author | wenzelm |
Thu, 15 Mar 2012 22:08:53 +0100 | |
changeset 46950 | d0181abdbdac |
parent 42416 | a8a9f4d79196 |
child 48891 | c0eafbd55de3 |
permissions | -rw-r--r-- |
41561 | 1 |
(* Title: HOL/SPARK/SPARK_Setup.thy |
2 |
Author: Stefan Berghofer |
|
3 |
Copyright: secunet Security Networks AG |
|
4 |
||
5 |
Setup for SPARK/Ada verification environment. |
|
6 |
*) |
|
7 |
||
8 |
theory SPARK_Setup |
|
9 |
imports Word |
|
46950
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
42416
diff
changeset
|
10 |
keywords |
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
42416
diff
changeset
|
11 |
"spark_open" "spark_proof_functions" "spark_types" "spark_end" :: thy_decl and |
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
42416
diff
changeset
|
12 |
"spark_vc" :: thy_goal and "spark_status" :: diag |
41561 | 13 |
uses |
14 |
"Tools/fdl_lexer.ML" |
|
15 |
"Tools/fdl_parser.ML" |
|
16 |
("Tools/spark_vcs.ML") |
|
17 |
("Tools/spark_commands.ML") |
|
18 |
begin |
|
19 |
||
20 |
text {* |
|
41635
f938a6022d2e
Replaced smod by standard mod operator to reflect actual behaviour
berghofe
parents:
41561
diff
changeset
|
21 |
SPARK version of div, see section 4.4.1.1 of SPARK Proof Manual |
41561 | 22 |
*} |
23 |
||
24 |
definition sdiv :: "int \<Rightarrow> int \<Rightarrow> int" (infixl "sdiv" 70) where |
|
41637 | 25 |
"a sdiv b = sgn a * sgn b * (\<bar>a\<bar> div \<bar>b\<bar>)" |
41561 | 26 |
|
27 |
lemma sdiv_minus_dividend: "- a sdiv b = - (a sdiv b)" |
|
41637 | 28 |
by (simp add: sdiv_def sgn_if) |
41561 | 29 |
|
30 |
lemma sdiv_minus_divisor: "a sdiv - b = - (a sdiv b)" |
|
41637 | 31 |
by (simp add: sdiv_def sgn_if) |
41561 | 32 |
|
33 |
text {* |
|
41635
f938a6022d2e
Replaced smod by standard mod operator to reflect actual behaviour
berghofe
parents:
41561
diff
changeset
|
34 |
Correspondence between HOL's and SPARK's version of div |
41561 | 35 |
*} |
36 |
||
37 |
lemma sdiv_pos_pos: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a sdiv b = a div b" |
|
41637 | 38 |
by (simp add: sdiv_def sgn_if) |
41561 | 39 |
|
40 |
lemma sdiv_pos_neg: "0 \<le> a \<Longrightarrow> b < 0 \<Longrightarrow> a sdiv b = - (a div - b)" |
|
41637 | 41 |
by (simp add: sdiv_def sgn_if) |
41561 | 42 |
|
43 |
lemma sdiv_neg_pos: "a < 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a sdiv b = - (- a div b)" |
|
41637 | 44 |
by (simp add: sdiv_def sgn_if) |
41561 | 45 |
|
46 |
lemma sdiv_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> a sdiv b = - a div - b" |
|
41637 | 47 |
by (simp add: sdiv_def sgn_if) |
41561 | 48 |
|
49 |
||
50 |
text {* |
|
51 |
Updating a function at a set of points. Useful for building arrays. |
|
52 |
*} |
|
53 |
||
54 |
definition fun_upds :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b" where |
|
55 |
"fun_upds f xs y z = (if z \<in> xs then y else f z)" |
|
56 |
||
57 |
syntax |
|
58 |
"_updsbind" :: "['a, 'a] => updbind" ("(2_ [:=]/ _)") |
|
59 |
||
60 |
translations |
|
61 |
"f(xs[:=]y)" == "CONST fun_upds f xs y" |
|
62 |
||
63 |
lemma fun_upds_in [simp]: "z \<in> xs \<Longrightarrow> (f(xs [:=] y)) z = y" |
|
64 |
by (simp add: fun_upds_def) |
|
65 |
||
66 |
lemma fun_upds_notin [simp]: "z \<notin> xs \<Longrightarrow> (f(xs [:=] y)) z = f z" |
|
67 |
by (simp add: fun_upds_def) |
|
68 |
||
69 |
lemma upds_singleton [simp]: "f({x} [:=] y) = f(x := y)" |
|
70 |
by (simp add: fun_eq_iff) |
|
71 |
||
72 |
||
73 |
text {* Enumeration types *} |
|
74 |
||
42416
a8a9f4d79196
- renamed enum type class to spark_enum, to avoid confusion with
berghofe
parents:
41637
diff
changeset
|
75 |
class spark_enum = ord + finite + |
41561 | 76 |
fixes pos :: "'a \<Rightarrow> int" |
77 |
assumes range_pos: "range pos = {0..<int (card (UNIV::'a set))}" |
|
78 |
and less_pos: "(x < y) = (pos x < pos y)" |
|
79 |
