author | nipkow |
Wed, 04 Mar 2009 10:47:20 +0100 | |
changeset 30235 | 58d147683393 |
parent 23757 | 087b0a241557 |
child 32960 | 69916a850301 |
permissions | -rw-r--r-- |
13673 | 1 |
(* Title: HOL/MicroJava/Comp/LemmasComp.thy |
2 |
ID: $Id$ |
|
3 |
Author: Martin Strecker |
|
4 |
*) |
|
5 |
||
6 |
(* Lemmas for compiler correctness proof *) |
|
7 |
||
23022
9872ef956276
added qualification for ambiguous definition names
haftmann
parents:
22271
diff
changeset
|
8 |
theory LemmasComp |
9872ef956276
added qualification for ambiguous definition names
haftmann
parents:
22271
diff
changeset
|
9 |
imports TranslComp |
9872ef956276
added qualification for ambiguous definition names
haftmann
parents:
22271
diff
changeset
|
10 |
begin |
13673 | 11 |
|
14045 | 12 |
|
13 |
declare split_paired_All [simp del] |
|
14 |
declare split_paired_Ex [simp del] |
|
15 |
||
16 |
||
13673 | 17 |
(**********************************************************************) |
18 |
(* misc lemmas *) |
|
19 |
||
14045 | 20 |
|
21 |
||
13673 | 22 |
lemma split_pairs: "(\<lambda>(a,b). (F a b)) (ab) = F (fst ab) (snd ab)" |
23 |
proof - |
|
24 |
have "(\<lambda>(a,b). (F a b)) (fst ab,snd ab) = F (fst ab) (snd ab)" |
|
25 |
by (simp add: split_def) |
|
26 |
then show ?thesis by simp |
|
27 |
qed |
|
28 |
||
29 |
||
30 |
lemma c_hupd_conv: |
|
31 |
"c_hupd h' (xo, (h,l)) = (xo, (if xo = None then h' else h),l)" |
|
32 |
by (simp add: c_hupd_def) |
|
33 |
||
34 |
lemma gl_c_hupd [simp]: "(gl (c_hupd h xs)) = (gl xs)" |
|
35 |
by (simp add: gl_def c_hupd_def split_pairs) |
|
36 |
||
37 |
lemma c_hupd_xcpt_invariant [simp]: "gx (c_hupd h' (xo, st)) = xo" |
|
38 |
by (case_tac st, simp only: c_hupd_conv gx_conv) |
|
39 |
||
40 |
(* not added to simpset because of interference with c_hupd_conv *) |
|
41 |
lemma c_hupd_hp_invariant: "gh (c_hupd hp (None, st)) = hp" |
|
42 |
by (case_tac st, simp add: c_hupd_conv gh_def) |
|
43 |
||
44 |
||
14045 | 45 |
lemma unique_map_fst [rule_format]: "(\<forall> x \<in> set xs. (fst x = fst (f x) )) \<longrightarrow> |
46 |
unique (map f xs) = unique xs" |
|
47 |
proof (induct xs) |
|
48 |
case Nil show ?case by simp |
|
49 |
next |
|
50 |
case (Cons a list) |
|
51 |
show ?case |
|
52 |
proof |
|
53 |
assume fst_eq: "\<forall>x\<in>set (a # list). fst x = fst (f x)" |
|
54 |
||
55 |
have fst_set: "(fst a \<in> fst ` set list) = (fst (f a) \<in> fst ` f ` set list)" |
|
56 |
proof |
|
57 |
assume as: "fst a \<in> fst ` set list" |
|
58 |
then obtain x where fst_a_x: "x\<in>set list \<and> fst a = fst x" |
|
59 |
by (auto simp add: image_iff) |
|
60 |
then have "fst (f a) = fst (f x)" by (simp add: fst_eq) |
|
61 |
with as show "(fst (f a) \<in> fst ` f ` set list)" by (simp add: fst_a_x) |
|
62 |
next |
|
63 |
assume as: "fst (f a) \<in> fst ` f ` set list" |
|
64 |
then obtain x where fst_a_x: "x\<in>set list \<and> fst (f a) = fst (f x)" |
|
65 |
by (auto simp add: image_iff) |
|
66 |
then have "fst a = fst x" by (simp add: fst_eq) |
|
67 |
with as show "fst a \<in> fst ` set list" by (simp add: fst_a_x) |
|
68 |
qed |
|
69 |
||
70 |
with fst_eq Cons |
|
71 |
show "unique (map f (a # list)) = unique (a # list)" |
|
72 |
by (simp add: unique_def fst_set) |
