src/ZF/Constructible/Formula.thy
author wenzelm
Tue, 07 Nov 2006 19:40:13 +0100
changeset 21233 5a5c8ea5f66a
parent 16417 9bc16273c2d4
child 21404 eb85850d3eb7
permissions -rw-r--r--
tuned specifications;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13505
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     1
(*  Title:      ZF/Constructible/Formula.thy
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     2
    ID: $Id$
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     4
*)
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     5
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     6
header {* First-Order Formulas and the Definition of the Class L *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     7
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 15481
diff changeset
     8
theory Formula imports Main begin
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     9
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    10
subsection{*Internalized formulas of FOL*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    11
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    12
text{*De Bruijn representation.
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    13
  Unbound variables get their denotations from an environment.*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    14
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    15
consts   formula :: i
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    16
datatype
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    17
  "formula" = Member ("x: nat", "y: nat")
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    18
            | Equal  ("x: nat", "y: nat")
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    19
            | Nand ("p: formula", "q: formula")
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    20
            | Forall ("p: formula")
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    21
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    22
declare formula.intros [TC]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    23
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    24
definition Neg :: "i=>i"
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    25
    "Neg(p) == Nand(p,p)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    26
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    27
definition And :: "[i,i]=>i"
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    28
    "And(p,q) == Neg(Nand(p,q))"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    29
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    30
definition Or :: "[i,i]=>i"
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    31
    "Or(p,q) == Nand(Neg(p),Neg(q))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    32
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    33
definition Implies :: "[i,i]=>i"
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    34
    "Implies(p,q) == Nand(p,Neg(q))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    35
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    36
definition Iff :: "[i,i]=>i"
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    37
    "Iff(p,q) == And(Implies(p,q), Implies(q,p))"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    38
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    39
definition Exists :: "i=>i"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    40
    "Exists(p) == Neg(Forall(Neg(p)))";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    41
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    42
lemma Neg_type [TC]: "p \<in> formula ==> Neg(p) \<in> formula"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    43
by (simp add: Neg_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    44
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    45
lemma And_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> And(p,q) \<in> formula"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    46
by (simp add: And_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    47
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    48
lemma Or_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> Or(p,q) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    49
by (simp add: Or_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    50
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    51
lemma Implies_type [TC]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    52
     "[| p \<in> formula; q \<in> formula |] ==> Implies(p,q) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    53
by (simp add: Implies_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    54
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    55
lemma Iff_type [TC]:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    56
     "[| p \<in> formula; q \<in> formula |] ==> Iff(p,q) \<in> formula"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    57
by (simp add: Iff_def) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    58
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    59
lemma Exists_type [TC]: "p \<in> formula ==> Exists(p) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    60
by (simp add: Exists_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    61
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    62
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    63
consts   satisfies :: "[i,i]=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    64
primrec (*explicit lambda is required because the environment varies*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    65
  "satisfies(A,Member(x,y)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    66
      (\<lambda>env \<in> list(A). bool_of_o (nth(x,env) \<in> nth(y,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    67
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    68
  "satisfies(A,Equal(x,y)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    69
      (\<lambda>env \<in> list(A). bool_of_o (nth(x,env) = nth(y,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    70
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    71
  "satisfies(A,Nand(p,q)) =
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    72
      (\<lambda>env \<in> list(A). not ((satisfies(A,p)`env) and (satisfies(A,q)`env)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    73
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    74
  "satisfies(A,Forall(p)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    75
      (\<lambda>env \<in> list(A). bool_of_o (\<forall>x\<in>A. satisfies(A,p) ` (Cons(x,env)) = 1))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    76
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    77
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    78
lemma "p \<in> formula ==> satisfies(A,p) \<in> list(A) -> bool"
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    79
by (induct set: formula) simp_all
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    80
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    81
abbreviation
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    82
  sats :: "[i,i,i] => o"
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
    83
  "sats(A,p,env) == satisfies(A,p)`env = 1"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    84
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    85
lemma [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    86
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    87
   ==> sats(A, Member(x,y), env) <-> nth(x,env) \<in> nth(y,env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    88
by simp
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    89
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    90
lemma [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    91
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    92
   ==> sats(A, Equal(x,y), env) <-> nth(x,env) = nth(y,env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    93
by simp
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    94
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    95
lemma sats_Nand_iff [simp]:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    96
  "env \<in> list(A) 
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    97
   ==> (sats(A, Nand(p,q), env)) <-> ~ (sats(A,p,env) & sats(A,q,env))" 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    98
by (simp add: Bool.and_def Bool.not_def cond_def) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    99
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   100
lemma sats_Forall_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   101
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   102
   ==> sats(A, Forall(p), env) <-> (\<forall>x\<in>A. sats(A, p, Cons(x,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   103
by simp
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   104
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   105
declare satisfies.simps [simp del]; 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   106
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   107
subsection{*Dividing line between primitive and derived connectives*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   108
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   109
lemma sats_Neg_iff [simp]:
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   110
  "env \<in> list(A) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   111
   ==> sats(A, Neg(p), env) <-> ~ sats(A,p,env)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   112
by (simp add: Neg_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   113
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   114
lemma sats_And_iff [simp]:
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   115
  "env \<in> list(A) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   116
   ==> (sats(A, And(p,q), env)) <-> sats(A,p,env) & sats(A,q,env)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   117
by (simp add: And_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   118
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   119
lemma sats_Or_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   120
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   121
   ==> (sats(A, Or(p,q), env)) <-> sats(A,p,env) | sats(A,q,env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   122
by (simp add: Or_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   123
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   124
lemma sats_Implies_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   125
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   126
   ==> (sats(A, Implies(p,q), env)) <-> (sats(A,p,env) --> sats(A,q,env))"
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   127
by (simp add: Implies_def, blast) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   128
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   129
lemma sats_Iff_iff [simp]:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   130
  "env \<in> list(A) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   131
   ==> (sats(A, Iff(p,q), env)) <-> (sats(A,p,env) <-> sats(A,q,env))"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   132
