| author | wenzelm | 
| Wed, 21 May 2014 14:42:45 +0200 | |
| changeset 57042 | 5576d22abf3c | 
| parent 56798 | 939e88e79724 | 
| child 63167 | 0909deb8059b | 
| permissions | -rw-r--r-- | 
| 41561 | 1  | 
(* Title: HOL/SPARK/SPARK_Setup.thy  | 
2  | 
Author: Stefan Berghofer  | 
|
3  | 
Copyright: secunet Security Networks AG  | 
|
4  | 
||
5  | 
Setup for SPARK/Ada verification environment.  | 
|
6  | 
*)  | 
|
7  | 
||
8  | 
theory SPARK_Setup  | 
|
| 
54427
 
783861a66a60
separated comparision on bit operations into separate theory
 
haftmann 
parents: 
48908 
diff
changeset
 | 
9  | 
imports "~~/src/HOL/Word/Word" "~~/src/HOL/Word/Bit_Comparison"  | 
| 
46950
 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 
wenzelm 
parents: 
42416 
diff
changeset
 | 
10  | 
keywords  | 
| 
48908
 
713f24d7a40f
added specific 'spark_open_vcg' and 'spark_open_siv' with formal management of corresponding source files;
 
wenzelm 
parents: 
48891 
diff
changeset
 | 
11  | 
  "spark_open_vcg" :: thy_load ("vcg", "fdl", "rls") and
 | 
| 
56798
 
939e88e79724
Discontinued old spark_open; spark_open_siv is now spark_open
 
berghofe 
parents: 
55789 
diff
changeset
 | 
12  | 
  "spark_open" :: thy_load ("siv", "fdl", "rls") and
 | 
| 
 
939e88e79724
Discontinued old spark_open; spark_open_siv is now spark_open
 
berghofe 
parents: 
55789 
diff
changeset
 | 
13  | 
"spark_proof_functions" "spark_types" "spark_end" :: thy_decl and  | 
| 
46950
 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 
wenzelm 
parents: 
42416 
diff
changeset
 | 
14  | 
"spark_vc" :: thy_goal and "spark_status" :: diag  | 
| 41561 | 15  | 
begin  | 
16  | 
||
| 48891 | 17  | 
ML_file "Tools/fdl_lexer.ML"  | 
18  | 
ML_file "Tools/fdl_parser.ML"  | 
|
19  | 
||
| 41561 | 20  | 
text {*
 | 
| 
41635
 
f938a6022d2e
Replaced smod by standard mod operator to reflect actual behaviour
 
berghofe 
parents: 
41561 
diff
changeset
 | 
21  | 
SPARK version of div, see section 4.4.1.1 of SPARK Proof Manual  | 
| 41561 | 22  | 
*}  | 
23  | 
||
24  | 
definition sdiv :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "sdiv" 70) where  | 
|
| 41637 | 25  | 
"a sdiv b = sgn a * sgn b * (\<bar>a\<bar> div \<bar>b\<bar>)"  | 
| 41561 | 26  | 
|
27  | 
lemma sdiv_minus_dividend: "- a sdiv b = - (a sdiv b)"  | 
|
| 41637 | 28  | 
by (simp add: sdiv_def sgn_if)  | 
| 41561 | 29  | 
|
30  | 
lemma sdiv_minus_divisor: "a sdiv - b = - (a sdiv b)"  | 
|
| 41637 | 31  | 
by (simp add: sdiv_def sgn_if)  | 
| 41561 | 32  | 
|
33  | 
text {*
 | 
|
| 
41635
 