|
73 |
qed |
|
74 |
qed |
|
75 |
||
76 |
lemma comp_unique: "unique (comp G) = unique G" |
|
77 |
apply (simp add: comp_def) |
|
78 |
apply (rule unique_map_fst) |
|
79 |
apply (simp add: compClass_def split_beta) |
|
80 |
done |
|
81 |
||
82 |
||
13673 | 83 |
(**********************************************************************) |
84 |
(* invariance of properties under compilation *) |
|
85 |
||
86 |
lemma comp_class_imp: |
|
87 |
"(class G C = Some(D, fs, ms)) \<Longrightarrow> |
|
88 |
(class (comp G) C = Some(D, fs, map (compMethod G C) ms))" |
|
89 |
apply (simp add: class_def comp_def compClass_def) |
|
90 |
apply (rule HOL.trans) |
|
91 |
apply (rule map_of_map2) |
|
92 |
apply auto |
|
93 |
done |
|
94 |
||
95 |
lemma comp_class_None: |
|
96 |
"(class G C = None) = (class (comp G) C = None)" |
|
97 |
apply (simp add: class_def comp_def compClass_def) |
|
98 |
apply (simp add: map_of_in_set) |
|
99 |
apply (simp add: image_compose [THEN sym] o_def split_beta del: image_compose) |
|
100 |
done |
|
101 |
||
14045 | 102 |
lemma comp_is_class: "is_class (comp G) C = is_class G C" |
13673 | 103 |
by (case_tac "class G C", auto simp: is_class_def comp_class_None dest: comp_class_imp) |
104 |
||
105 |
||
14045 | 106 |
lemma comp_is_type: "is_type (comp G) T = is_type G T" |
13673 | 107 |
by ((cases T),simp,(induct G)) ((simp),(simp only: comp_is_class),(simp add: comp_is_class),(simp only: comp_is_class)) |
108 |
||
14045 | 109 |
lemma comp_classname: "is_class G C |
110 |
\<Longrightarrow> fst (the (class G C)) = fst (the (class (comp G) C))" |
|
13673 | 111 |
by (case_tac "class G C", auto simp: is_class_def dest: comp_class_imp) |
112 |
||
14045 | 113 |
lemma comp_subcls1: "subcls1 (comp G) = subcls1 G" |
23757 | 114 |
by (auto simp add: subcls1_def2 comp_classname comp_is_class expand_fun_eq) |
13673 | 115 |
|
22271 | 116 |
lemma comp_widen: "widen (comp G) = widen G" |
117 |
apply (simp add: expand_fun_eq) |
|
118 |
apply (intro allI iffI) |
|
119 |
apply (erule widen.cases) |
|
14045 | 120 |
apply (simp_all add: comp_subcls1 widen.null) |
22271 | 121 |
apply (erule widen.cases) |
14045 | 122 |
apply (simp_all add: comp_subcls1 widen.null) |
13673 | 123 |
done |
124 |
||
22271 | 125 |
lemma comp_cast: "cast (comp G) = cast G" |
126 |
apply (simp add: expand_fun_eq) |
|
127 |
apply (intro allI iffI) |
|
128 |
apply (erule cast.cases) |
|
14045 | 129 |
apply (simp_all add: comp_subcls1 cast.widen cast.subcls) |
130 |
apply (rule cast.widen) apply (simp add: comp_widen) |
|
22271 | 131 |
apply (erule cast.cases) |
14045 | 132 |
apply (simp_all add: comp_subcls1 cast.widen cast.subcls) |
133 |
apply (rule cast.widen) apply (simp add: comp_widen) |
|
13673 | 134 |
done |
135 |
||
14045 | 136 |
lemma comp_cast_ok: "cast_ok (comp G) = cast_ok G" |
13673 | 137 |
by (simp add: expand_fun_eq cast_ok_def comp_widen) |
138 |
||
139 |
||
14045 | 140 |
lemma compClass_fst [simp]: "(fst (compClass G C)) = (fst C)" |
141 |
by (simp add: compClass_def split_beta) |
|
142 |
||
143 |
lemma compClass_fst_snd [simp]: "(fst (snd (compClass G C))) = (fst (snd C))" |
|
144 |
by (simp add: compClass_def split_beta) |
|
145 |
||
146 |
