| author | wenzelm | 
| Mon, 22 Oct 2018 11:45:56 +0200 | |
| changeset 69175 | 561dc80624db | 
| parent 63167 | 0909deb8059b | 
| permissions | -rw-r--r-- | 
| 43197 | 1  | 
(* Title: HOL/Metis_Examples/Binary_Tree.thy  | 
2  | 
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory  | 
|
| 
36487
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
3  | 
Author: Jasmin Blanchette, TU Muenchen  | 
| 23449 | 4  | 
|
| 43197 | 5  | 
Metis example featuring binary trees.  | 
| 23449 | 6  | 
*)  | 
7  | 
||
| 63167 | 8  | 
section \<open>Metis Example Featuring Binary Trees\<close>  | 
| 23449 | 9  | 
|
| 43197 | 10  | 
theory Binary_Tree  | 
| 
27104
 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 
haftmann 
parents: 
26312 
diff
changeset
 | 
11  | 
imports Main  | 
| 
 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 
haftmann 
parents: 
26312 
diff
changeset
 | 
12  | 
begin  | 
| 23449 | 13  | 
|
| 
50705
 
0e943b33d907
use new skolemizer for reconstructing skolemization steps in Isar proofs (because the old skolemizer messes up the order of the Skolem arguments)
 
blanchet 
parents: 
49962 
diff
changeset
 | 
14  | 
declare [[metis_new_skolem]]  | 
| 
42103
 
6066a35f6678
Metis examples use the new Skolemizer to test it
 
blanchet 
parents: 
41144 
diff
changeset
 | 
15  | 
|
| 58310 | 16  | 
datatype 'a bt =  | 
| 23449 | 17  | 
Lf  | 
18  | 
| Br 'a "'a bt" "'a bt"  | 
|
19  | 
||
| 39246 | 20  | 
primrec n_nodes :: "'a bt => nat" where  | 
21  | 
"n_nodes Lf = 0"  | 
|
22  | 
| "n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)"  | 
|
23  | 
||
24  | 
primrec n_leaves :: "'a bt => nat" where  | 
|
25  | 
"n_leaves Lf = Suc 0"  | 
|
26  | 
| "n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2"  | 
|
| 23449 | 27  | 
|
| 39246 | 28  | 
primrec depth :: "'a bt => nat" where  | 
29  | 
"depth Lf = 0"  | 
|
30  | 
| "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))"  | 
|
| 23449 | 31  | 
|
| 39246 | 32  | 
primrec reflect :: "'a bt => 'a bt" where  | 
33  | 
"reflect Lf = Lf"  | 
|
34  | 
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"  | 
|
| 23449 | 35  | 
|
| 39246 | 36  | 
primrec bt_map :: "('a => 'b) => ('a bt => 'b bt)" where
 | 
| 23449 | 37  | 
"bt_map f Lf = Lf"  | 
| 39246 | 38  | 
| "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)"  | 
| 23449 | 39  | 
|
| 39246 | 40  | 
primrec preorder :: "'a bt => 'a list" where  | 
| 23449 | 41  | 
"preorder Lf = []"  | 
| 39246 | 42  | 
| "preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)"  | 
| 23449 | 43  | 
|
| 39246 | 44  | 
primrec inorder :: "'a bt => 'a list" where  | 
| 23449 | 45  | 
"inorder Lf = []"  | 
| 39246 | 46  | 
| "inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)"  | 
| 23449 | 47  | 
|
| 39246 | 48  | 
primrec postorder :: "'a bt => 'a list" where  | 
| 23449 | 49  | 
"postorder Lf = []"  | 
| 39246 | 50  | 
| "postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]"  | 
| 23449 | 51  | 
|
| 39246 | 52  | 
primrec append :: "'a bt => 'a bt => 'a bt" where  | 
53  | 
"append Lf t = t"  | 
|
54  | 
| "append (Br a t1 t2) t = Br a (append t1 t) (append t2 t)"  | 
|
| 23449 | 55  | 
|
| 63167 | 56  | 
text \<open>\medskip BT simplification\<close>  | 
| 23449 | 57  | 
|
58  | 
lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t"  | 
|
| 36484 | 59  | 
proof (induct t)  | 
| 
36487
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
60  | 
case Lf thus ?case  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
61  | 
proof -  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
62  | 
let "?p\<^sub>1 x\<^sub>1" = "x\<^sub>1 \<noteq> n_leaves (reflect (Lf::'a bt))"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
63  | 
have "\<not> ?p\<^sub>1 (Suc 0)" by (metis reflect.simps(1) n_leaves.simps(1))  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
50705 
diff
changeset
 | 
64  | 
hence "\<not> ?p\<^sub>1 (n_leaves (Lf::'a bt))" by (metis n_leaves.simps(1))  | 
| 
36487
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
65  | 
thus "n_leaves (reflect (Lf::'a bt)) = n_leaves (Lf::'a bt)" by metis  | 
| 
 
