(Bolzano_bisect P a b n) = |
|
534 |
(b-a) / (2 ^ n)" |
|
535 |
apply (induct "n") |
|
536 |
apply (auto simp add: eq_divide_2_times_iff add_divide_distrib Let_def split_def) |
|
537 |
done |
|
538 |
||
539 |
lemmas Bolzano_nest_unique = |
|
540 |
lemma_nest_unique |
|
541 |
[OF Bolzano_bisect_fst_le_Suc Bolzano_bisect_Suc_le_snd Bolzano_bisect_le] |
|
542 |
||
543 |
||
544 |
lemma not_P_Bolzano_bisect: |
|
545 |
assumes P: "!!a b c. [| P(a,b); P(b,c); a \<le> b; b \<le> c|] ==> P(a,c)" |
|
546 |
and notP: "~ P(a,b)" |
|
547 |
and le: "a \<le> b" |
|
548 |
shows "~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))" |
|
549 |
proof (induct n) |
|
23441 | 550 |
case 0 show ?case using notP by simp |
21164 | 551 |
next |
552 |
case (Suc n) |
|
553 |
thus ?case |
|
554 |
by (auto simp del: surjective_pairing [symmetric] |
|
555 |
simp add: Let_def split_def Bolzano_bisect_le [OF le] |
|
556 |
P [of "fst (Bolzano_bisect P a b n)" _ "snd (Bolzano_bisect P a b n)"]) |
|
557 |
qed |
|
558 |
||
559 |
(*Now we re-package P_prem as a formula*) |
|
560 |
lemma not_P_Bolzano_bisect': |
|
561 |
"[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c); |
|
562 |
~ P(a,b); a \<le> b |] ==> |
|
563 |
\<forall>n. ~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))" |
|
564 |
by (blast elim!: not_P_Bolzano_bisect [THEN [2] rev_notE]) |
|
565 |
||
566 |
||
567 |
||
568 |
lemma lemma_BOLZANO: |
|
569 |
"[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c); |
|
570 |
\<forall>x. \<exists>d::real. 0 < d & |
|
571 |
(\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b)); |
|
572 |
a \<le> b |] |
|
573 |
==> P(a,b)" |
|
574 |
apply (rule Bolzano_nest_unique [where P1=P, THEN exE], assumption+) |
|
575 |
apply (rule LIMSEQ_minus_cancel) |
|
576 |
apply (simp (no_asm_simp) add: Bolzano_bisect_diff LIMSEQ_divide_realpow_zero) |
|
577 |
apply (rule ccontr) |
|
578 |
apply (drule not_P_Bolzano_bisect', assumption+) |
|
579 |
apply (rename_tac "l") |
|
580 |
apply (drule_tac x = l in spec, clarify) |
|
581 |
apply (simp add: LIMSEQ_def) |
|
582 |
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec) |
|
583 |
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec) |
|
584 |
apply (drule real_less_half_sum, auto) |
|
585 |
apply (drule_tac x = "fst (Bolzano_bisect P a b (no + noa))" in spec) |
|
586 |
apply (drule_tac x = "snd (Bolzano_bisect P a b (no + noa))" in spec) |
|
587 |
apply safe |
|
588 |
apply (simp_all (no_asm_simp)) |
|
589 |
apply (rule_tac y = "abs (fst (Bolzano_bisect P a b (no + noa)) - l) + abs (snd (Bolzano_bisect P a b (no + noa)) - l)" in order_le_less_trans) |
|
590 |
apply (simp (no_asm_simp) add: abs_if) |
|
591 |
apply (rule real_sum_of_halves [THEN subst]) |
|
592 |
apply (rule add_strict_mono) |
|
593 |
apply (simp_all add: diff_minus [symmetric]) |
|
594 |
done |
|
595 |
||
596 |
||
597 |
lemma lemma_BOLZANO2: "((\<forall>a b c. (a \<le> b & b \<le> c & P(a,b) & P(b,c)) --> P(a,c)) & |
|
598 |
(\<forall>x. \<exists>d::real. 0 < d & |
|
599 |
(\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b)))) |
|
600 |
--> (\<forall>a b. a \<le> b --> P(a,b))" |
|
601 |
apply clarify |
|
602 |
apply (blast intro: lemma_BOLZANO) |
|
603 |
done |
|
604 |
||
605 |
||
606 |
subsection {* Intermediate Value Theorem *} |
|
607 |
||
608 |
text {*Prove Contrapositive by Bisection*} |
|
609 |
||
610 |
lemma IVT: "[| f(a::real) \<le> (y::real); y \<le> f(b); |
|
611 |
a \<le> b; |
|
612 |
(\<forall>x. a \<le> x & x \<le> b --> isCont f x) |] |
|
613 |
==> \<exists>x. a \<le> x & x \<le> b & f(x) = y" |
|
614 |
apply (rule contrapos_pp, assumption) |
|
615 |
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> ~ (f (u) \<le> y & y \<le> f (v))" in lemma_BOLZANO2) |
|
616 |
apply safe |
|
617 |
apply simp_all |
|
618 |
apply (simp add: isCont_iff LIM_def) |
|
619 |
apply (rule ccontr) |
|
620 |
apply (subgoal_tac "a \<le> x & x \<le> b") |
|
621 |
prefer 2 |
|
622 |
apply simp |
|
623 |
apply (drule_tac P = "%d. 0<d --> ?P d" and x = 1 in spec, arith) |
|
624 |
apply (drule_tac x = x in spec)+ |
|
625 |
apply simp |
|
626 |
apply (drule_tac P = "%r. ?P r --> (\<exists>s>0. ?Q r s) " and x = "\<bar>y - f x\<bar>" in spec) |
|
627 |
apply safe |
|
628 |
apply simp |
|
629 |
apply (drule_tac x = s in spec, clarify) |
|
630 |
apply (cut_tac x = "f x" and y = y in linorder_less_linear, safe) |
|
631 |
apply (drule_tac x = "ba-x" in spec) |
|
632 |
apply (simp_all add: abs_if) |
|
633 |
apply (drule_tac x = "aa-x" in spec) |
|
634 |
apply (case_tac "x \<le> aa", simp_all) |
|
635 |
done |
|
636 |
||
637 |
lemma IVT2: "[| f(b::real) \<le> (y::real); y \<le> f(a); |
|
638 |
a \<le> b; |
|
639 |
(\<forall>x. a \<le> x & x \<le> b --> isCont f x) |
|
640 |
|] ==> \<exists>x. a \<le> x & x \<le> b & f(x) = y" |
|
641 |
apply (subgoal_tac "- f a \<le> -y & -y \<le> - f b", clarify) |
|
642 |
apply (drule IVT [where f = "%x. - f x"], assumption) |
|
643 |
apply (auto intro: isCont_minus) |
|
644 |
done |
|
645 |
||
646 |
(*HOL style here: object-level formulations*) |
|
647 |
lemma IVT_objl: "(f(a::real) \<le> (y::real) & y \<le> f(b) & a \<le> b & |
|
648 |
(\<forall>x. a \<le> x & x \<le> b --> isCont f x)) |
|
649 |
--> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)" |
|
650 |
apply (blast intro: IVT) |
|
651 |
done |
|
652 |
||
653 |
lemma IVT2_objl: "(f(b::real) \<le> (y::real) & y \<le> f(a) & a \<le> b & |
|
654 |
(\<forall>x. a \<le> x & x \<le> b --> isCont f x)) |
|
655 |
--> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)" |
|
656 |
apply (blast intro: IVT2) |
|
657 |
done |
|
658 |
||
29975 | 659 |
|
660 |
subsection {* Boundedness of continuous functions *} |
|
661 |
||
21164 | 662 |
text{*By bisection, function continuous on closed interval is bounded above*} |
663 |
||
664 |
lemma isCont_bounded: |
|
665 |
"[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |] |
|
666 |
==> \<exists>M::real. \<forall>x::real. a \<le> x & x \<le> b --> f(x) \<le> M" |
|
667 |
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> (\<exists>M. \<forall>x. u \<le> x & x \<le> v --> f x \<le> M)" in lemma_BOLZANO2) |
|
668 |
apply safe |
|
669 |
apply simp_all |
|
670 |
apply (rename_tac x xa ya M Ma) |
|
671 |