by (simp add: Iff_def, blast) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   133
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   134
lemma sats_Exists_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   135
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   136
   ==> sats(A, Exists(p), env) <-> (\<exists>x\<in>A. sats(A, p, Cons(x,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   137
by (simp add: Exists_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   138
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   139
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   140
subsubsection{*Derived rules to help build up formulas*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   141
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   142
lemma mem_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   143
      "[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   144
       ==> (x\<in>y) <-> sats(A, Member(i,j), env)" 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   145
by (simp add: satisfies.simps)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   146
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   147
lemma equal_iff_sats:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   148
      "[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   149
       ==> (x=y) <-> sats(A, Equal(i,j), env)" 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   150
by (simp add: satisfies.simps)
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   151
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   152
lemma not_iff_sats:
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   153
      "[| P <-> sats(A,p,env); env \<in> list(A)|]
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   154
       ==> (~P) <-> sats(A, Neg(p), env)"
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   155
by simp
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   156
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   157
lemma conj_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   158
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   159
       ==> (P & Q) <-> sats(A, And(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   160
by (simp add: sats_And_iff)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   161
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   162
lemma disj_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   163
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   164
       ==> (P | Q) <-> sats(A, Or(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   165
by (simp add: sats_Or_iff)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   166
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   167
lemma iff_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   168
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   169
       ==> (P <-> Q) <-> sats(A, Iff(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   170
by (simp add: sats_Forall_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   171
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   172
lemma imp_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   173
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   174
       ==> (P --> Q) <-> sats(A, Implies(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   175
by (simp add: sats_Forall_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   176
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   177
lemma ball_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   178
      "[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   179
       ==> (\<forall>x\<in>A. P(x)) <-> sats(A, Forall(p), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   180
by (simp add: sats_Forall_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   181
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   182
lemma bex_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   183
      "[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   184
       ==> (\<exists>x\<in>A. P(x)) <-> sats(A, Exists(p), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   185
by (simp add: sats_Exists_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   186
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   187
lemmas FOL_iff_sats = 
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   188
        mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   189
        disj_iff_sats imp_iff_sats iff_iff_sats imp_iff_sats ball_iff_sats
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   190
        bex_iff_sats
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   191
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   192
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   193
subsection{*Arity of a Formula: Maximum Free de Bruijn Index*}
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   194
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   195
consts   arity :: "i=>i"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   196
primrec
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   197
  "arity(Member(x,y)) = succ(x) \<union> succ(y)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   198
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   199
  "arity(Equal(x,y)) = succ(x) \<union> succ(y)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   200
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   201
  "arity(Nand(p,q)) = arity(p) \<union> arity(q)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   202
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   203
  "arity(Forall(p)) = Arith.pred(arity(p))"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   204
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   205
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   206
lemma arity_type [TC]: "p \<in> formula ==> arity(p) \<in> nat"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   207
by (induct_tac p, simp_all) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   208
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   209
lemma arity_Neg [simp]: "arity(Neg(p)) = arity(p)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   210
by (simp add: Neg_def) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   211
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   212
lemma arity_And [simp]: "arity(And(p,q)) = arity(p) \<union> arity(q)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   213
by (simp add: And_def) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   214
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   215
lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) \<union> arity(q)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   216
by (simp add: Or_def) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   217
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   218
lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) \<union> arity(q)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   219
by (simp add: Implies_def) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   220
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   221
lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) \<union> arity(q)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   222
by (simp add: Iff_def, blast)
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   223
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   224
lemma arity_Exists [simp]: "arity(Exists(p)) = Arith.pred(arity(p))"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   225
by (simp add: Exists_def) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   226
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   227
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   228
lemma arity_sats_iff [rule_format]:
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   229
  "[| p \<in> formula; extra \<in> list(A) |]
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   230
   ==> \<forall>env \<in> list(A). 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   231
           arity(p) \<le> length(env) --> 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   232
           sats(A, p, env @ extra) <-> sats(A, p, env)"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   233
apply (induct_tac p)
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   234
apply (simp_all add: Arith.pred_def nth_append Un_least_lt_iff nat_imp_quasinat
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   235
                split: split_nat_case, auto) 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   236
done
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   237
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   238
lemma arity_sats1_iff:
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   239
  "[| arity(p) \<le> succ(length(env)); p \<in> formula; x \<in> A; env \<in> list(A); 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   240
      extra \<in> list(A) |]
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   241
   ==> sats(A, p, Cons(x, env @ extra)) <-> sats(A, p, Cons(x, env))"
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   242
apply (insert arity_sats_iff [of p extra A "Cons(x,env)"])
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   243
apply simp 
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   244
done
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   245
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   246
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   247
subsection{*Renaming Some de Bruijn Variables*}
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   248
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   249
definition incr_var :: "[i,i]=>i"
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   250
    "incr_var(x,nq) == if x<nq then x else succ(x)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   251
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   252
lemma incr_var_lt: "x<nq ==> incr_var(x,nq) = x"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   253
by (simp add: incr_var_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   254
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   255
lemma incr_var_le: "nq\<le>x ==> incr_var(x,nq) = succ(x)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   256
apply (simp add: incr_var_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   257
apply (blast dest: lt_trans1) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   258
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   259
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   260
consts   incr_bv :: "i=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   261
primrec
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   262
  "incr_bv(Member(x,y)) = 
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   263
      (\<lambda>nq \<in> nat. Member (incr_var(x,nq), incr_var(y,nq)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   264
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   265
  "incr_bv(Equal(x,y)) = 
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   266
      (\<lambda>nq \<in> nat. Equal (incr_var(x,nq), incr_var(y,nq)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   267