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
 
blanchet 
parents: 
36484 
diff
changeset
 | 
66  | 
qed  | 
| 36484 | 67  | 
next  | 
68  | 
case (Br a t1 t2) thus ?case  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
55465 
diff
changeset
 | 
69  | 
by (metis n_leaves.simps(2) add.commute reflect.simps(2))  | 
| 36484 | 70  | 
qed  | 
| 23449 | 71  | 
|
72  | 
lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t"  | 
|
| 36484 | 73  | 
proof (induct t)  | 
74  | 
case Lf thus ?case by (metis reflect.simps(1))  | 
|
75  | 
next  | 
|
76  | 
case (Br a t1 t2) thus ?case  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
55465 
diff
changeset
 | 
77  | 
by (metis add.commute n_nodes.simps(2) reflect.simps(2))  | 
| 36484 | 78  | 
qed  | 
| 23449 | 79  | 
|
80  | 
lemma depth_reflect: "depth (reflect t) = depth t"  | 
|
| 36484 | 81  | 
apply (induct t)  | 
82  | 
apply (metis depth.simps(1) reflect.simps(1))  | 
|
| 
54864
 
a064732223ad
abolished slightly odd global lattice interpretation for min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
83  | 
by (metis depth.simps(2) max.commute reflect.simps(2))  | 
| 23449 | 84  | 
|
| 63167 | 85  | 
text \<open>  | 
| 36484 | 86  | 
The famous relationship between the numbers of leaves and nodes.  | 
| 63167 | 87  | 
\<close>  | 
| 23449 | 88  | 
|
89  | 
lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)"  | 
|
| 36484 | 90  | 
apply (induct t)  | 
91  | 
apply (metis n_leaves.simps(1) n_nodes.simps(1))  | 
|
92  | 
by auto  | 
|
| 23449 | 93  | 
|
94  | 
lemma reflect_reflect_ident: "reflect (reflect t) = t"  | 
|
| 36484 | 95  | 
apply (induct t)  | 
96  | 
apply (metis reflect.simps(1))  | 
|
97  | 
proof -  | 
|
98  | 
fix a :: 'a and t1 :: "'a bt" and t2 :: "'a bt"  | 
|
99  | 
assume A1: "reflect (reflect t1) = t1"  | 
|
100  | 
assume A2: "reflect (reflect t2) = t2"  | 
|
101  | 
have "\<And>V U. reflect (Br U V (reflect t1)) = Br U t1 (reflect V)"  | 
|
102  | 
using A1 by (metis reflect.simps(2))  | 
|
103  | 
hence "\<And>V U. Br U t1 (reflect (reflect V)) = reflect (reflect (Br U t1 V))"  | 
|
104  | 
by (metis reflect.simps(2))  | 
|
105  | 
hence "\<And>U. reflect (reflect (Br U t1 t2)) = Br U t1 t2"  | 
|
106  | 
using A2 by metis  | 
|
107  | 
thus "reflect (reflect (Br a t1 t2)) = Br a t1 t2" by blast  | 
|
108  | 
qed  | 
|
| 23449 | 109  | 
|
110  | 
lemma bt_map_ident: "bt_map (%x. x) = (%y. y)"  | 
|
| 43197 | 111  | 
apply (rule ext)  | 
| 23449 | 112  | 
apply (induct_tac y)  | 
| 36484 | 113  | 
apply (metis bt_map.simps(1))  | 
| 36571 | 114  | 
by (metis bt_map.simps(2))  | 
| 23449 | 115  | 
|
| 39246 | 116  | 
lemma bt_map_append: "bt_map f (append t u) = append (bt_map f t) (bt_map f u)"  | 
| 23449 | 117  | 
apply (induct t)  | 
| 39246 | 118  | 
apply (metis append.simps(1) bt_map.simps(1))  | 
119  | 