apply (cut_tac x = M and y = Ma in linorder_linear, safe) |
|
672 |
apply (rule_tac x = Ma in exI, clarify) |
|
673 |
apply (cut_tac x = xb and y = xa in linorder_linear, force) |
|
674 |
apply (rule_tac x = M in exI, clarify) |
|
675 |
apply (cut_tac x = xb and y = xa in linorder_linear, force) |
|
676 |
apply (case_tac "a \<le> x & x \<le> b") |
|
677 |
apply (rule_tac [2] x = 1 in exI) |
|
678 |
prefer 2 apply force |
|
679 |
apply (simp add: LIM_def isCont_iff) |
|
680 |
apply (drule_tac x = x in spec, auto) |
|
681 |
apply (erule_tac V = "\<forall>M. \<exists>x. a \<le> x & x \<le> b & ~ f x \<le> M" in thin_rl) |
|
682 |
apply (drule_tac x = 1 in spec, auto) |
|
683 |
apply (rule_tac x = s in exI, clarify) |
|
684 |
apply (rule_tac x = "\<bar>f x\<bar> + 1" in exI, clarify) |
|
685 |
apply (drule_tac x = "xa-x" in spec) |
|
686 |
apply (auto simp add: abs_ge_self) |
|
687 |
done |
|
688 |
||
689 |
text{*Refine the above to existence of least upper bound*} |
|
690 |
||
691 |
lemma lemma_reals_complete: "((\<exists>x. x \<in> S) & (\<exists>y. isUb UNIV S (y::real))) --> |
|
692 |
(\<exists>t. isLub UNIV S t)" |
|
693 |
by (blast intro: reals_complete) |
|
694 |
||
695 |
lemma isCont_has_Ub: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |] |
|
696 |
==> \<exists>M::real. (\<forall>x::real. a \<le> x & x \<le> b --> f(x) \<le> M) & |
|
697 |
(\<forall>N. N < M --> (\<exists>x. a \<le> x & x \<le> b & N < f(x)))" |
|
698 |
apply (cut_tac S = "Collect (%y. \<exists>x. a \<le> x & x \<le> b & y = f x)" |
|
699 |
in lemma_reals_complete) |
|
700 |
apply auto |
|
701 |
apply (drule isCont_bounded, assumption) |
|
702 |
apply (auto simp add: isUb_def leastP_def isLub_def setge_def setle_def) |
|
703 |
apply (rule exI, auto) |
|
704 |
apply (auto dest!: spec simp add: linorder_not_less) |
|
705 |
done |
|
706 |
||
707 |
text{*Now show that it attains its upper bound*} |
|
708 |
||
709 |
lemma isCont_eq_Ub: |
|
710 |
assumes le: "a \<le> b" |
|
711 |
and con: "\<forall>x::real. a \<le> x & x \<le> b --> isCont f x" |
|
712 |
shows "\<exists>M::real. (\<forall>x. a \<le> x & x \<le> b --> f(x) \<le> M) & |
|
713 |
(\<exists>x. a \<le> x & x \<le> b & f(x) = M)" |
|
714 |
proof - |
|
715 |
from isCont_has_Ub [OF le con] |
|
716 |
obtain M where M1: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M" |
|
717 |
and M2: "!!N. N<M ==> \<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x" by blast |
|
718 |
show ?thesis |
|
719 |
proof (intro exI, intro conjI) |
|
720 |
show " \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M" by (rule M1) |
|
721 |
show "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M" |
|
722 |
proof (rule ccontr) |
|
723 |
assume "\<not> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)" |
|
724 |
with M1 have M3: "\<forall>x. a \<le> x & x \<le> b --> f x < M" |
|
725 |
by (fastsimp simp add: linorder_not_le [symmetric]) |
|
726 |
hence "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. inverse (M - f x)) x" |
|
727 |
by (auto simp add: isCont_inverse isCont_diff con) |
|
728 |
from isCont_bounded [OF le this] |
|
729 |
obtain k where k: "!!x. a \<le> x & x \<le> b --> inverse (M - f x) \<le> k" by auto |
|
730 |
have Minv: "!!x. a \<le> x & x \<le> b --> 0 < inverse (M - f (x))" |
|
29667 | 731 |
by (simp add: M3 algebra_simps) |
21164 | 732 |
have "!!x. a \<le> x & x \<le> b --> inverse (M - f x) < k+1" using k |
733 |
by (auto intro: order_le_less_trans [of _ k]) |
|
734 |
with Minv |
|
735 |
have "!!x. a \<le> x & x \<le> b --> inverse(k+1) < inverse(inverse(M - f x))" |
|
736 |
by (intro strip less_imp_inverse_less, simp_all) |
|
737 |
hence invlt: "!!x. a \<le> x & x \<le> b --> inverse(k+1) < M - f x" |
|
738 |
by simp |
|
739 |
have "M - inverse (k+1) < M" using k [of a] Minv [of a] le |
|
740 |
by (simp, arith) |
|
741 |
from M2 [OF this] |
|
742 |
obtain x where ax: "a \<le> x & x \<le> b & M - inverse(k+1) < f x" .. |
|
743 |
thus False using invlt [of x] by force |
|
744 |
qed |
|
745 |
qed |
|
746 |
qed |
|
747 |
||
748 |
||
749 |
text{*Same theorem for lower bound*} |
|
750 |
||
751 |
lemma isCont_eq_Lb: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |] |
|
752 |
==> \<exists>M::real. (\<forall>x::real. a \<le> x & x \<le> b --> M \<le> f(x)) & |
|
753 |
(\<exists>x. a \<le> x & x \<le> b & f(x) = M)" |
|
754 |
apply (subgoal_tac "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. - (f x)) x") |
|
755 |
prefer 2 apply (blast intro: isCont_minus) |
|
756 |
apply (drule_tac f = "(%x. - (f x))" in isCont_eq_Ub) |
|
757 |
apply safe |
|
758 |
apply auto |
|
759 |
done |
|
760 |
||
761 |
||
762 |
text{*Another version.*} |
|
763 |
||
764 |
lemma isCont_Lb_Ub: "[|a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |] |
|
765 |
==> \<exists>L M::real. (\<forall>x::real. a \<le> x & x \<le> b --> L \<le> f(x) & f(x) \<le> M) & |
|
766 |
(\<forall>y. L \<le> y & y \<le> M --> (\<exists>x. a \<le> x & x \<le> b & (f(x) = y)))" |
|
767 |
apply (frule isCont_eq_Lb) |
|
768 |
apply (frule_tac [2] isCont_eq_Ub) |
|
769 |
apply (assumption+, safe) |
|
770 |
apply (rule_tac x = "f x" in exI) |
|
771 |
apply (rule_tac x = "f xa" in exI, simp, safe) |
|
772 |
apply (cut_tac x = x and y = xa in linorder_linear, safe) |
|
773 |
apply (cut_tac f = f and a = x and b = xa and y = y in IVT_objl) |
|
774 |
apply (cut_tac [2] f = f and a = xa and b = x and y = y in IVT2_objl, safe) |
|
775 |
apply (rule_tac [2] x = xb in exI) |
|
776 |
apply (rule_tac [4] x = xb in exI, simp_all) |
|
777 |
done |
|
778 |
||
779 |
||
29975 | 780 |
subsection {* Local extrema *} |
781 |
||
21164 | 782 |
text{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*} |
783 |
||
784 |
lemma DERIV_left_inc: |
|
785 |
fixes f :: "real => real" |
|
786 |
assumes der: "DERIV f x :> l" |
|
787 |
and l: "0 < l" |
|
788 |
shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x + h)" |
|
789 |
proof - |
|
790 |
from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]] |
|
791 |
have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)" |
|
792 |
by (simp add: diff_minus) |
|
793 |
then obtain s |
|
794 |
where s: "0 < s" |
|
795 |
and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l" |
|
796 |
by auto |
|