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   268
  "incr_bv(Nand(p,q)) =
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   269
      (\<lambda>nq \<in> nat. Nand (incr_bv(p)`nq, incr_bv(q)`nq))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   270
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   271
  "incr_bv(Forall(p)) = 
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   272
      (\<lambda>nq \<in> nat. Forall (incr_bv(p) ` succ(nq)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   273
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   274
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   275
lemma [TC]: "x \<in> nat ==> incr_var(x,nq) \<in> nat"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   276
by (simp add: incr_var_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   277
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   278
lemma incr_bv_type [TC]: "p \<in> formula ==> incr_bv(p) \<in> nat -> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   279
by (induct_tac p, simp_all) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   280
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   281
text{*Obviously, @{term DPow} is closed under complements and finite
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   282
intersections and unions.  Needs an inductive lemma to allow two lists of
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   283
parameters to be combined.*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   284
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   285
lemma sats_incr_bv_iff [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   286
  "[| p \<in> formula; env \<in> list(A); x \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   287
   ==> \<forall>bvs \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   288
           sats(A, incr_bv(p) ` length(bvs), bvs @ Cons(x,env)) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   289
           sats(A, p, bvs@env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   290
apply (induct_tac p)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   291
apply (simp_all add: incr_var_def nth_append succ_lt_iff length_type)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   292
apply (auto simp add: diff_succ not_lt_iff_le)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   293
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   294
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   295
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   296
(*the following two lemmas prevent huge case splits in arity_incr_bv_lemma*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   297
lemma incr_var_lemma:
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   298
     "[| x \<in> nat; y \<in> nat; nq \<le> x |]
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   299
      ==> succ(x) \<union> incr_var(y,nq) = succ(x \<union> y)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   300
apply (simp add: incr_var_def Ord_Un_if, auto)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   301
  apply (blast intro: leI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   302
 apply (simp add: not_lt_iff_le)  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   303
 apply (blast intro: le_anti_sym) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   304
apply (blast dest: lt_trans2) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   305
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   306
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   307
lemma incr_And_lemma:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   308
     "y < x ==> y \<union> succ(x) = succ(x \<union> y)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   309
apply (simp add: Ord_Un_if lt_Ord lt_Ord2 succ_lt_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   310
apply (blast dest: lt_asym) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   311
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   312
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   313
lemma arity_incr_bv_lemma [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   314
  "p \<in> formula 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   315
   ==> \<forall>n \<in> nat. arity (incr_bv(p) ` n) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   316
                 (if n < arity(p) then succ(arity(p)) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   317
apply (induct_tac p) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   318
apply (simp_all add: imp_disj not_lt_iff_le Un_least_lt_iff lt_Un_iff le_Un_iff
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   319
                     succ_Un_distrib [symmetric] incr_var_lt incr_var_le
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   320
                     Un_commute incr_var_lemma Arith.pred_def nat_imp_quasinat
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   321
            split: split_nat_case) 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   322
 txt{*the Forall case reduces to linear arithmetic*}
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   323
 prefer 2
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   324
 apply clarify 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   325
 apply (blast dest: lt_trans1) 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   326
txt{*left with the And case*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   327
apply safe
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   328
 apply (blast intro: incr_And_lemma lt_trans1) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   329
apply (subst incr_And_lemma)
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   330
 apply (blast intro: lt_trans1) 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   331
apply (simp add: Un_commute)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   332
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   333
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   334
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   335
subsection{*Renaming all but the First de Bruijn Variable*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   336
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   337
definition incr_bv1 :: "i => i"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   338
    "incr_bv1(p) == incr_bv(p)`1"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   339
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   340
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   341
lemma incr_bv1_type [TC]: "p \<in> formula ==> incr_bv1(p) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   342
by (simp add: incr_bv1_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   343
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   344
(*For renaming all but the bound variable at level 0*)
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   345
lemma sats_incr_bv1_iff:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   346
  "[| p \<in> formula; env \<in> list(A); x \<in> A; y \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   347
   ==> sats(A, incr_bv1(p), Cons(x, Cons(y, env))) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   348
       sats(A, p, Cons(x,env))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   349
apply (insert sats_incr_bv_iff [of p env A y "Cons(x,Nil)"])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   350
apply (simp add: incr_bv1_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   351
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   352
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   353
lemma formula_add_params1 [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   354
  "[| p \<in> formula; n \<in> nat; x \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   355
   ==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   356
          length(bvs) = n --> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   357
          sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   358
          sats(A, p, Cons(x,env))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   359
apply (induct_tac n, simp, clarify) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   360
apply (erule list.cases)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   361
apply (simp_all add: sats_incr_bv1_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   362
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   363
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   364
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   365
lemma arity_incr_bv1_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   366
  "p \<in> formula
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   367
   ==> arity(incr_bv1(p)) =
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   368
        (if 1 < arity(p) then succ(arity(p)) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   369
apply (insert arity_incr_bv_lemma [of p 1])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   370
apply (simp add: incr_bv1_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   371
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   372
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   373
lemma arity_iterates_incr_bv1_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   374
  "[| p \<in> formula; n \<in> nat |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   375
   ==> arity(incr_bv1^n(p)) =
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   376
         (if 1 < arity(p) then n #+ arity(p) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   377
apply (induct_tac n) 
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   378
apply (simp_all add: arity_incr_bv1_eq)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   379
apply (simp add: not_lt_iff_le)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   380
apply (blast intro: le_trans add_le_self2 arity_type) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   381
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   382
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   383
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   384
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   385
subsection{*Definable Powerset*}
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   386
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   387
text{*The definable powerset operation: Kunen's definition VI 1.1, page 165.*}
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   388
definition DPow :: "i => i"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   389
  "DPow(A) == {X \<in> Pow(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   390
               \<exists>env \<in> list(A). \<exists>p \<in> formula. 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   391
                 arity(p) \<le> succ(length(env)) & 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   392
                 X = {x\<in>A. sats(A, p, Cons(x,env))}}"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   393
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   394
lemma DPowI:
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   395