lemma compClass_fst_snd_snd [simp]: "(fst (snd (snd (compClass G C)))) = (fst (snd (snd C)))" |
|
147 |
by (simp add: compClass_def split_beta) |
|
148 |
||
149 |
lemma comp_wf_fdecl [simp]: "wf_fdecl (comp G) fd = wf_fdecl G fd" |
|
150 |
by (case_tac fd, simp add: wf_fdecl_def comp_is_type) |
|
151 |
||
152 |
||
153 |
lemma compClass_forall [simp]: " |
|
154 |
(\<forall>x\<in>set (snd (snd (snd (compClass G C)))). P (fst x) (fst (snd x))) = |
|
155 |
(\<forall>x\<in>set (snd (snd (snd C))). P (fst x) (fst (snd x)))" |
|
156 |
by (simp add: compClass_def compMethod_def split_beta) |
|
157 |
||
158 |
lemma comp_wf_mhead: "wf_mhead (comp G) S rT = wf_mhead G S rT" |
|
159 |
by (simp add: wf_mhead_def split_beta comp_is_type) |
|
160 |
||
161 |
lemma comp_ws_cdecl: " |
|
162 |
ws_cdecl (TranslComp.comp G) (compClass G C) = ws_cdecl G C" |
|
163 |
apply (simp add: ws_cdecl_def split_beta comp_is_class comp_subcls1) |
|
164 |
apply (simp (no_asm_simp) add: comp_wf_mhead) |
|
165 |
apply (simp add: compClass_def compMethod_def split_beta unique_map_fst) |
|
13673 | 166 |
done |
167 |
||
14045 | 168 |
|
169 |
lemma comp_wf_syscls: "wf_syscls (comp G) = wf_syscls G" |
|
13673 | 170 |
apply (simp add: wf_syscls_def comp_def compClass_def split_beta) |
171 |
apply (simp only: image_compose [THEN sym]) |
|
14045 | 172 |
apply (subgoal_tac "(Fun.comp fst (\<lambda>(C, cno::cname, fdls::fdecl list, jmdls). |
173 |
(C, cno, fdls, map (compMethod G C) jmdls))) = fst") |
|
13673 | 174 |
apply (simp del: image_compose) |
175 |
apply (simp add: expand_fun_eq split_beta) |
|
176 |
done |
|
177 |
||
178 |
||
14045 | 179 |
lemma comp_ws_prog: "ws_prog (comp G) = ws_prog G" |
180 |
apply (rule sym) |
|
181 |
apply (simp add: ws_prog_def comp_ws_cdecl comp_unique) |
|
182 |
apply (simp add: comp_wf_syscls) |
|
183 |
apply (auto simp add: comp_ws_cdecl [THEN sym] TranslComp.comp_def) |
|
184 |
done |
|
13673 | 185 |
|
186 |
||
22271 | 187 |
lemma comp_class_rec: " wfP ((subcls1 G)^--1) \<Longrightarrow> |
13673 | 188 |
class_rec (comp G) C t f = |
189 |
class_rec G C t (\<lambda> C' fs' ms' r'. f C' fs' (map (compMethod G C') ms') r')" |
|
22271 | 190 |
apply (rule_tac a = C in wfP_induct) apply assumption |
191 |
apply (subgoal_tac "wfP ((subcls1 (comp G))\<inverse>\<inverse>)") |
|
13673 | 192 |
apply (subgoal_tac "(class G x = None) \<or> (\<exists> D fs ms. (class G x = Some (D, fs, ms)))") |
193 |
apply (erule disjE) |
|
194 |
||
195 |
(* case class G x = None *) |
|
23757 | 196 |
apply (simp (no_asm_simp) add: class_rec_def comp_subcls1 |
197 |
wfrec [to_pred, where r="(subcls1 G)^--1", simplified]) |
|
13673 | 198 |
apply (simp add: comp_class_None) |
199 |
||
200 |
(* case \<exists> D fs ms. (class G x = Some (D, fs, ms)) *) |
|
201 |
apply (erule exE)+ |
|
202 |
apply (frule comp_class_imp) |
|
203 |
apply (frule_tac G="comp G" and C=x and t=t and f=f in class_rec_lemma) |
|
204 |
apply assumption |
|
205 |
apply (frule_tac G=G and C=x and t=t |
|
206 |
and f="(\<lambda>C' fs' ms'. f C' fs' (map (compMethod G C') ms'))" in class_rec_lemma) |
|
207 |
apply assumption |
|
208 |
apply (simp only:) |
|
209 |
||
210 |
apply (case_tac "x = Object") |
|
211 |
apply simp |
|
212 |
apply (frule subcls1I, assumption) |