797 |
thus ?thesis |
|
798 |
proof (intro exI conjI strip) |
|
23441 | 799 |
show "0<s" using s . |
21164 | 800 |
fix h::real |
801 |
assume "0 < h" "h < s" |
|
802 |
with all [of h] show "f x < f (x+h)" |
|
803 |
proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric] |
|
804 |
split add: split_if_asm) |
|
805 |
assume "~ (f (x+h) - f x) / h < l" and h: "0 < h" |
|
806 |
with l |
|
807 |
have "0 < (f (x+h) - f x) / h" by arith |
|
808 |
thus "f x < f (x+h)" |
|
809 |
by (simp add: pos_less_divide_eq h) |
|
810 |
qed |
|
811 |
qed |
|
812 |
qed |
|
813 |
||
814 |
lemma DERIV_left_dec: |
|
815 |
fixes f :: "real => real" |
|
816 |
assumes der: "DERIV f x :> l" |
|
817 |
and l: "l < 0" |
|
818 |
shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x-h)" |
|
819 |
proof - |
|
820 |
from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]] |
|
821 |
have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)" |
|
822 |
by (simp add: diff_minus) |
|
823 |
then obtain s |
|
824 |
where s: "0 < s" |
|
825 |
and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l" |
|
826 |
by auto |
|
827 |
thus ?thesis |
|
828 |
proof (intro exI conjI strip) |
|
23441 | 829 |
show "0<s" using s . |
21164 | 830 |
fix h::real |
831 |
assume "0 < h" "h < s" |
|
832 |
with all [of "-h"] show "f x < f (x-h)" |
|
833 |
proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric] |
|
834 |
split add: split_if_asm) |
|
835 |
assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h" |
|
836 |
with l |
|
837 |
have "0 < (f (x-h) - f x) / h" by arith |
|
838 |
thus "f x < f (x-h)" |
|
839 |
by (simp add: pos_less_divide_eq h) |
|
840 |
qed |
|
841 |
qed |
|
842 |
qed |
|
843 |
||
844 |
lemma DERIV_local_max: |
|
845 |
fixes f :: "real => real" |
|
846 |
assumes der: "DERIV f x :> l" |
|
847 |
and d: "0 < d" |
|
848 |
and le: "\<forall>y. \<bar>x-y\<bar> < d --> f(y) \<le> f(x)" |
|
849 |
shows "l = 0" |
|
850 |
proof (cases rule: linorder_cases [of l 0]) |
|
23441 | 851 |
case equal thus ?thesis . |
21164 | 852 |
next |
853 |
case less |
|
854 |
from DERIV_left_dec [OF der less] |
|
855 |
obtain d' where d': "0 < d'" |
|
856 |
and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x-h)" by blast |
|
857 |
from real_lbound_gt_zero [OF d d'] |
|
858 |
obtain e where "0 < e \<and> e < d \<and> e < d'" .. |
|
859 |
with lt le [THEN spec [where x="x-e"]] |
|
860 |
show ?thesis by (auto simp add: abs_if) |
|
861 |
next |
|
862 |
case greater |
|
863 |
from DERIV_left_inc [OF der greater] |
|
864 |
obtain d' where d': "0 < d'" |
|
865 |
and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" by blast |
|
866 |
from real_lbound_gt_zero [OF d d'] |
|
867 |
obtain e where "0 < e \<and> e < d \<and> e < d'" .. |
|
868 |
with lt le [THEN spec [where x="x+e"]] |
|
869 |
show ?thesis by (auto simp add: abs_if) |
|
870 |
qed |
|
871 |
||
872 |
||
873 |
text{*Similar theorem for a local minimum*} |
|
874 |
lemma DERIV_local_min: |
|
875 |
fixes f :: "real => real" |
|
876 |
shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) \<le> f(y) |] ==> l = 0" |
|
877 |
by (drule DERIV_minus [THEN DERIV_local_max], auto) |
|
878 |
||
879 |
||
880 |
text{*In particular, if a function is locally flat*} |
|
881 |
lemma DERIV_local_const: |
|
882 |
fixes f :: "real => real" |
|
883 |
shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) = f(y) |] ==> l = 0" |
|
884 |
by (auto dest!: DERIV_local_max) |
|
885 |
||
29975 | 886 |
|
887 |
subsection {* Rolle's Theorem *} |
|
888 |
||
21164 | 889 |
text{*Lemma about introducing open ball in open interval*} |
890 |
lemma lemma_interval_lt: |
|
891 |
"[| a < x; x < b |] |
|
892 |
==> \<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a < y & y < b)" |
|
27668 | 893 |
|
22998 | 894 |
apply (simp add: abs_less_iff) |
21164 | 895 |
apply (insert linorder_linear [of "x-a" "b-x"], safe) |
896 |
apply (rule_tac x = "x-a" in exI) |
|
897 |
apply (rule_tac [2] x = "b-x" in exI, auto) |
|
898 |
done |
|
899 |
||
900 |
lemma lemma_interval: "[| a < x; x < b |] ==> |
|
901 |
\<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a \<le> y & y \<le> b)" |
|
902 |
apply (drule lemma_interval_lt, auto) |
|
903 |
apply (auto intro!: exI) |
|
904 |
done |
|
905 |
||
906 |
text{*Rolle's Theorem. |
|
907 |
If @{term f} is defined and continuous on the closed interval |
|
908 |
@{text "[a,b]"} and differentiable on the open interval @{text "(a,b)"}, |
|
909 |
and @{term "f(a) = f(b)"}, |
|
910 |
then there exists @{text "x0 \<in> (a,b)"} such that @{term "f'(x0) = 0"}*} |
|
911 |
theorem Rolle: |
|
912 |
assumes lt: "a < b" |
|
913 |
and eq: "f(a) = f(b)" |
|
914 |
and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x" |
|
915 |
and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
916 |
shows "\<exists>z::real. a < z & z < b & DERIV f z :> 0" |
21164 | 917 |
proof - |
918 |
have le: "a \<le> b" using lt by simp |
|
919 |
from isCont_eq_Ub [OF le con] |
|
920 |
obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" |
|
921 |
and alex: "a \<le> x" and xleb: "x \<le> b" |
|
922 |
by blast |
|
923 |
from isCont_eq_Lb [OF le con] |
|
924 |
obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" |
|
925 |
and alex': "a \<le> x'" and x'leb: "x' \<le> b" |
|
926 |
by blast |
|
927 |
show ?thesis |
|
928 |
proof cases |
|
929 |
assume axb: "a < x & x < b" |
|
930 |
--{*@{term f} attains its maximum within the interval*} |
|
27668 | 931 |
hence ax: "a<x" and xb: "x<b" by arith + |
21164 | 932 |
from lemma_interval [OF ax xb] |
933 |
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b" |
|
934 |
by blast |
|
935 |
hence bound': "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> f y \<le> f x" using x_max |
|
936 |
by blast |
|
937 |
from differentiableD [OF dif [OF axb]] |
|
938 |
obtain l where der: "DERIV f x :> l" .. |
|
939 |
have "l=0" by (rule DERIV_local_max [OF der d bound']) |
|
940 |
--{*the derivative at a local maximum is zero*} |
|
941 |
thus ?thesis using ax xb der by auto |
|
942 |
next |
|
943 |
assume notaxb: "~ (a < x & x < b)" |
|
944 |
hence xeqab: "x=a | x=b" using alex xleb by arith |
|
945 |
hence fb_eq_fx: "f b = f x" by (auto simp add: eq) |
|
946 |
show ?thesis |
|
947 |
proof cases |
|
948 |