  "[|env \<in> list(A);  p \<in> formula;  arity(p) \<le> succ(length(env))|]
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   396
   ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   397
by (simp add: DPow_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   398
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   399
text{*With this rule we can specify @{term p} later.*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   400
lemma DPowI2 [rule_format]:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   401
  "[|\<forall>x\<in>A. P(x) <-> sats(A, p, Cons(x,env));
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   402
     env \<in> list(A);  p \<in> formula;  arity(p) \<le> succ(length(env))|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   403
   ==> {x\<in>A. P(x)} \<in> DPow(A)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   404
by (simp add: DPow_def, blast) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   405
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   406
lemma DPowD:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   407
  "X \<in> DPow(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   408
   ==> X <= A &
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   409
       (\<exists>env \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   410
        \<exists>p \<in> formula. arity(p) \<le> succ(length(env)) & 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   411
                      X = {x\<in>A. sats(A, p, Cons(x,env))})"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   412
by (simp add: DPow_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   413
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   414
lemmas DPow_imp_subset = DPowD [THEN conjunct1]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   415
13647
7f6f0ffc45c3 tidying and reorganization
paulson
parents: 13634
diff changeset
   416
(*Kunen's Lemma VI 1.2*)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   417
lemma "[| p \<in> formula; env \<in> list(A); arity(p) \<le> succ(length(env)) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   418
       ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   419
by (blast intro: DPowI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   420
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   421
lemma DPow_subset_Pow: "DPow(A) <= Pow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   422
by (simp add: DPow_def, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   423
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   424
lemma empty_in_DPow: "0 \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   425
apply (simp add: DPow_def)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13328
diff changeset
   426
apply (rule_tac x=Nil in bexI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   427
 apply (rule_tac x="Neg(Equal(0,0))" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   428
  apply (auto simp add: Un_least_lt_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   429
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   430
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   431
lemma Compl_in_DPow: "X \<in> DPow(A) ==> (A-X) \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   432
apply (simp add: DPow_def, clarify, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   433
apply (rule bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   434
 apply (rule_tac x="Neg(p)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   435
  apply auto 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   436
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   437
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   438
lemma Int_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Int Y \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   439
apply (simp add: DPow_def, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   440
apply (rename_tac envp p envq q) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   441
apply (rule_tac x="envp@envq" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   442
 apply (rule_tac x="And(p, iterates(incr_bv1,length(envp),q))" in bexI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   443
  apply typecheck
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   444
apply (rule conjI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   445
(*finally check the arity!*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   446
 apply (simp add: arity_iterates_incr_bv1_eq length_app Un_least_lt_iff)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   447
 apply (force intro: add_le_self le_trans) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   448
apply (simp add: arity_sats1_iff formula_add_params1, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   449
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   450
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   451
lemma Un_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Un Y \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   452
apply (subgoal_tac "X Un Y = A - ((A-X) Int (A-Y))") 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   453
apply (simp add: Int_in_DPow Compl_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   454
apply (simp add: DPow_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   455
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   456
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   457
lemma singleton_in_DPow: "a \<in> A ==> {a} \<in> DPow(A)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   458
apply (simp add: DPow_def)
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   459
apply (rule_tac x="Cons(a,Nil)" in bexI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   460
 apply (rule_tac x="Equal(0,1)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   461
  apply typecheck
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   462
apply (force simp add: succ_Un_distrib [symmetric])  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   463
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   464
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   465
lemma cons_in_DPow: "[| a \<in> A; X \<in> DPow(A) |] ==> cons(a,X) \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   466
apply (rule cons_eq [THEN subst]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   467
apply (blast intro: singleton_in_DPow Un_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   468
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   469
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   470
(*Part of Lemma 1.3*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   471
lemma Fin_into_DPow: "X \<in> Fin(A) ==> X \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   472
apply (erule Fin.induct) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   473
 apply (rule empty_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   474
apply (blast intro: cons_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   475
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   476
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   477
text{*@{term DPow} is not monotonic.  For example, let @{term A} be some
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   478
non-constructible set of natural numbers, and let @{term B} be @{term nat}.
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   479
Then @{term "A<=B"} and obviously @{term "A \<in> DPow(A)"} but @{term "A ~:
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   480
DPow(B)"}.*}
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   481
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   482
(*This may be true but the proof looks difficult, requiring relativization 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   483
lemma DPow_insert: "DPow (cons(a,A)) = DPow(A) Un {cons(a,X) . X: DPow(A)}"
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   484
apply (rule equalityI, safe)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   485
oops
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   486
*)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   487
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   488
lemma Finite_Pow_subset_Pow: "Finite(A) ==> Pow(A) <= DPow(A)" 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   489
by (blast intro: Fin_into_DPow Finite_into_Fin Fin_subset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   490
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   491
lemma Finite_DPow_eq_Pow: "Finite(A) ==> DPow(A) = Pow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   492
apply (rule equalityI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   493
apply (rule DPow_subset_Pow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   494
apply (erule Finite_Pow_subset_Pow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   495
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   496
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   497
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   498
subsection{*Internalized Formulas for the Ordinals*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   499
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   500
text{*The @{text sats} theorems below differ from the usual form in that they
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   501
include an element of absoluteness.  That is, they relate internalized
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   502
formulas to real concepts such as the subset relation, rather than to the
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   503
relativized concepts defined in theory @{text Relative}.  This lets us prove
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   504
the theorem as @{text Ords_in_DPow} without first having to instantiate the
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   505
locale @{text M_trivial}.  Note that the present theory does not even take
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   506
@{text Relative} as a parent.*}
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   507
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   508
subsubsection{*The subset relation*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   509
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   510
definition subset_fm :: "[i,i]=>i"
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   511
    "subset_fm(x,y) == Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   512
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   513
lemma subset_type [TC]: "[| x \<in> nat; y \<in> nat |] ==> subset_fm(x,y) \<in> formula"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   514
by (simp add: subset_fm_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   515
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   516
lemma arity_subset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   517
     "[| x \<in> nat; y \<in> nat |] ==> arity(subset_fm(x,y)) = succ(x) \<union> succ(y)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   518
by (simp add: subset_fm_def succ_Un_distrib [symmetric]) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   519
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   520