f938a6022d2e
Replaced smod by standard mod operator to reflect actual behaviour
 
berghofe 
parents: 
41561 
diff
changeset
 | 
34  | 
Correspondence between HOL's and SPARK's version of div  | 
| 41561 | 35  | 
*}  | 
36  | 
||
37  | 
lemma sdiv_pos_pos: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a sdiv b = a div b"  | 
|
| 41637 | 38  | 
by (simp add: sdiv_def sgn_if)  | 
| 41561 | 39  | 
|
40  | 
lemma sdiv_pos_neg: "0 \<le> a \<Longrightarrow> b < 0 \<Longrightarrow> a sdiv b = - (a div - b)"  | 
|
| 41637 | 41  | 
by (simp add: sdiv_def sgn_if)  | 
| 41561 | 42  | 
|
43  | 
lemma sdiv_neg_pos: "a < 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a sdiv b = - (- a div b)"  | 
|
| 41637 | 44  | 
by (simp add: sdiv_def sgn_if)  | 
| 41561 | 45  | 
|
46  | 
lemma sdiv_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> a sdiv b = - a div - b"  | 
|
| 41637 | 47  | 
by (simp add: sdiv_def sgn_if)  | 
| 41561 | 48  | 
|
49  | 
||
50  | 
text {*
 | 
|
51  | 
Updating a function at a set of points. Useful for building arrays.  | 
|
52  | 
*}  | 
|
53  | 
||
54  | 
definition fun_upds :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b" where
 | 
|
55  | 
"fun_upds f xs y z = (if z \<in> xs then y else f z)"  | 
|
56  | 
||
57  | 
syntax  | 
|
58  | 
  "_updsbind" :: "['a, 'a] => updbind"             ("(2_ [:=]/ _)")
 | 
|
59  | 
||
60  | 
translations  | 
|
61  | 
"f(xs[:=]y)" == "CONST fun_upds f xs y"  | 
|
62  | 
||
63  | 
lemma fun_upds_in [simp]: "z \<in> xs \<Longrightarrow> (f(xs [:=] y)) z = y"  | 
|
64  | 
by (simp add: fun_upds_def)  | 
|
65  | 
||
66  | 
lemma fun_upds_notin [simp]: "z \<notin> xs \<Longrightarrow> (f(xs [:=] y)) z = f z"  | 
|
67  | 
by (simp add: fun_upds_def)  | 
|
68  | 
||
69  | 
lemma upds_singleton [simp]: "f({x} [:=] y) = f(x := y)"
 | 
|
70  | 
by (simp add: fun_eq_iff)  | 
|
71  | 
||
72  | 
||
73  | 
text {* Enumeration types *}
 | 
|
74  | 
||
| 
42416
 