assume ax'b: "a < x' & x' < b" |
|
949 |
--{*@{term f} attains its minimum within the interval*} |
|
27668 | 950 |
hence ax': "a<x'" and x'b: "x'<b" by arith+ |
21164 | 951 |
from lemma_interval [OF ax' x'b] |
952 |
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b" |
|
953 |
by blast |
|
954 |
hence bound': "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> f x' \<le> f y" using x'_min |
|
955 |
by blast |
|
956 |
from differentiableD [OF dif [OF ax'b]] |
|
957 |
obtain l where der: "DERIV f x' :> l" .. |
|
958 |
have "l=0" by (rule DERIV_local_min [OF der d bound']) |
|
959 |
--{*the derivative at a local minimum is zero*} |
|
960 |
thus ?thesis using ax' x'b der by auto |
|
961 |
next |
|
962 |
assume notax'b: "~ (a < x' & x' < b)" |
|
963 |
--{*@{term f} is constant througout the interval*} |
|
964 |
hence x'eqab: "x'=a | x'=b" using alex' x'leb by arith |
|
965 |
hence fb_eq_fx': "f b = f x'" by (auto simp add: eq) |
|
966 |
from dense [OF lt] |
|
967 |
obtain r where ar: "a < r" and rb: "r < b" by blast |
|
968 |
from lemma_interval [OF ar rb] |
|
969 |
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b" |
|
970 |
by blast |
|
971 |
have eq_fb: "\<forall>z. a \<le> z --> z \<le> b --> f z = f b" |
|
972 |
proof (clarify) |
|
973 |
fix z::real |
|
974 |
assume az: "a \<le> z" and zb: "z \<le> b" |
|
975 |
show "f z = f b" |
|
976 |
proof (rule order_antisym) |
|
977 |
show "f z \<le> f b" by (simp add: fb_eq_fx x_max az zb) |
|
978 |
show "f b \<le> f z" by (simp add: fb_eq_fx' x'_min az zb) |
|
979 |
qed |
|
980 |
qed |
|
981 |
have bound': "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> f r = f y" |
|
982 |
proof (intro strip) |
|
983 |
fix y::real |
|
984 |
assume lt: "\<bar>r-y\<bar> < d" |
|
985 |
hence "f y = f b" by (simp add: eq_fb bound) |
|
986 |
thus "f r = f y" by (simp add: eq_fb ar rb order_less_imp_le) |
|
987 |
qed |
|
988 |
from differentiableD [OF dif [OF conjI [OF ar rb]]] |
|
989 |
obtain l where der: "DERIV f r :> l" .. |
|
990 |
have "l=0" by (rule DERIV_local_const [OF der d bound']) |
|
991 |
--{*the derivative of a constant function is zero*} |
|
992 |
thus ?thesis using ar rb der by auto |
|
993 |
qed |
|
994 |
qed |
|
995 |
qed |
|
996 |
||
997 |
||
998 |
subsection{*Mean Value Theorem*} |
|
999 |
||
1000 |
lemma lemma_MVT: |
|
1001 |
"f a - (f b - f a)/(b-a) * a = f b - (f b - f a)/(b-a) * (b::real)" |
|
1002 |
proof cases |
|
1003 |
assume "a=b" thus ?thesis by simp |
|
1004 |
next |
|
1005 |
assume "a\<noteq>b" |
|
1006 |
hence ba: "b-a \<noteq> 0" by arith |
|
1007 |
show ?thesis |
|
1008 |
by (rule real_mult_left_cancel [OF ba, THEN iffD1], |
|
1009 |
simp add: right_diff_distrib, |
|
1010 |
simp add: left_diff_distrib) |
|
1011 |
qed |
|
1012 |
||
1013 |
theorem MVT: |
|
1014 |
assumes lt: "a < b" |
|
1015 |
and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x" |
|
1016 |
and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x" |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
1017 |
shows "\<exists>l z::real. a < z & z < b & DERIV f z :> l & |
21164 | 1018 |
(f(b) - f(a) = (b-a) * l)" |
1019 |
proof - |
|
1020 |
let ?F = "%x. f x - ((f b - f a) / (b-a)) * x" |
|
1021 |
have contF: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x" using con |
|
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23044
diff
changeset
|
1022 |
by (fast intro: isCont_diff isCont_const isCont_mult isCont_ident) |
21164 | 1023 |
have difF: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable x" |
1024 |
proof (clarify) |
|
1025 |
fix x::real |
|
1026 |
assume ax: "a < x" and xb: "x < b" |
|
1027 |
from differentiableD [OF dif [OF conjI [OF ax xb]]] |
|
1028 |
obtain l where der: "DERIV f x :> l" .. |
|
1029 |
show "?F differentiable x" |
|
1030 |
by (rule differentiableI [where D = "l - (f b - f a)/(b-a)"], |
|
1031 |
blast intro: DERIV_diff DERIV_cmult_Id der) |
|
1032 |
qed |
|
1033 |
from Rolle [where f = ?F, OF lt lemma_MVT contF difF] |
|
1034 |
obtain z where az: "a < z" and zb: "z < b" and der: "DERIV ?F z :> 0" |
|
1035 |
by blast |
|
1036 |
have "DERIV (%x. ((f b - f a)/(b-a)) * x) z :> (f b - f a)/(b-a)" |
|
1037 |
by (rule DERIV_cmult_Id) |
|
1038 |
hence derF: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z |
|
1039 |
:> 0 + (f b - f a) / (b - a)" |
|
1040 |
by (rule DERIV_add [OF der]) |
|
1041 |
show ?thesis |
|
1042 |
proof (intro exI conjI) |
|
23441 | 1043 |
show "a < z" using az . |
1044 |
show "z < b" using zb . |
|
21164 | 1045 |
show "f b - f a = (b - a) * ((f b - f a)/(b-a))" by (simp) |
1046 |
show "DERIV f z :> ((f b - f a)/(b-a))" using derF by simp |
|
1047 |
qed |
|
1048 |
qed |
|
1049 |
||
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1050 |
lemma MVT2: |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1051 |
"[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |] |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1052 |
==> \<exists>z::real. a < z & z < b & (f b - f a = (b - a) * f'(z))" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1053 |
apply (drule MVT) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1054 |
apply (blast intro: DERIV_isCont) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1055 |
apply (force dest: order_less_imp_le simp add: differentiable_def) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1056 |
apply (blast dest: DERIV_unique order_less_imp_le) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1057 |
done |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1058 |
|
21164 | 1059 |
|
1060 |
text{*A function is constant if its derivative is 0 over an interval.*} |
|
1061 |
||
1062 |
lemma DERIV_isconst_end: |
|
1063 |
fixes f :: "real => real" |
|
1064 |
shows "[| a < b; |
|
1065 |
\<forall>x. a \<le> x & x \<le> b --> isCont f x; |
|
1066 |
\<forall>x. a < x & x < b --> DERIV f x :> 0 |] |
|
1067 |
==> f b = f a" |
|
1068 |
apply (drule MVT, assumption) |
|
1069 |
apply (blast intro: differentiableI) |
|
1070 |
apply (auto dest!: DERIV_unique simp add: diff_eq_eq) |
|
1071 |
done |
|
1072 |
||
1073 |
lemma DERIV_isconst1: |
|
1074 |
fixes f :: "real => real" |
|
1075 |
shows "[| a < b; |
|
1076 |
\<forall>x. a \<le> x & x \<le> b --> isCont f x; |
|
1077 |