lemma sats_subset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   521
   "[|x < length(env); y \<in> nat; env \<in> list(A); Transset(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   522
    ==> sats(A, subset_fm(x,y), env) <-> nth(x,env) \<subseteq> nth(y,env)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   523
apply (frule lt_length_in_nat, assumption)  
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   524
apply (simp add: subset_fm_def Transset_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   525
apply (blast intro: nth_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   526
done
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   527
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   528
subsubsection{*Transitive sets*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   529
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   530
definition transset_fm :: "i=>i"
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   531
   "transset_fm(x) == Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   532
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   533
lemma transset_type [TC]: "x \<in> nat ==> transset_fm(x) \<in> formula"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   534
by (simp add: transset_fm_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   535
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   536
lemma arity_transset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   537
     "x \<in> nat ==> arity(transset_fm(x)) = succ(x)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   538
by (simp add: transset_fm_def succ_Un_distrib [symmetric]) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   539
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   540
lemma sats_transset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   541
   "[|x < length(env); env \<in> list(A); Transset(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   542
    ==> sats(A, transset_fm(x), env) <-> Transset(nth(x,env))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   543
apply (frule lt_nat_in_nat, erule length_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   544
apply (simp add: transset_fm_def Transset_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   545
apply (blast intro: nth_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   546
done
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   547
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   548
subsubsection{*Ordinals*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   549
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   550
definition ordinal_fm :: "i=>i"
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   551
   "ordinal_fm(x) == 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   552
      And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   553
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   554
lemma ordinal_type [TC]: "x \<in> nat ==> ordinal_fm(x) \<in> formula"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   555
by (simp add: ordinal_fm_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   556
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   557
lemma arity_ordinal_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   558
     "x \<in> nat ==> arity(ordinal_fm(x)) = succ(x)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   559
by (simp add: ordinal_fm_def succ_Un_distrib [symmetric]) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   560
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13298
diff changeset
   561
lemma sats_ordinal_fm:
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   562
   "[|x < length(env); env \<in> list(A); Transset(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   563
    ==> sats(A, ordinal_fm(x), env) <-> Ord(nth(x,env))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   564
apply (frule lt_nat_in_nat, erule length_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   565
apply (simp add: ordinal_fm_def Ord_def Transset_def)
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   566
apply (blast intro: nth_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   567
done
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   568
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   569
text{*The subset consisting of the ordinals is definable.  Essential lemma for
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   570
@{text Ord_in_Lset}.  This result is the objective of the present subsection.*}
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   571
theorem Ords_in_DPow: "Transset(A) ==> {x \<in> A. Ord(x)} \<in> DPow(A)"
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   572
apply (simp add: DPow_def Collect_subset) 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   573
apply (rule_tac x=Nil in bexI) 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   574
 apply (rule_tac x="ordinal_fm(0)" in bexI) 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   575
apply (simp_all add: sats_ordinal_fm)
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   576
done 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   577
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   578
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   579
subsection{* Constant Lset: Levels of the Constructible Universe *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   580
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   581
definition
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   582
  Lset :: "i=>i"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   583
    "Lset(i) == transrec(i, %x f. \<Union>y\<in>x. DPow(f`y))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   584
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   585
  L :: "i=>o" --{*Kunen's definition VI 1.5, page 167*}
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   586
    "L(x) == \<exists>i. Ord(i) & x \<in> Lset(i)"
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   587
  
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   588
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   589
lemma Lset: "Lset(i) = (UN j:i. DPow(Lset(j)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   590
by (subst Lset_def [THEN def_transrec], simp)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   591
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   592
lemma LsetI: "[|y\<in>x; A \<in> DPow(Lset(y))|] ==> A \<in> Lset(x)";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   593
by (subst Lset, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   594
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   595
lemma LsetD: "A \<in> Lset(x) ==> \<exists>y\<in>x. A \<in> DPow(Lset(y))";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   596
apply (insert Lset [of x]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   597
apply (blast intro: elim: equalityE) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   598
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   599
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   600
subsubsection{* Transitivity *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   601
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   602
lemma elem_subset_in_DPow: "[|X \<in> A; X \<subseteq> A|] ==> X \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   603
apply (simp add: Transset_def DPow_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   604
apply (rule_tac x="[X]" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   605
 apply (rule_tac x="Member(0,1)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   606
  apply (auto simp add: Un_least_lt_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   607
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   608
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   609
lemma Transset_subset_DPow: "Transset(A) ==> A <= DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   610
apply clarify  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   611
apply (simp add: Transset_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   612
apply (blast intro: elem_subset_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   613
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   614
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   615
lemma Transset_DPow: "Transset(A) ==> Transset(DPow(A))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   616
apply (simp add: Transset_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   617
apply (blast intro: elem_subset_in_DPow dest: DPowD) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   618
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   619
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   620
text{*Kunen's VI 1.6 (a)*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   621
lemma Transset_Lset: "Transset(Lset(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   622
apply (rule_tac a=i in eps_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   623
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   624
apply (blast intro!: Transset_Union_family Transset_Un Transset_DPow)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   625
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   626
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   627
lemma mem_Lset_imp_subset_Lset: "a \<in> Lset(i) ==> a \<subseteq> Lset(i)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   628
apply (insert Transset_Lset) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   629
apply (simp add: Transset_def) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   630
done
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   631
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   632
subsubsection{* Monotonicity *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   633
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   634
text{*Kunen's VI 1.6 (b)*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   635
lemma Lset_mono [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   636
     "ALL j. i<=j --> Lset(i) <= Lset(j)"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   637
proof (induct i rule: eps_induct, intro allI impI)
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   638
  fix x j
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   639
  assume "\<forall>y\<in>x. \<forall>j. y \<subseteq> j \<longrightarrow> Lset(y) \<subseteq> Lset(j)"
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   640
     and "x \<subseteq> j"
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   641
  thus "Lset(x) \<subseteq> Lset(j)"
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   642
    by (force simp add: Lset [of x] Lset [of j]) 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   643
qed
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   644
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   645
text{*This version lets us remove the premise @{term "Ord(i)"} sometimes.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   646
lemma Lset_mono_mem [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   647
     "ALL j. i:j --> Lset(i) <= Lset(j)"
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   648