|
213 |
apply (drule_tac x=D in spec, drule mp, simp) |
|
214 |
apply simp |
|
215 |
||
216 |
(* subgoals *) |
|
217 |
apply (case_tac "class G x") |
|
218 |
apply auto |
|
219 |
apply (simp add: comp_subcls1) |
|
220 |
done |
|
221 |
||
22271 | 222 |
lemma comp_fields: "wfP ((subcls1 G)^--1) \<Longrightarrow> |
14045 | 223 |
fields (comp G,C) = fields (G,C)" |
13673 | 224 |
by (simp add: fields_def comp_class_rec) |
225 |
||
22271 | 226 |
lemma comp_field: "wfP ((subcls1 G)^--1) \<Longrightarrow> |
14045 | 227 |
field (comp G,C) = field (G,C)" |
23022
9872ef956276
added qualification for ambiguous definition names
haftmann
parents:
22271
diff
changeset
|
228 |
by (simp add: TypeRel.field_def comp_fields) |
13673 | 229 |
|
230 |
||
231 |
||
14045 | 232 |
lemma class_rec_relation [rule_format (no_asm)]: "\<lbrakk> ws_prog G; |
13673 | 233 |
\<forall> fs ms. R (f1 Object fs ms t1) (f2 Object fs ms t2); |
234 |
\<forall> C fs ms r1 r2. (R r1 r2) \<longrightarrow> (R (f1 C fs ms r1) (f2 C fs ms r2)) \<rbrakk> |
|
235 |
\<Longrightarrow> ((class G C) \<noteq> None) \<longrightarrow> |
|
236 |
R (class_rec G C t1 f1) (class_rec G C t2 f2)" |
|
237 |
apply (frule wf_subcls1) (* establish wf ((subcls1 G)^-1) *) |
|
22271 | 238 |
apply (rule_tac a = C in wfP_induct) apply assumption |
13673 | 239 |
apply (intro strip) |
240 |
apply (subgoal_tac "(\<exists>D rT mb. class G x = Some (D, rT, mb))") |
|
241 |
apply (erule exE)+ |
|
242 |
apply (frule_tac C=x and t=t1 and f=f1 in class_rec_lemma) |
|
243 |
apply assumption |
|
244 |
apply (frule_tac C=x and t=t2 and f=f2 in class_rec_lemma) |
|
245 |
apply assumption |
|
246 |
apply (simp only:) |
|
247 |
||
248 |
apply (case_tac "x = Object") |
|
249 |
apply simp |
|
250 |
apply (frule subcls1I, assumption) |
|
251 |
apply (drule_tac x=D in spec, drule mp, simp) |
|
252 |
apply simp |
|
253 |
apply (subgoal_tac "(\<exists>D' rT' mb'. class G D = Some (D', rT', mb'))") |
|
254 |
apply blast |
|
255 |
||
256 |
(* subgoals *) |
|
257 |
||
14045 | 258 |
apply (frule class_wf_struct) apply assumption |
259 |
apply (simp add: ws_cdecl_def is_class_def) |
|
13673 | 260 |
|
261 |
apply (simp add: subcls1_def2 is_class_def) |
|
14045 | 262 |
apply auto |
13673 | 263 |
done |
264 |
||
265 |
||
266 |
syntax |
|
267 |
mtd_mb :: "cname \<times> ty \<times> 'c \<Rightarrow> 'c" |
|
268 |
translations |
|
269 |
"mtd_mb" => "Fun.comp snd snd" |
|
270 |
||
14045 | 271 |
lemma map_of_map_fst: "\<lbrakk> inj f; |
13673 | 272 |
\<forall>x\<in>set xs. fst (f x) = fst x; \<forall>x\<in>set xs. fst (g x) = fst x \<rbrakk> |
14045 | 273 |
\<Longrightarrow> map_of (map g xs) k |
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
23757
diff
changeset
|
274 |
= Option.map (\<lambda> e. (snd (g ((inv f) (k, e))))) (map_of (map f xs) k)" |
13673 | 275 |
apply (induct xs) |
276 |
apply simp |
|
277 |
apply (simp del: split_paired_All) |
|
278 |
apply (case_tac "k = fst a") |
|
279 |
apply (simp del: split_paired_All) |
|
14045 | 280 |
apply (subgoal_tac "(inv f (fst a, snd (f a))) = a", simp) |
281 |
apply (subgoal_tac "(fst a, snd (f a)) = f a", simp) |
|
282 |
apply (erule conjE)+ |
|
283 |
apply (drule_tac s ="fst (f a)" and t="fst a" in sym) |