\<forall>x. a < x & x < b --> DERIV f x :> 0 |] |
|
1078 |
==> \<forall>x. a \<le> x & x \<le> b --> f x = f a" |
|
1079 |
apply safe |
|
1080 |
apply (drule_tac x = a in order_le_imp_less_or_eq, safe) |
|
1081 |
apply (drule_tac b = x in DERIV_isconst_end, auto) |
|
1082 |
done |
|
1083 |
||
1084 |
lemma DERIV_isconst2: |
|
1085 |
fixes f :: "real => real" |
|
1086 |
shows "[| a < b; |
|
1087 |
\<forall>x. a \<le> x & x \<le> b --> isCont f x; |
|
1088 |
\<forall>x. a < x & x < b --> DERIV f x :> 0; |
|
1089 |
a \<le> x; x \<le> b |] |
|
1090 |
==> f x = f a" |
|
1091 |
apply (blast dest: DERIV_isconst1) |
|
1092 |
done |
|
1093 |
||
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1094 |
lemma DERIV_isconst3: fixes a b x y :: real |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1095 |
assumes "a < b" and "x \<in> {a <..< b}" and "y \<in> {a <..< b}" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1096 |
assumes derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1097 |
shows "f x = f y" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1098 |
proof (cases "x = y") |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1099 |
case False |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1100 |
let ?a = "min x y" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1101 |
let ?b = "max x y" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1102 |
|
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1103 |
have "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> DERIV f z :> 0" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1104 |
proof (rule allI, rule impI) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1105 |
fix z :: real assume "?a \<le> z \<and> z \<le> ?b" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1106 |
hence "a < z" and "z < b" using `x \<in> {a <..< b}` and `y \<in> {a <..< b}` by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1107 |
hence "z \<in> {a<..<b}" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1108 |
thus "DERIV f z :> 0" by (rule derivable) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1109 |
qed |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1110 |
hence isCont: "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> isCont f z" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1111 |
and DERIV: "\<forall>z. ?a < z \<and> z < ?b \<longrightarrow> DERIV f z :> 0" using DERIV_isCont by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1112 |
|
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1113 |
have "?a < ?b" using `x \<noteq> y` by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1114 |
from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y] |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1115 |
show ?thesis by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1116 |
qed auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29667
diff
changeset
|
1117 |
|
21164 | 1118 |
lemma DERIV_isconst_all: |
1119 |
fixes f :: "real => real" |
|
1120 |
shows "\<forall>x. DERIV f x :> 0 ==> f(x) = f(y)" |
|
1121 |
apply (rule linorder_cases [of x y]) |
|
1122 |
apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+ |
|
1123 |
done |
|
1124 |
||
1125 |
lemma DERIV_const_ratio_const: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
1126 |
fixes f :: "real => real" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
1127 |
shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a)) = (b-a) * k" |
21164 | 1128 |
apply (rule linorder_cases [of a b], auto) |
1129 |
apply (drule_tac [!] f = f in MVT) |
|
1130 |
apply (auto dest: DERIV_isCont DERIV_unique simp add: differentiable_def) |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23441
diff
changeset
|
1131 |
apply (auto dest: DERIV_unique simp add: ring_distribs diff_minus) |
21164 | 1132 |
done |
1133 |
||
1134 |
lemma DERIV_const_ratio_const2: |
|
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
1135 |
fixes f :: "real => real" |
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
1136 |
shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b-a) = k" |
21164 | 1137 |
apply (rule_tac c1 = "b-a" in real_mult_right_cancel [THEN iffD1]) |
1138 |
apply (auto dest!: DERIV_const_ratio_const simp add: mult_assoc) |
|
1139 |
done |
|
1140 |
||
1141 |
lemma real_average_minus_first [simp]: "((a + b) /2 - a) = (b-a)/(2::real)" |
|
1142 |
by (simp) |
|
1143 |
||
1144 |
lemma real_average_minus_second [simp]: "((b + a)/2 - a) = (b-a)/(2::real)" |
|
1145 |
by (simp) |
|
1146 |
||
1147 |
text{*Gallileo's "trick": average velocity = av. of end velocities*} |
|
1148 |
||
1149 |
lemma DERIV_const_average: |
|
1150 |
fixes v :: "real => real" |
|
1151 |
assumes neq: "a \<noteq> (b::real)" |
|
1152 |
and der: "\<forall>x. DERIV v x :> k" |
|
1153 |
shows "v ((a + b)/2) = (v a + v b)/2" |
|
1154 |
proof (cases rule: linorder_cases [of a b]) |
|
1155 |
case equal with neq show ?thesis by simp |
|
1156 |
next |
|
1157 |
case less |
|
1158 |
have "(v b - v a) / (b - a) = k" |
|
1159 |
by (rule DERIV_const_ratio_const2 [OF neq der]) |
|
1160 |
hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp |
|
1161 |
moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k" |
|
1162 |
by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq) |
|
1163 |
ultimately show ?thesis using neq by force |
|
1164 |
next |
|
1165 |
case greater |
|
1166 |
have "(v b - v a) / (b - a) = k" |
|
1167 |
by (rule DERIV_const_ratio_const2 [OF neq der]) |
|
1168 |
hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp |
|
1169 |
moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k" |
|
1170 |
by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq) |
|
1171 |
ultimately show ?thesis using neq by (force simp add: add_commute) |
|
1172 |
qed |
|
1173 |
||
1174 |
||
29975 | 1175 |
subsection {* Continuous injective functions *} |
1176 |
||
21164 | 1177 |
text{*Dull lemma: an continuous injection on an interval must have a |
1178 |
strict maximum at an end point, not in the middle.*} |
|
1179 |
||
1180 |
lemma lemma_isCont_inj: |
|
1181 |
fixes f :: "real \<Rightarrow> real" |
|
1182 |
assumes d: "0 < d" |
|
1183 |
and inj [rule_format]: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z" |
|
1184 |