by (metis append.simps(2) bt_map.simps(2))  | 
|
| 23449 | 120  | 
|
121  | 
lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)"  | 
|
| 36484 | 122  | 
apply (induct t)  | 
123  | 
apply (metis bt_map.simps(1))  | 
|
124  | 
by (metis bt_map.simps(2) o_eq_dest_lhs)  | 
|
| 23449 | 125  | 
|
126  | 
lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)"  | 
|
| 36484 | 127  | 
apply (induct t)  | 
128  | 
apply (metis bt_map.simps(1) reflect.simps(1))  | 
|
129  | 
by (metis bt_map.simps(2) reflect.simps(2))  | 
|
| 23449 | 130  | 
|
131  | 
lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)"  | 
|
| 36484 | 132  | 
apply (induct t)  | 
| 55465 | 133  | 
apply (metis bt_map.simps(1) list.map(1) preorder.simps(1))  | 
| 36484 | 134  | 
by simp  | 
| 23449 | 135  | 
|
136  | 
lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)"  | 
|
| 36484 | 137  | 
proof (induct t)  | 
138  | 
case Lf thus ?case  | 
|
139  | 
proof -  | 
|
| 55465 | 140  | 
have "map f [] = []" by (metis list.map(1))  | 
| 36484 | 141  | 
hence "map f [] = inorder Lf" by (metis inorder.simps(1))  | 
142  | 
hence "inorder (bt_map f Lf) = map f []" by (metis bt_map.simps(1))  | 
|
143  | 
thus "inorder (bt_map f Lf) = map f (inorder Lf)" by (metis inorder.simps(1))  | 
|
144  | 
qed  | 
|
145  | 
next  | 
|
146  | 
case (Br a t1 t2) thus ?case by simp  | 
|
147  | 
qed  | 
|
| 23449 | 148  | 
|
149  | 
lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)"  | 
|
| 36484 | 150  | 
apply (induct t)  | 
151  | 
apply (metis Nil_is_map_conv bt_map.simps(1) postorder.simps(1))  | 
|
152  | 
by simp  | 
|
| 23449 | 153  | 
|
154  | 
lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t"  | 
|
| 36484 | 155  | 
apply (induct t)  | 
156  | 
apply (metis bt_map.simps(1) depth.simps(1))  | 
|
157  | 
by simp  | 
|
| 23449 | 158  | 
|
159  | 
lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t"  | 
|
| 36484 | 160  | 
apply (induct t)  | 
161  | 
apply (metis bt_map.simps(1) n_leaves.simps(1))  | 
|
162  | 
proof -  | 
|
163  | 
fix a :: 'b and t1 :: "'b bt" and t2 :: "'b bt"  | 
|
164  | 
assume A1: "n_leaves (bt_map f t1) = n_leaves t1"  | 
|
165  | 
assume A2: "n_leaves (bt_map f t2) = n_leaves t2"  | 
|
166  | 
have "\<And>V U. n_leaves (Br U (bt_map f t1) V) = n_leaves t1 + n_leaves V"  | 
|
167  | 
using A1 by (metis n_leaves.simps(2))  | 
|
168  | 
hence "\<And>V U. n_leaves (bt_map f (Br U t1 V)) = n_leaves t1 + n_leaves (bt_map f V)"  | 
|
169  | 
by (metis bt_map.simps(2))  | 
|
170  | 
hence F1: "\<And>U. n_leaves (bt_map f (Br U t1 t2)) = n_leaves t1 + n_leaves t2"  | 
|
171  | 
using A2 by metis  | 
|
172  | 
have "n_leaves t1 + n_leaves t2 = n_leaves (Br a t1 t2)"  | 
|
173  | 
by (metis n_leaves.simps(2))  | 
|
174  | 
thus "n_leaves (bt_map f (Br a t1 t2)) = n_leaves (Br a t1 t2)"  | 
|
175  | 
using F1 by metis  | 
|
176  | 
qed  | 
|
| 23449 | 177  | 