|
13673 | 284 |
apply simp |
14045 | 285 |
apply (simp add: surjective_pairing) |
13673 | 286 |
done |
287 |
||
288 |
||
14045 | 289 |
lemma comp_method [rule_format (no_asm)]: "\<lbrakk> ws_prog G; is_class G C\<rbrakk> \<Longrightarrow> |
290 |
((method (comp G, C) S) = |
|
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
23757
diff
changeset
|
291 |
Option.map (\<lambda> (D,rT,b). (D, rT, mtd_mb (compMethod G D (S, rT, b)))) |
14045 | 292 |
(method (G, C) S))" |
13673 | 293 |
apply (simp add: method_def) |
294 |
apply (frule wf_subcls1) |
|
295 |
apply (simp add: comp_class_rec) |
|
296 |
apply (simp add: map_compose [THEN sym] split_iter split_compose del: map_compose) |
|
30235
58d147683393
Made Option a separate theory and renamed option_map to Option.map
nipkow
parents:
23757
diff
changeset
|
297 |
apply (rule_tac R="%x y. ((x S) = (Option.map (\<lambda>(D, rT, b). |
14045 | 298 |
(D, rT, snd (snd (compMethod G D (S, rT, b))))) (y S)))" |
299 |
in class_rec_relation) |
|
300 |
apply assumption |
|
13673 | 301 |
|
302 |
apply (intro strip) |
|
303 |
apply simp |
|
304 |
||
14045 | 305 |
apply (rule trans) |
306 |
||
307 |
apply (rule_tac f="(\<lambda>(s, m). (s, Object, m))" and |
|
308 |
g="(Fun.comp (\<lambda>(s, m). (s, Object, m)) (compMethod G Object))" |
|
309 |
in map_of_map_fst) |
|
310 |
defer (* inj \<dots> *) |
|
311 |
apply (simp add: inj_on_def split_beta) |
|
13673 | 312 |
apply (simp add: split_beta compMethod_def) |
14045 | 313 |
apply (simp add: map_of_map [THEN sym]) |
314 |
apply (simp add: split_beta) |
|
315 |
apply (simp add: map_compose [THEN sym] Fun.comp_def split_beta) |
|
316 |
apply (subgoal_tac "(\<lambda>x\<Colon>(vname list \<times> fdecl list \<times> stmt \<times> expr) mdecl. |
|
317 |
(fst x, Object, |
|
318 |
snd (compMethod G Object |
|
319 |
(inv (\<lambda>(s\<Colon>sig, m\<Colon>ty \<times> vname list \<times> fdecl list \<times> stmt \<times> expr). |
|
320 |
(s, Object, m)) |
|
321 |
(S, Object, snd x))))) |
|
322 |
= (\<lambda>x. (fst x, Object, fst (snd x), |
|
323 |
snd (snd (compMethod G Object (S, snd x)))))") |
|
13673 | 324 |
apply (simp only:) |
14045 | 325 |
apply (simp add: expand_fun_eq) |
326 |
apply (intro strip) |
|
327 |
apply (subgoal_tac "(inv (\<lambda>(s, m). (s, Object, m)) (S, Object, snd x)) = (S, snd x)") |
|
13673 | 328 |
apply (simp only:) |
329 |
apply (simp add: compMethod_def split_beta) |
|
14045 | 330 |
apply (rule inv_f_eq) |
331 |
defer |
|
332 |
defer |
|
13673 | 333 |
|
334 |
apply (intro strip) |
|
14025 | 335 |
apply (simp add: map_add_Some_iff map_of_map del: split_paired_Ex) |
14045 | 336 |
apply (simp add: map_add_def) |
337 |
apply (subgoal_tac "inj (\<lambda>(s, m). (s, Ca, m))") |
|
338 |
apply (drule_tac g="(Fun.comp (\<lambda>(s, m). (s, Ca, m)) (compMethod G Ca))" and xs=ms |
|
339 |
and k=S in map_of_map_fst) |
|
340 |
apply (simp add: split_beta) |
|
341 |
apply (simp add: compMethod_def split_beta) |
|
342 |
apply (case_tac "(map_of (map (\<lambda>(s, m). (s, Ca, m)) ms) S)") |
|
343 |
apply simp |
|
344 |
apply simp apply (simp add: split_beta map_of_map) apply (erule exE) apply (erule conjE)+ |
|
345 |
apply (drule_tac t=a in sym) |