and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z" |
|
1185 |
shows "\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z" |
|
1186 |
proof (rule ccontr) |
|
1187 |
assume "~ (\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z)" |
|
1188 |
hence all [rule_format]: "\<forall>z. \<bar>z - x\<bar> \<le> d --> f z \<le> f x" by auto |
|
1189 |
show False |
|
1190 |
proof (cases rule: linorder_le_cases [of "f(x-d)" "f(x+d)"]) |
|
1191 |
case le |
|
1192 |
from d cont all [of "x+d"] |
|
1193 |
have flef: "f(x+d) \<le> f x" |
|
1194 |
and xlex: "x - d \<le> x" |
|
1195 |
and cont': "\<forall>z. x - d \<le> z \<and> z \<le> x \<longrightarrow> isCont f z" |
|
1196 |
by (auto simp add: abs_if) |
|
1197 |
from IVT [OF le flef xlex cont'] |
|
1198 |
obtain x' where "x-d \<le> x'" "x' \<le> x" "f x' = f(x+d)" by blast |
|
1199 |
moreover |
|
1200 |
hence "g(f x') = g (f(x+d))" by simp |
|
1201 |
ultimately show False using d inj [of x'] inj [of "x+d"] |
|
22998 | 1202 |
by (simp add: abs_le_iff) |
21164 | 1203 |
next |
1204 |
case ge |
|
1205 |
from d cont all [of "x-d"] |
|
1206 |
have flef: "f(x-d) \<le> f x" |
|
1207 |
and xlex: "x \<le> x+d" |
|
1208 |
and cont': "\<forall>z. x \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z" |
|
1209 |
by (auto simp add: abs_if) |
|
1210 |
from IVT2 [OF ge flef xlex cont'] |
|
1211 |
obtain x' where "x \<le> x'" "x' \<le> x+d" "f x' = f(x-d)" by blast |
|
1212 |
moreover |
|
1213 |
hence "g(f x') = g (f(x-d))" by simp |
|
1214 |
ultimately show False using d inj [of x'] inj [of "x-d"] |
|
22998 | 1215 |
by (simp add: abs_le_iff) |
21164 | 1216 |
qed |
1217 |
qed |
|
1218 |
||
1219 |
||
1220 |
text{*Similar version for lower bound.*} |
|
1221 |
||
1222 |
lemma lemma_isCont_inj2: |
|
1223 |
fixes f g :: "real \<Rightarrow> real" |
|
1224 |
shows "[|0 < d; \<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z; |
|
1225 |
\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z |] |
|
1226 |
==> \<exists>z. \<bar>z-x\<bar> \<le> d & f z < f x" |
|
1227 |
apply (insert lemma_isCont_inj |
|
1228 |
[where f = "%x. - f x" and g = "%y. g(-y)" and x = x and d = d]) |
|
1229 |
apply (simp add: isCont_minus linorder_not_le) |
|
1230 |
done |
|
1231 |
||
1232 |
text{*Show there's an interval surrounding @{term "f(x)"} in |
|
1233 |
@{text "f[[x - d, x + d]]"} .*} |
|
1234 |
||
1235 |
lemma isCont_inj_range: |
|
1236 |
fixes f :: "real \<Rightarrow> real" |
|
1237 |
assumes d: "0 < d" |
|
1238 |
and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z" |
|
1239 |
and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z" |
|
1240 |
shows "\<exists>e>0. \<forall>y. \<bar>y - f x\<bar> \<le> e --> (\<exists>z. \<bar>z-x\<bar> \<le> d & f z = y)" |
|
1241 |
proof - |
|
1242 |
have "x-d \<le> x+d" "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z" using cont d |
|
22998 | 1243 |
by (auto simp add: abs_le_iff) |
21164 | 1244 |
from isCont_Lb_Ub [OF this] |
1245 |
obtain L M |
|
1246 |
where all1 [rule_format]: "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> L \<le> f z \<and> f z \<le> M" |
|
1247 |
and all2 [rule_format]: |
|
1248 |
"\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>z. x-d \<le> z \<and> z \<le> x+d \<and> f z = y)" |
|
1249 |
by auto |
|
1250 |
with d have "L \<le> f x & f x \<le> M" by simp |
|
1251 |
moreover have "L \<noteq> f x" |
|
1252 |
proof - |
|
1253 |
from lemma_isCont_inj2 [OF d inj cont] |
|
1254 |
obtain u where "\<bar>u - x\<bar> \<le> d" "f u < f x" by auto |
|
1255 |
thus ?thesis using all1 [of u] by arith |
|
1256 |
qed |
|
1257 |
moreover have "f x \<noteq> M" |
|
1258 |
proof - |
|
1259 |
from lemma_isCont_inj [OF d inj cont] |
|
1260 |
obtain u where "\<bar>u - x\<bar> \<le> d" "f x < f u" by auto |
|
1261 |
thus ?thesis using all1 [of u] by arith |
|
1262 |
qed |
|
1263 |
ultimately have "L < f x & f x < M" by arith |
|
1264 |
hence "0 < f x - L" "0 < M - f x" by arith+ |
|
1265 |
from real_lbound_gt_zero [OF this] |
|
1266 |
obtain e where e: "0 < e" "e < f x - L" "e < M - f x" by auto |
|
1267 |
thus ?thesis |
|
1268 |
proof (intro exI conjI) |
|
23441 | 1269 |
show "0<e" using e(1) . |
21164 | 1270 |
show "\<forall>y. \<bar>y - f x\<bar> \<le> e \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y)" |
1271 |
proof (intro strip) |
|
1272 |
fix y::real |
|
1273 |
assume "\<bar>y - f x\<bar> \<le> e" |
|
1274 |
with e have "L \<le> y \<and> y \<le> M" by arith |
|
1275 |
from all2 [OF this] |
|
1276 |
obtain z where "x - d \<le> z" "z \<le> x + d" "f z = y" by blast |
|
27668 | 1277 |
thus "\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y" |
22998 | 1278 |
by (force simp add: abs_le_iff) |
21164 | 1279 |
qed |
1280 |
qed |
|
1281 |
qed |
|
1282 |
||
1283 |
||
1284 |
text{*Continuity of inverse function*} |
|
1285 |
||
1286 |
lemma isCont_inverse_function: |
|
1287 |
fixes f g :: "real \<Rightarrow> real" |
|
1288 |
assumes d: "0 < d" |
|
1289 |
and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z" |
|
1290 |
and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z" |
|
1291 |
shows "isCont g (f x)" |
|
1292 |
proof (simp add: isCont_iff LIM_eq) |
|
1293 |
show "\<forall>r. 0 < r \<longrightarrow> |
|
1294 |
(\<exists>s>0. \<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r)" |
|
1295 |
proof (intro strip) |
|
1296 |
fix r::real |
|
1297 |
assume r: "0<r" |
|
1298 |
from real_lbound_gt_zero [OF r d] |
|
1299 |
obtain e where e: "0 < e" and e_lt: "e < r \<and> e < d" by blast |
|
1300 |
with inj cont |
|
1301 |
have e_simps: "\<forall>z. \<bar>z-x\<bar> \<le> e --> g (f z) = z" |
|
1302 |
"\<forall>z. \<bar>z-x\<bar> \<le> e --> isCont f z" by auto |
|
1303 |
from isCont_inj_range [OF e this] |
|
1304 |
obtain e' where e': "0 < e'" |
|
1305 |
and all: "\<forall>y. \<bar>y - f x\<bar> \<le> e' \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> e \<and> f z = y)" |
|
1306 |
by blast |
|
1307 |
show "\<exists>s>0. \<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r" |
|
1308 |
proof (intro exI conjI) |
|
23441 | 1309 |
show "0<e'" using e' . |
21164 | 1310 |
show "\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < e' \<longrightarrow> \<bar>g (f x + z) - g (f x)\<bar> < r" |
1311 |
proof (intro strip) |
|
1312 |