proof (induct i rule: eps_induct, intro allI impI)
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   649
  fix x j
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   650
  assume "\<forall>y\<in>x. \<forall>j. y \<in> j \<longrightarrow> Lset(y) \<subseteq> Lset(j)"
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   651
     and "x \<in> j"
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   652
  thus "Lset(x) \<subseteq> Lset(j)"
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   653
    by (force simp add: Lset [of j] 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   654
              intro!: bexI intro: elem_subset_in_DPow dest: LsetD DPowD) 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   655
qed
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14171
diff changeset
   656
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   657
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   658
text{*Useful with Reflection to bump up the ordinal*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   659
lemma subset_Lset_ltD: "[|A \<subseteq> Lset(i); i < j|] ==> A \<subseteq> Lset(j)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   660
by (blast dest: ltD [THEN Lset_mono_mem]) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   661
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   662
subsubsection{* 0, successor and limit equations for Lset *}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   663
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   664
lemma Lset_0 [simp]: "Lset(0) = 0"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   665
by (subst Lset, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   666
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   667
lemma Lset_succ_subset1: "DPow(Lset(i)) <= Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   668
by (subst Lset, rule succI1 [THEN RepFunI, THEN Union_upper])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   669
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   670
lemma Lset_succ_subset2: "Lset(succ(i)) <= DPow(Lset(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   671
apply (subst Lset, rule UN_least)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   672
apply (erule succE) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   673
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   674
apply clarify
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   675
apply (rule elem_subset_in_DPow)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   676
 apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   677
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   678
apply (blast intro: dest: DPowD Lset_mono_mem) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   679
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   680
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   681
lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   682
by (intro equalityI Lset_succ_subset1 Lset_succ_subset2) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   683
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   684
lemma Lset_Union [simp]: "Lset(\<Union>(X)) = (\<Union>y\<in>X. Lset(y))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   685
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   686
apply (rule equalityI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   687
 txt{*first inclusion*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   688
 apply (rule UN_least)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   689
 apply (erule UnionE)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   690
 apply (rule subset_trans)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   691
  apply (erule_tac [2] UN_upper, subst Lset, erule UN_upper)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   692
txt{*opposite inclusion*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   693
apply (rule UN_least)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   694
apply (subst Lset, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   695
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   696
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   697
subsubsection{* Lset applied to Limit ordinals *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   698
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   699
lemma Limit_Lset_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   700
    "Limit(i) ==> Lset(i) = (\<Union>y\<in>i. Lset(y))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   701
by (simp add: Lset_Union [symmetric] Limit_Union_eq)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   702
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   703
lemma lt_LsetI: "[| a: Lset(j);  j<i |] ==> a \<in> Lset(i)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   704
by (blast dest: Lset_mono [OF le_imp_subset [OF leI]])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   705
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   706
lemma Limit_LsetE:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   707
    "[| a: Lset(i);  ~R ==> Limit(i);
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   708
        !!x. [| x<i;  a: Lset(x) |] ==> R
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   709
     |] ==> R"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   710
apply (rule classical)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   711
apply (rule Limit_Lset_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   712
  prefer 2 apply assumption
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   713
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   714
apply (blast intro: ltI  Limit_is_Ord)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   715
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   716
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   717
subsubsection{* Basic closure properties *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   718
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   719
lemma zero_in_Lset: "y:x ==> 0 \<in> Lset(x)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   720
by (subst Lset, blast intro: empty_in_DPow)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   721
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   722
lemma notin_Lset: "x \<notin> Lset(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   723
apply (rule_tac a=x in eps_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   724
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   725
apply (blast dest: DPowD)  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   726
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   727
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   728
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   729
subsection{*Constructible Ordinals: Kunen's VI 1.9 (b)*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   730
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   731
lemma Ords_of_Lset_eq: "Ord(i) ==> {x\<in>Lset(i). Ord(x)} = i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   732
apply (erule trans_induct3)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   733
  apply (simp_all add: Lset_succ Limit_Lset_eq Limit_Union_eq)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   734
txt{*The successor case remains.*} 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   735
apply (rule equalityI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   736
txt{*First inclusion*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   737
 apply clarify  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   738
 apply (erule Ord_linear_lt, assumption) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   739
   apply (blast dest: DPow_imp_subset ltD notE [OF notin_Lset]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   740
  apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   741
 apply (blast dest: ltD)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   742
txt{*Opposite inclusion, @{term "succ(x) \<subseteq> DPow(Lset(x)) \<inter> ON"}*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   743
apply auto
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   744
txt{*Key case: *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   745
  apply (erule subst, rule Ords_in_DPow [OF Transset_Lset]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   746
 apply (blast intro: elem_subset_in_DPow dest: OrdmemD elim: equalityE) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   747
apply (blast intro: Ord_in_Ord) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   748
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   749
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   750
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   751
lemma Ord_subset_Lset: "Ord(i) ==> i \<subseteq> Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   752
by (subst Ords_of_Lset_eq [symmetric], assumption, fast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   753
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   754
lemma Ord_in_Lset: "Ord(i) ==> i \<in> Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   755
apply (simp add: Lset_succ)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   756
apply (subst Ords_of_Lset_eq [symmetric], assumption, 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   757
       rule Ords_in_DPow [OF Transset_Lset]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   758
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   759
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   760
lemma Ord_in_L: "Ord(i) ==> L(i)"
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   761
by (simp add: L_def, blast intro: Ord_in_Lset)
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   762
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   763
subsubsection{* Unions *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   764
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   765
lemma Union_in_Lset:
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   766
     "X \<in> Lset(i) ==> Union(X) \<in> Lset(succ(i))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   767
apply (insert Transset_Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   768
apply (rule LsetI [OF succI1])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   769
apply (simp add: Transset_def DPow_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   770
apply (intro conjI, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   771
txt{*Now to create the formula @{term "\<exists>y. y \<in> X \<and> x \<in> y"} *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   772
apply (rule_tac x="Cons(X,Nil)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   773
 apply (rule_tac x="Exists(And(Member(0,2), Member(1,0)))" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   774
  apply typecheck
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   775
apply (simp add: succ_Un_distrib [symmetric], blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   776
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   777
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   778
theorem Union_in_L: "L(X) ==> L(Union(X))"
13687
22dce9134953 simpler separation/replacement proofs