|
346 |
apply (subgoal_tac "(inv (\<lambda>(s, m). (s, Ca, m)) (S, a)) = (S, snd a)") |
|
347 |
apply simp |
|
13673 | 348 |
apply (subgoal_tac "\<forall>x\<in>set ms. fst ((Fun.comp (\<lambda>(s, m). (s, Ca, m)) (compMethod G Ca)) x) = fst x") |
14045 | 349 |
prefer 2 apply (simp (no_asm_simp) add: compMethod_def split_beta) |
13673 | 350 |
apply (simp add: map_of_map2) |
351 |
apply (simp (no_asm_simp) add: compMethod_def split_beta) |
|
352 |
||
14045 | 353 |
-- "remaining subgoals" |
354 |
apply (auto intro: inv_f_eq simp add: inj_on_def is_class_def) |
|
13673 | 355 |
done |
356 |
||
357 |
||
358 |
||
14045 | 359 |
lemma comp_wf_mrT: "\<lbrakk> ws_prog G; is_class G D\<rbrakk> \<Longrightarrow> |
360 |
wf_mrT (TranslComp.comp G) (C, D, fs, map (compMethod G a) ms) = |
|
361 |
wf_mrT G (C, D, fs, ms)" |
|
362 |
apply (simp add: wf_mrT_def compMethod_def split_beta) |
|
363 |
apply (simp add: comp_widen) |
|
364 |
apply (rule iffI) |
|
13673 | 365 |
apply (intro strip) |
366 |
apply simp |
|
14045 | 367 |
apply (drule bspec) apply assumption |
368 |
apply (drule_tac x=D' in spec) apply (drule_tac x=rT' in spec) apply (drule mp) |
|
369 |
prefer 2 apply assumption |
|
370 |
apply (simp add: comp_method [of G D]) |
|
371 |
apply (erule exE)+ |
|
372 |
apply (subgoal_tac "z =(fst z, fst (snd z), snd (snd z))") |
|
373 |
apply (rule exI) |
|
374 |
apply (simp) |
|
375 |
apply (simp add: split_paired_all) |
|
376 |
apply (intro strip) |
|
377 |
apply (simp add: comp_method) |
|
378 |
apply auto |
|
13673 | 379 |
done |
380 |
||
381 |
||
382 |
(**********************************************************************) |
|
383 |
(* DIVERSE OTHER LEMMAS *) |
|
384 |
(**********************************************************************) |
|
385 |
||
386 |
lemma max_spec_preserves_length: |
|
387 |
"max_spec G C (mn, pTs) = {((md,rT),pTs')} |
|
388 |
\<Longrightarrow> length pTs = length pTs'" |
|
389 |
apply (frule max_spec2mheads) |
|
390 |
apply (erule exE)+ |
|
391 |
apply (simp add: list_all2_def) |
|
392 |
done |
|
393 |
||
394 |
||
395 |
lemma ty_exprs_length [simp]: "(E\<turnstile>es[::]Ts \<longrightarrow> length es = length Ts)" |
|
396 |
apply (subgoal_tac "(E\<turnstile>e::T \<longrightarrow> True) \<and> (E\<turnstile>es[::]Ts \<longrightarrow> length es = length Ts) \<and> (E\<turnstile>s\<surd> \<longrightarrow> True)") |
|
397 |
apply blast |
|
398 |
apply (rule ty_expr_ty_exprs_wt_stmt.induct) |
|
399 |
apply auto |
|
400 |
done |
|
401 |
||
402 |
||
403 |
lemma max_spec_preserves_method_rT [simp]: |
|
404 |
"max_spec G C (mn, pTs) = {((md,rT),pTs')} |
|
405 |
\<Longrightarrow> method_rT (the (method (G, C) (mn, pTs'))) = rT" |
|
406 |
apply (frule max_spec2mheads) |
|
407 |
apply (erule exE)+ |
|
408 |
apply (simp add: method_rT_def) |
|
409 |
done |
|
410 |
||
14045 | 411 |
(**********************************************************************************) |
412 |
||
413 |
declare compClass_fst [simp del] |
|
414 |
declare compClass_fst_snd [simp del] |
|
415 |
declare compClass_fst_snd_snd [simp del] |
|
416 |
||
417 |
declare split_paired_All [simp add] |
|
418 |
declare split_paired_Ex [simp add] |
|
13673 | 419 |
|
420 |
end |