|
178  | 
lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)"  | 
|
| 36484 | 179  | 
apply (induct t)  | 
180  | 
apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1)  | 
|
181  | 
reflect.simps(1))  | 
|
| 39246 | 182  | 
apply simp  | 
183  | 
done  | 
|
| 23449 | 184  | 
|
185  | 
lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)"  | 
|
| 36484 | 186  | 
apply (induct t)  | 
187  | 
apply (metis Nil_is_rev_conv inorder.simps(1) reflect.simps(1))  | 
|
188  | 
by simp  | 
|
189  | 
(* Slow:  | 
|
190  | 
by (metis append.simps(1) append_eq_append_conv2 inorder.simps(2)  | 
|
191  | 
reflect.simps(2) rev.simps(2) rev_append)  | 
|
192  | 
*)  | 
|
| 23449 | 193  | 
|
194  | 
lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)"  | 
|
| 36484 | 195  | 
apply (induct t)  | 
196  | 
apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1)  | 
|
197  | 
reflect.simps(1))  | 
|
198  | 
by (metis preorder_reflect reflect_reflect_ident rev_swap)  | 
|
| 23449 | 199  | 
|
| 63167 | 200  | 
text \<open>  | 
| 36484 | 201  | 
Analogues of the standard properties of the append function for lists.  | 
| 63167 | 202  | 
\<close>  | 
| 23449 | 203  | 
|
| 39246 | 204  | 
lemma append_assoc [simp]: "append (append t1 t2) t3 = append t1 (append t2 t3)"  | 
| 36484 | 205  | 
apply (induct t1)  | 
| 39246 | 206  | 
apply (metis append.simps(1))  | 
207  | 
by (metis append.simps(2))  | 
|
| 23449 | 208  | 
|
| 39246 | 209  | 
lemma append_Lf2 [simp]: "append t Lf = t"  | 
| 36484 | 210  | 
apply (induct t)  | 
| 39246 | 211  | 
apply (metis append.simps(1))  | 
212  | 
by (metis append.simps(2))  | 
|
| 36484 | 213  | 
|
214  | 
declare max_add_distrib_left [simp]  | 
|
| 23449 | 215  | 
|
| 39246 | 216  | 
lemma depth_append [simp]: "depth (append t1 t2) = depth t1 + depth t2"  | 
| 36484 | 217  | 
apply (induct t1)  | 
| 39246 | 218  | 
apply (metis append.simps(1) depth.simps(1) plus_nat.simps(1))  | 
| 36484 | 219  | 
by simp  | 
| 23449 | 220  | 
|
| 39246 | 221  | 
lemma n_leaves_append [simp]:  | 
222  | 
"n_leaves (append t1 t2) = n_leaves t1 * n_leaves t2"  | 
|
| 36484 | 223  | 
apply (induct t1)  | 
| 39246 | 224  | 
apply (metis append.simps(1) n_leaves.simps(1) nat_mult_1 plus_nat.simps(1)  | 
| 
45502
 
6246bef495ff
avoid theorem references like 'semiring_norm(111)'
 
huffman 
parents: 
43197 
diff
changeset
 | 
225  | 
Suc_eq_plus1)  | 
| 
49962
 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 
webertj 
parents: 
45705 
diff
changeset
 | 
226  | 
by (simp add: distrib_right)  | 
| 23449 | 227  | 
|
| 39246 | 228  | 
lemma (*bt_map_append:*)  | 
229  | 
"bt_map f (append t1 t2) = append (bt_map f t1) (bt_map f t2)"  | 
|
| 36484 | 230  | 
apply (induct t1)  | 
| 39246 | 231  | 
apply (metis append.simps(1) bt_map.simps(1))  | 
232  | 
by (metis bt_map_append)  | 
|
| 23449 | 233  | 
|
234  | 
end  |