and less_eq_pos: "(x \<le> y) = (pos x \<le> pos y)" |
|
80 |
begin |
|
81 |
||
82 |
definition "val = inv pos" |
|
83 |
||
84 |
definition "succ x = val (pos x + 1)" |
|
85 |
||
86 |
definition "pred x = val (pos x - 1)" |
|
87 |
||
88 |
lemma inj_pos: "inj pos" |
|
89 |
using finite_UNIV |
|
90 |
by (rule eq_card_imp_inj_on) (simp add: range_pos) |
|
91 |
||
92 |
lemma val_pos: "val (pos x) = x" |
|
93 |
unfolding val_def using inj_pos |
|
94 |
by (rule inv_f_f) |
|
95 |
||
96 |
lemma pos_val: "z \<in> range pos \<Longrightarrow> pos (val z) = z" |
|
97 |
unfolding val_def |
|
98 |
by (rule f_inv_into_f) |
|
99 |
||
100 |
subclass linorder |
|
101 |
proof |
|
102 |
fix x::'a and y show "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" |
|
103 |
by (simp add: less_pos less_eq_pos less_le_not_le) |
|
104 |
next |
|
105 |
fix x::'a show "x \<le> x" by (simp add: less_eq_pos) |
|
106 |
next |
|
107 |
fix x::'a and y z assume "x \<le> y" and "y \<le> z" |
|
108 |
then show "x \<le> z" by (simp add: less_eq_pos) |
|
109 |
next |
|
110 |
fix x::'a and y assume "x \<le> y" and "y \<le> x" |
|
111 |
with inj_pos show "x = y" |
|
112 |
by (auto dest: injD simp add: less_eq_pos) |
|
113 |
next |
|
114 |
fix x::'a and y show "x \<le> y \<or> y \<le> x" |
|
115 |
by (simp add: less_eq_pos linear) |
|
116 |
qed |
|
117 |
||
118 |
definition "first_el = val 0" |
|
119 |
||
120 |
definition "last_el = val (int (card (UNIV::'a set)) - 1)" |
|
121 |
||
122 |
lemma first_el_smallest: "first_el \<le> x" |
|
123 |
proof - |
|
124 |
have "pos x \<in> range pos" by (rule rangeI) |
|
125 |
then have "pos (val 0) \<le> pos x" |
|
126 |
by (simp add: range_pos pos_val) |
|
127 |
then show ?thesis by (simp add: first_el_def less_eq_pos) |
|
128 |
qed |
|
129 |
||
130 |
lemma last_el_greatest: "x \<le> last_el" |
|
131 |
proof - |
|
132 |
have "pos x \<in> range pos" by (rule rangeI) |
|
133 |
then have "pos x \<le> pos (val (int (card (UNIV::'a set)) - 1))" |
|
134 |
by (simp add: range_pos pos_val) |
|
135 |
then show ?thesis by (simp add: last_el_def less_eq_pos) |
|
136 |
qed |
|
137 |
||
138 |
lemma pos_succ: |
|
139 |
assumes "x \<noteq> last_el" |
|
140 |
shows "pos (succ x) = pos x + 1" |
|
141 |
proof - |
|
142 |
have "x \<le> last_el" by (rule last_el_greatest) |
|
143 |
with assms have "x < last_el" by simp |
|
144 |
then have "pos x < pos last_el" |
|
145 |
by (simp add: less_pos) |
|
146 |
with rangeI [of pos x] |
|
147 |
have "pos x + 1 \<in> range pos" |
|
148 |
by (simp add: range_pos last_el_def pos_val) |
|
149 |
then show ?thesis |
|
150 |
by (simp add: succ_def pos_val) |
|
151 |
qed |
|
152 |
||
153 |
lemma pos_pred: |
|
154 |
assumes "x \<noteq> first_el" |
|
155 |
shows "pos (pred x) = pos x - 1" |
|
156 |
proof - |
|
157 |
have "first_el \<le> x" by (rule first_el_smallest) |
|
158 |
with assms have "first_el < x" by simp |
|
159 |
then have "pos first_el < pos x" |
|
160 |
by (simp add: less_pos) |
|
161 |
with rangeI [of pos x] |
|
162 |
have "pos x - 1 \<in> range pos" |
|
163 |
by (simp add: range_pos first_el_def pos_val) |
|
164 |
then show ?thesis |
|
165 |
by (simp add: pred_def pos_val) |
|
166 |
qed |
|
167 |
||
168 |
lemma succ_val: "x \<in> range pos \<Longrightarrow> succ (val x) = val (x + 1)" |
|
169 |
by (simp add: succ_def pos_val) |
|
170 |
||
171 |
lemma pred_val: "x \<in> range pos \<Longrightarrow> pred (val x) = val (x - 1)" |
|
172 |
by (simp add: pred_def pos_val) |
|
173 |
||
174 |
end |
|
175 |
||
176 |
lemma interval_expand: |
|
177 |
"x < y \<Longrightarrow> (z::int) \<in> {x..<y} = (z = x \<or> z \<in> {x+1..<y})" |
|
178 |
by auto |
|
179 |
||
180 |
||
181 |
text {* Load the package *} |
|
182 |
||
183 |
use "Tools/spark_vcs.ML" |
|
184 |
use "Tools/spark_commands.ML" |
|
185 |
||
186 |
setup SPARK_Commands.setup |
|
187 |
||
188 |
end |