fix z::real |
|
1313 |
assume z: "z \<noteq> 0 \<and> \<bar>z\<bar> < e'" |
|
1314 |
with e e_lt e_simps all [rule_format, of "f x + z"] |
|
1315 |
show "\<bar>g (f x + z) - g (f x)\<bar> < r" by force |
|
1316 |
qed |
|
1317 |
qed |
|
1318 |
qed |
|
1319 |
qed |
|
1320 |
||
23041 | 1321 |
text {* Derivative of inverse function *} |
1322 |
||
1323 |
lemma DERIV_inverse_function: |
|
1324 |
fixes f g :: "real \<Rightarrow> real" |
|
1325 |
assumes der: "DERIV f (g x) :> D" |
|
1326 |
assumes neq: "D \<noteq> 0" |
|
23044 | 1327 |
assumes a: "a < x" and b: "x < b" |
1328 |
assumes inj: "\<forall>y. a < y \<and> y < b \<longrightarrow> f (g y) = y" |
|
23041 | 1329 |
assumes cont: "isCont g x" |
1330 |
shows "DERIV g x :> inverse D" |
|
1331 |
unfolding DERIV_iff2 |
|
23044 | 1332 |
proof (rule LIM_equal2) |
1333 |
show "0 < min (x - a) (b - x)" |
|
27668 | 1334 |
using a b by arith |
23044 | 1335 |
next |
23041 | 1336 |
fix y |
23044 | 1337 |
assume "norm (y - x) < min (x - a) (b - x)" |
27668 | 1338 |
hence "a < y" and "y < b" |
23044 | 1339 |
by (simp_all add: abs_less_iff) |
23041 | 1340 |
thus "(g y - g x) / (y - x) = |
1341 |
inverse ((f (g y) - x) / (g y - g x))" |
|
1342 |
by (simp add: inj) |
|
1343 |
next |
|
1344 |
have "(\<lambda>z. (f z - f (g x)) / (z - g x)) -- g x --> D" |
|
1345 |
by (rule der [unfolded DERIV_iff2]) |
|
1346 |
hence 1: "(\<lambda>z. (f z - x) / (z - g x)) -- g x --> D" |
|
23044 | 1347 |
using inj a b by simp |
23041 | 1348 |
have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x" |
1349 |
proof (safe intro!: exI) |
|
23044 | 1350 |
show "0 < min (x - a) (b - x)" |
1351 |
using a b by simp |
|
23041 | 1352 |
next |
1353 |
fix y |
|
23044 | 1354 |
assume "norm (y - x) < min (x - a) (b - x)" |
1355 |
hence y: "a < y" "y < b" |
|
1356 |
by (simp_all add: abs_less_iff) |
|
23041 | 1357 |
assume "g y = g x" |
1358 |
hence "f (g y) = f (g x)" by simp |
|
23044 | 1359 |
hence "y = x" using inj y a b by simp |
23041 | 1360 |
also assume "y \<noteq> x" |
1361 |
finally show False by simp |
|
1362 |
qed |
|
1363 |
have "(\<lambda>y. (f (g y) - x) / (g y - g x)) -- x --> D" |
|
1364 |
using cont 1 2 by (rule isCont_LIM_compose2) |
|
1365 |
thus "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x))) |
|
1366 |
-- x --> inverse D" |
|
1367 |
using neq by (rule LIM_inverse) |
|
1368 |
qed |
|
1369 |
||
29975 | 1370 |
|
1371 |
subsection {* Generalized Mean Value Theorem *} |
|
1372 |
||
21164 | 1373 |
theorem GMVT: |
21784
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents:
21404
diff
changeset
|
1374 |
fixes a b :: real |
21164 | 1375 |
assumes alb: "a < b" |
1376 |
and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x" |
|
1377 |
and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable x" |
|
1378 |
and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x" |
|
1379 |
and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable x" |
|
1380 |
shows "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> ((f b - f a) * g'c) = ((g b - g a) * f'c)" |
|
1381 |
proof - |
|
1382 |
let ?h = "\<lambda>x. (f b - f a)*(g x) - (g b - g a)*(f x)" |
|
1383 |
from prems have "a < b" by simp |
|
1384 |
moreover have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?h x" |
|
1385 |
proof - |
|
1386 |
have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. f b - f a) x" by simp |
|
1387 |
with gc have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. (f b - f a) * g x) x" |
|
1388 |
by (auto intro: isCont_mult) |
|
1389 |
moreover |
|
1390 |
have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. g b - g a) x" by simp |
|
1391 |
with fc have "\<forall>x. a <= x \<and> x <= b \<longrightarrow> isCont (\<lambda>x. (g b - g a) * f x) x" |
|
1392 |
by (auto intro: isCont_mult) |
|
1393 |
ultimately show ?thesis |
|
1394 |
by (fastsimp intro: isCont_diff) |
|
1395 |
qed |
|
1396 |
moreover |
|
1397 |
have "\<forall>x. a < x \<and> x < b \<longrightarrow> ?h differentiable x" |
|
1398 |
proof - |
|
1399 |
have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. f b - f a) differentiable x" by (simp add: differentiable_const) |
|
1400 |
with gd have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. (f b - f a) * g x) differentiable x" by (simp add: differentiable_mult) |
|
1401 |
moreover |
|
1402 |
have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. g b - g a) differentiable x" by (simp add: differentiable_const) |
|
1403 |
with fd have "\<forall>x. a < x \<and> x < b \<longrightarrow> (\<lambda>x. (g b - g a) * f x) differentiable x" by (simp add: differentiable_mult) |
|
1404 |
ultimately show ?thesis by (simp add: differentiable_diff) |
|
1405 |
qed |
|
1406 |
ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" by (rule MVT) |
|
1407 |
then obtain l where ldef: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" .. |
|
1408 |
then obtain c where cdef: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" .. |
|
1409 |
||
1410 |
from cdef have cint: "a < c \<and> c < b" by auto |
|
1411 |
with gd have "g differentiable c" by simp |
|
1412 |
hence "\<exists>D. DERIV g c :> D" by (rule differentiableD) |
|
1413 |
then obtain g'c where g'cdef: "DERIV g c :> g'c" .. |
|
1414 |
||
1415 |
from cdef have "a < c \<and> c < b" by auto |
|
1416 |
with fd have "f differentiable c" by simp |
|
1417 |
hence "\<exists>D. DERIV f c :> D" by (rule differentiableD) |
|
1418 |
then obtain f'c where f'cdef: "DERIV f c :> f'c" .. |
|
1419 |
||
1420 |
from cdef have "DERIV ?h c :> l" by auto |
|
1421 |
moreover |
|
1422 |
{ |
|
23441 | 1423 |
have "DERIV (\<lambda>x. (f b - f a) * g x) c :> g'c * (f b - f a)" |
21164 | 1424 |
apply (insert DERIV_const [where k="f b - f a"]) |
1425 |
apply (drule meta_spec [of _ c]) |
|
23441 | 1426 |
apply (drule DERIV_mult [OF _ g'cdef]) |
1427 |
by simp |
|
1428 |
moreover have "DERIV (\<lambda>x. (g b - g a) * f x) c :> f'c * (g b - g a)" |
|
21164 | 1429 |
apply (insert DERIV_const [where k="g b - g a"]) |
1430 |
apply (drule meta_spec [of _ c]) |
|
23441 | 1431 |
apply (drule DERIV_mult [OF _ f'cdef]) |
1432 |
by simp |
|
21164 | 1433 |
ultimately have "DERIV ?h c :> g'c * (f b - f a) - f'c * (g b - g a)" |
1434 |
by (simp add: DERIV_diff) |
|
1435 |