paulson
parents: 13651
diff changeset
   779
by (simp add: L_def, blast dest: Union_in_Lset) 
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   780
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   781
subsubsection{* Finite sets and ordered pairs *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   782
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   783
lemma singleton_in_Lset: "a: Lset(i) ==> {a} \<in> Lset(succ(i))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   784
by (simp add: Lset_succ singleton_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   785
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   786
lemma doubleton_in_Lset:
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   787
     "[| a: Lset(i);  b: Lset(i) |] ==> {a,b} \<in> Lset(succ(i))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   788
by (simp add: Lset_succ empty_in_DPow cons_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   789
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   790
lemma Pair_in_Lset:
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   791
    "[| a: Lset(i);  b: Lset(i); Ord(i) |] ==> <a,b> \<in> Lset(succ(succ(i)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   792
apply (unfold Pair_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   793
apply (blast intro: doubleton_in_Lset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   794
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   795
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   796
lemmas Lset_UnI1 = Un_upper1 [THEN Lset_mono [THEN subsetD], standard]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   797
lemmas Lset_UnI2 = Un_upper2 [THEN Lset_mono [THEN subsetD], standard]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   798
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   799
text{*Hard work is finding a single j:i such that {a,b}<=Lset(j)*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   800
lemma doubleton_in_LLimit:
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   801
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> {a,b} \<in> Lset(i)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   802
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   803
apply (erule Limit_LsetE, assumption)
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   804
apply (blast intro: lt_LsetI [OF doubleton_in_Lset]
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   805
                    Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   806
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   807
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   808
theorem doubleton_in_L: "[| L(a); L(b) |] ==> L({a, b})"
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   809
apply (simp add: L_def, clarify) 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   810
apply (drule Ord2_imp_greater_Limit, assumption) 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   811
apply (blast intro: lt_LsetI doubleton_in_LLimit Limit_is_Ord) 
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   812
done
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   813
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   814
lemma Pair_in_LLimit:
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   815
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> <a,b> \<in> Lset(i)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   816
txt{*Infer that a, b occur at ordinals x,xa < i.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   817
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   818
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   819
txt{*Infer that succ(succ(x Un xa)) < i *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   820
apply (blast intro: lt_Ord lt_LsetI [OF Pair_in_Lset]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   821
                    Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   822
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   823
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   824
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   825
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   826
text{*The rank function for the constructible universe*}
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   827
definition
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   828
  lrank :: "i=>i" --{*Kunen's definition VI 1.7*}
14171
0cab06e3bbd0 Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents: 13721
diff changeset
   829
    "lrank(x) == \<mu> i. x \<in> Lset(succ(i))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   830
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   831
lemma L_I: "[|x \<in> Lset(i); Ord(i)|] ==> L(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   832
by (simp add: L_def, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   833
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   834
lemma L_D: "L(x) ==> \<exists>i. Ord(i) & x \<in> Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   835
by (simp add: L_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   836
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   837
lemma Ord_lrank [simp]: "Ord(lrank(a))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   838
by (simp add: lrank_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   839
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   840
lemma Lset_lrank_lt [rule_format]: "Ord(i) ==> x \<in> Lset(i) --> lrank(x) < i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   841
apply (erule trans_induct3)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   842
  apply simp   
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   843
 apply (simp only: lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   844
 apply (blast intro: Least_le) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   845
apply (simp_all add: Limit_Lset_eq) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   846
apply (blast intro: ltI Limit_is_Ord lt_trans) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   847
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   848
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   849
text{*Kunen's VI 1.8.  The proof is much harder than the text would
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   850
suggest.  For a start, it needs the previous lemma, which is proved by
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   851
induction.*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   852
lemma Lset_iff_lrank_lt: "Ord(i) ==> x \<in> Lset(i) <-> L(x) & lrank(x) < i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   853
apply (simp add: L_def, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   854
 apply (blast intro: Lset_lrank_lt) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   855
 apply (unfold lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   856
apply (drule succI1 [THEN Lset_mono_mem, THEN subsetD]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   857
apply (drule_tac P="\<lambda>i. x \<in> Lset(succ(i))" in LeastI, assumption) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   858
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   859
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   860
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   861
lemma Lset_succ_lrank_iff [simp]: "x \<in> Lset(succ(lrank(x))) <-> L(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   862
by (simp add: Lset_iff_lrank_lt)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   863
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   864
text{*Kunen's VI 1.9 (a)*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   865
lemma lrank_of_Ord: "Ord(i) ==> lrank(i) = i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   866
apply (unfold lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   867
apply (rule Least_equality) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   868
  apply (erule Ord_in_Lset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   869
 apply assumption
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   870
apply (insert notin_Lset [of i]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   871
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   872
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   873
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   874
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   875
text{*This is lrank(lrank(a)) = lrank(a) *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   876
declare Ord_lrank [THEN lrank_of_Ord, simp]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   877
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   878
text{*Kunen's VI 1.10 *}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   879
lemma Lset_in_Lset_succ: "Lset(i) \<in> Lset(succ(i))";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   880
apply (simp add: Lset_succ DPow_def) 
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13328
diff changeset
   881
apply (rule_tac x=Nil in bexI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   882
 apply (rule_tac x="Equal(0,0)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   883
apply auto 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   884
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   885
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   886
lemma lrank_Lset: "Ord(i) ==> lrank(Lset(i)) = i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   887
apply (unfold lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   888
apply (rule Least_equality) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   889
  apply (rule Lset_in_Lset_succ) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   890
 apply assumption
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   891
apply clarify 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   892
apply (subgoal_tac "Lset(succ(ia)) <= Lset(i)")
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   893
 apply (blast dest: mem_irrefl) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   894
apply (blast intro!: le_imp_subset Lset_mono) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   895
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   896
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   897
text{*Kunen's VI 1.11 *}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   898
lemma Lset_subset_Vset: "Ord(i) ==> Lset(i) <= Vset(i)";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   899
apply (erule trans_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   900
apply (subst Lset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   901
apply (subst Vset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   902
apply (rule UN_mono [OF subset_refl]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   903
apply (rule subset_trans [OF DPow_subset_Pow]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   904
apply (rule Pow_mono, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   905
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   906
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   907
text{*Kunen's VI 1.12 *}
13535
007559e981c7 *** empty log message ***
wenzelm
parents: 13511