a8a9f4d79196
- renamed enum type class to spark_enum, to avoid confusion with
 
berghofe 
parents: 
41637 
diff
changeset
 | 
75  | 
class spark_enum = ord + finite +  | 
| 41561 | 76  | 
fixes pos :: "'a \<Rightarrow> int"  | 
77  | 
  assumes range_pos: "range pos = {0..<int (card (UNIV::'a set))}"
 | 
|
78  | 
and less_pos: "(x < y) = (pos x < pos y)"  | 
|
79  | 
and less_eq_pos: "(x \<le> y) = (pos x \<le> pos y)"  | 
|
80  | 
begin  | 
|
81  | 
||
82  | 
definition "val = inv pos"  | 
|
83  | 
||
84  | 
definition "succ x = val (pos x + 1)"  | 
|
85  | 
||
86  | 
definition "pred x = val (pos x - 1)"  | 
|
87  | 
||
88  | 
lemma inj_pos: "inj pos"  | 
|
89  | 
using finite_UNIV  | 
|
90  | 
by (rule eq_card_imp_inj_on) (simp add: range_pos)  | 
|
91  | 
||
92  | 
lemma val_pos: "val (pos x) = x"  | 
|
93  | 
unfolding val_def using inj_pos  | 
|
94  | 
by (rule inv_f_f)  | 
|
95  | 
||
96  | 
lemma pos_val: "z \<in> range pos \<Longrightarrow> pos (val z) = z"  | 
|
97  | 
unfolding val_def  | 
|
98  | 
by (rule f_inv_into_f)  | 
|
99  | 
||
100  | 
subclass linorder  | 
|
101  | 
proof  | 
|
102  | 
fix x::'a and y show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)"  | 
|
103  | 
by (simp add: less_pos less_eq_pos less_le_not_le)  | 
|
104  | 
next  | 
|
105  | 
fix x::'a show "x \<le> x" by (simp add: less_eq_pos)  | 
|
106  | 
next  | 
|
107  | 
fix x::'a and y z assume "x \<le> y" and "y \<le> z"  | 
|
108  | 
then show "x \<le> z" by (simp add: less_eq_pos)  | 
|
109  | 
next  | 
|
110  | 
fix x::'a and y assume "x \<le> y" and "y \<le> x"  | 
|
111  | 
with inj_pos show "x = y"  | 
|
112  | 
by (auto dest: injD simp add: less_eq_pos)  | 
|
113  | 
next  | 
|
114  | 
fix x::'a and y show "x \<le> y \<or> y \<le> x"  | 
|
115  | 
by (simp add: less_eq_pos linear)  | 
|
116  | 
qed  | 
|
117  | 
||
118  | 
definition "first_el = val 0"  | 
|
119  | 
||
120  | 
definition "last_el = val (int (card (UNIV::'a set)) - 1)"  | 
|
121  | 
||
122  | 
lemma first_el_smallest: "first_el \<le> x"  | 
|
123  | 
proof -  | 
|
124  | 
have "pos x \<in> range pos" by (rule rangeI)  | 
|
125  | 
then have "pos (val 0) \<le> pos x"  | 
|
126  | 
by (simp add: range_pos pos_val)  | 
|
127  | 
then show ?thesis by (simp add: first_el_def less_eq_pos)  | 
|
128  | 
qed  | 
|
129  | 
||
130  | 
lemma last_el_greatest: "x \<le> last_el"  | 
|
131  | 
proof -  | 
|
132  | 
have "pos x \<in> range pos" by (rule rangeI)  | 
|
133  | 
then have "pos x \<le> pos (val (int (card (UNIV::'a set)) - 1))"  | 
|
134  | 
by (simp add: range_pos pos_val)  | 
|
135  | 
then show ?thesis by (simp add: last_el_def less_eq_pos)  | 
|
136  | 
qed  | 
|
137  | 
||
138  | 
lemma pos_succ:  | 
|
139  | 
assumes "x \<noteq> last_el"  | 
|
140  | 
shows "pos (succ x) = pos x + 1"  | 
|
141  | 
proof -  | 
|
142  | 
have "x \<le> last_el" by (rule last_el_greatest)  | 
|
143  | 
with assms have "x < last_el" by simp  | 
|
144  | 
then have "pos x < pos last_el"  | 
|
145  | 
by (simp add: less_pos)  | 
|
146  | 
with rangeI [of pos x]  | 
|
147  | 
have "pos x + 1 \<in> range pos"  | 
|
148  | 
by (simp add: range_pos last_el_def pos_val)  | 
|
149  | 
then show ?thesis  | 
|
150  | 
by (simp add: succ_def pos_val)  | 
|
151  | 
qed  | 
|
152  | 
||
153  | 
lemma pos_pred:  | 
|
154  | 
assumes "x \<noteq> first_el"  | 
|
155  | 
shows "pos (pred x) = pos x - 1"  | 
|
156  | 
proof -  | 
|
157  | 
have "first_el \<le> x" by (rule first_el_smallest)  | 
|
158  | 
with assms have "first_el < x" by simp  | 
|
159  | 
then have "pos first_el < pos x"  | 
|
160  | 
by (simp add: less_pos)  | 
|
161  | 
with rangeI [of pos x]  | 
|
162  | 
have "pos x - 1 \<in> range pos"  | 
|
163  | 
by (simp add: range_pos first_el_def pos_val)  | 
|
164  | 
then show ?thesis  | 
|
165  | 
by (simp add: pred_def pos_val)  | 
|
166  | 
qed  | 
|
167  | 
||
168  | 
lemma succ_val: "x \<in> range pos \<Longrightarrow> succ (val x) = val (x + 1)"  | 
|
169  | 
by (simp add: succ_def pos_val)  | 
|
170  | 
||
171  | 
lemma pred_val: "x \<in> range pos \<Longrightarrow> pred (val x) = val (x - 1)"  | 
|
172  | 
by (simp add: pred_def pos_val)  | 
|
173  | 
||
174  | 
end  | 
|
175  | 
||
176  | 
lemma interval_expand:  | 
|
177  | 
  "x < y \<Longrightarrow> (z::int) \<in> {x..<y} = (z = x \<or> z \<in> {x+1..<y})"
 | 
|
178  | 
by auto  | 
|
179  | 
||
180  | 
||
181  | 
text {* Load the package *}
 | 
|
182  | 
||
| 48891 | 183  | 
ML_file "Tools/spark_vcs.ML"  | 
184  | 
ML_file "Tools/spark_commands.ML"  | 
|
| 41561 | 185  | 
|
186  | 
end  |