} |
|
1436 |
ultimately have leq: "l = g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique) |
|
1437 |
||
1438 |
{ |
|
1439 |
from cdef have "?h b - ?h a = (b - a) * l" by auto |
|
1440 |
also with leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp |
|
1441 |
finally have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp |
|
1442 |
} |
|
1443 |
moreover |
|
1444 |
{ |
|
1445 |
have "?h b - ?h a = |
|
1446 |
((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) - |
|
1447 |
((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))" |
|
29667 | 1448 |
by (simp add: algebra_simps) |
21164 | 1449 |
hence "?h b - ?h a = 0" by auto |
1450 |
} |
|
1451 |
ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto |
|
1452 |
with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp |
|
1453 |
hence "g'c * (f b - f a) = f'c * (g b - g a)" by simp |
|
1454 |
hence "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: mult_ac) |
|
1455 |
||
1456 |
with g'cdef f'cdef cint show ?thesis by auto |
|
1457 |
qed |
|
1458 |
||
29470
1851088a1f87
convert Deriv.thy to use new Polynomial library (incomplete)
huffman
parents:
29169
diff
changeset
|
1459 |
|
29166
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1460 |
subsection {* Theorems about Limits *} |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1461 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1462 |
(* need to rename second isCont_inverse *) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1463 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1464 |
lemma isCont_inv_fun: |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1465 |
fixes f g :: "real \<Rightarrow> real" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1466 |
shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z; |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1467 |
\<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |] |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1468 |
==> isCont g (f x)" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1469 |
by (rule isCont_inverse_function) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1470 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1471 |
lemma isCont_inv_fun_inv: |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1472 |
fixes f g :: "real \<Rightarrow> real" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1473 |
shows "[| 0 < d; |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1474 |
\<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z; |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1475 |
\<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |] |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1476 |
==> \<exists>e. 0 < e & |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1477 |
(\<forall>y. 0 < \<bar>y - f(x)\<bar> & \<bar>y - f(x)\<bar> < e --> f(g(y)) = y)" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1478 |
apply (drule isCont_inj_range) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1479 |
prefer 2 apply (assumption, assumption, auto) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1480 |
apply (rule_tac x = e in exI, auto) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1481 |
apply (rotate_tac 2) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1482 |
apply (drule_tac x = y in spec, auto) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1483 |
done |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1484 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1485 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1486 |
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*} |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1487 |
lemma LIM_fun_gt_zero: |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1488 |
"[| f -- c --> (l::real); 0 < l |] |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1489 |
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> 0 < f x)" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1490 |
apply (auto simp add: LIM_def) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1491 |
apply (drule_tac x = "l/2" in spec, safe, force) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1492 |
apply (rule_tac x = s in exI) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1493 |
apply (auto simp only: abs_less_iff) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1494 |
done |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1495 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1496 |
lemma LIM_fun_less_zero: |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1497 |
"[| f -- c --> (l::real); l < 0 |] |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1498 |
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x < 0)" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1499 |
apply (auto simp add: LIM_def) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1500 |
apply (drule_tac x = "-l/2" in spec, safe, force) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1501 |
apply (rule_tac x = s in exI) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1502 |
apply (auto simp only: abs_less_iff) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1503 |
done |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1504 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1505 |
|
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1506 |
lemma LIM_fun_not_zero: |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1507 |
"[| f -- c --> (l::real); l \<noteq> 0 |] |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1508 |
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x \<noteq> 0)" |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1509 |
apply (cut_tac x = l and y = 0 in linorder_less_linear, auto) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1510 |
apply (drule LIM_fun_less_zero) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1511 |
apply (drule_tac [3] LIM_fun_gt_zero) |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1512 |
apply force+ |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1513 |
done |
c23b2d108612
move theorems about limits from Transcendental.thy to Deriv.thy
huffman
parents:
28952
diff
changeset
|
1514 |
|
21164 | 1515 |
end |