diff changeset
   908
lemma Lset_subset_Vset': "i \<in> nat ==> Lset(i) = Vset(i)";
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   909
apply (erule nat_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   910
 apply (simp add: Vfrom_0) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   911
apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   912
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   913
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   914
text{*Every set of constructible sets is included in some @{term Lset}*} 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   915
lemma subset_Lset:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   916
     "(\<forall>x\<in>A. L(x)) ==> \<exists>i. Ord(i) & A \<subseteq> Lset(i)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   917
by (rule_tac x = "\<Union>x\<in>A. succ(lrank(x))" in exI, force)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   918
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   919
lemma subset_LsetE:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   920
     "[|\<forall>x\<in>A. L(x);
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   921
        !!i. [|Ord(i); A \<subseteq> Lset(i)|] ==> P|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   922
      ==> P"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   923
by (blast dest: subset_Lset) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   924
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
   925
subsubsection{*For L to satisfy the Powerset axiom *}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   926
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   927
lemma LPow_env_typing:
13721
2cf506c09946 stylistic tweaks
paulson
parents: 13687
diff changeset
   928
    "[| y \<in> Lset(i); Ord(i); y \<subseteq> X |] 
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
   929
     ==> \<exists>z \<in> Pow(X). y \<in> Lset(succ(lrank(z)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   930
by (auto intro: L_I iff: Lset_succ_lrank_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   931
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   932
lemma LPow_in_Lset:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   933
     "[|X \<in> Lset(i); Ord(i)|] ==> \<exists>j. Ord(j) & {y \<in> Pow(X). L(y)} \<in> Lset(j)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   934
apply (rule_tac x="succ(\<Union>y \<in> Pow(X). succ(lrank(y)))" in exI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   935
apply simp 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   936
apply (rule LsetI [OF succI1])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   937
apply (simp add: DPow_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   938
apply (intro conjI, clarify) 
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
   939
 apply (rule_tac a=x in UN_I, simp+)  
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   940
txt{*Now to create the formula @{term "y \<subseteq> X"} *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   941
apply (rule_tac x="Cons(X,Nil)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   942
 apply (rule_tac x="subset_fm(0,1)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   943
  apply typecheck
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
   944
 apply (rule conjI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   945
apply (simp add: succ_Un_distrib [symmetric]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   946
apply (rule equality_iffI) 
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
   947
apply (simp add: Transset_UN [OF Transset_Lset] LPow_env_typing)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   948
apply (auto intro: L_I iff: Lset_succ_lrank_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   949
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   950
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   951
theorem LPow_in_L: "L(X) ==> L({y \<in> Pow(X). L(y)})"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   952
by (blast intro: L_I dest: L_D LPow_in_Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   953
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   954
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   955
subsection{*Eliminating @{term arity} from the Definition of @{term Lset}*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   956
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   957
lemma nth_zero_eq_0: "n \<in> nat ==> nth(n,[0]) = 0"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   958
by (induct_tac n, auto)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   959
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   960
lemma sats_app_0_iff [rule_format]:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   961
  "[| p \<in> formula; 0 \<in> A |]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   962
   ==> \<forall>env \<in> list(A). sats(A,p, env@[0]) <-> sats(A,p,env)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   963
apply (induct_tac p)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   964
apply (simp_all del: app_Cons add: app_Cons [symmetric]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   965
		add: nth_zero_eq_0 nth_append not_lt_iff_le nth_eq_0)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   966
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   967
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   968
lemma sats_app_zeroes_iff:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   969
  "[| p \<in> formula; 0 \<in> A; env \<in> list(A); n \<in> nat |]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   970
   ==> sats(A,p,env @ repeat(0,n)) <-> sats(A,p,env)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   971
apply (induct_tac n, simp) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   972
apply (simp del: repeat.simps
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   973
            add: repeat_succ_app sats_app_0_iff app_assoc [symmetric]) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   974
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   975
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   976
lemma exists_bigger_env:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   977
  "[| p \<in> formula; 0 \<in> A; env \<in> list(A) |]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   978
   ==> \<exists>env' \<in> list(A). arity(p) \<le> succ(length(env')) & 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   979
              (\<forall>a\<in>A. sats(A,p,Cons(a,env')) <-> sats(A,p,Cons(a,env)))"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   980
apply (rule_tac x="env @ repeat(0,arity(p))" in bexI) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   981
apply (simp del: app_Cons add: app_Cons [symmetric]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   982
	    add: length_repeat sats_app_zeroes_iff, typecheck)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   983
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   984
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   985
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   986
text{*A simpler version of @{term DPow}: no arity check!*}
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 16417
diff changeset
   987
definition DPow' :: "i => i"
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   988
  "DPow'(A) == {X \<in> Pow(A). 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   989
                \<exists>env \<in> list(A). \<exists>p \<in> formula. 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   990
                    X = {x\<in>A. sats(A, p, Cons(x,env))}}"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   991
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   992
lemma DPow_subset_DPow': "DPow(A) <= DPow'(A)";
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   993
by (simp add: DPow_def DPow'_def, blast)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   994
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   995
lemma DPow'_0: "DPow'(0) = {0}"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   996
by (auto simp add: DPow'_def)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   997
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   998
lemma DPow'_subset_DPow: "0 \<in> A ==> DPow'(A) \<subseteq> DPow(A)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
   999
apply (auto simp add: DPow'_def DPow_def) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1000
apply (frule exists_bigger_env, assumption+, force)  
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1001
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1002
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1003
lemma DPow_eq_DPow': "Transset(A) ==> DPow(A) = DPow'(A)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1004
apply (drule Transset_0_disj) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1005
apply (erule disjE) 
13651
ac80e101306a Cosmetic changes suggested by writing the paper. Deleted some
paulson
parents: 13647
diff changeset
  1006
 apply (simp add: DPow'_0 Finite_DPow_eq_Pow) 
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1007
apply (rule equalityI)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1008
 apply (rule DPow_subset_DPow') 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1009
apply (erule DPow'_subset_DPow) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1010
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1011
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1012
text{*And thus we can relativize @{term Lset} without bothering with
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1013
      @{term arity} and @{term length}*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1014
lemma Lset_eq_transrec_DPow': "Lset(i) = transrec(i, %x f. \<Union>y\<in>x. DPow'(f`y))"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1015
apply (rule_tac a=i in eps_induct)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1016
apply (subst Lset)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1017
apply (subst transrec)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1018
apply (simp only: DPow_eq_DPow' [OF Transset_Lset], simp) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1019
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1020
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1021
text{*With this rule we can specify @{term p} later and don't worry about
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1022
      arities at all!*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1023
lemma DPow_LsetI [rule_format]:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1024
  "[|\<forall>x\<in>Lset(i). P(x) <-> sats(Lset(i), p, Cons(x,env));
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1025
     env \<in> list(Lset(i));  p \<in> formula|]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1026
   ==> {x\<in>Lset(i). P(x)} \<in> DPow(Lset(i))"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1027
by (simp add: DPow_eq_DPow' [OF Transset_Lset] DPow'_def, blast) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1028
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1029
end