| author | paulson | 
| Fri, 06 Oct 2006 11:17:53 +0200 | |
| changeset 20869 | 5abf3cd34a35 | 
| parent 16417 | 9bc16273c2d4 | 
| child 24893 | b8ef7afe3a6b | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/Nat.thy  | 
| 0 | 2  | 
ID: $Id$  | 
| 1478 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 435 | 4  | 
Copyright 1994 University of Cambridge  | 
| 0 | 5  | 
|
6  | 
*)  | 
|
7  | 
||
| 13356 | 8  | 
header{*The Natural numbers As a Least Fixed Point*}
 | 
9  | 
||
| 16417 | 10  | 
theory Nat imports OrdQuant Bool begin  | 
| 0 | 11  | 
|
| 12789 | 12  | 
constdefs  | 
13  | 
nat :: i  | 
|
14  | 
    "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})"
 | 
|
| 0 | 15  | 
|
| 13269 | 16  | 
quasinat :: "i => o"  | 
17  | 
"quasinat(n) == n=0 | (\<exists>m. n = succ(m))"  | 
|
18  | 
||
| 13173 | 19  | 
(*Has an unconditional succ case, which is used in "recursor" below.*)  | 
| 12789 | 20  | 
nat_case :: "[i, i=>i, i]=>i"  | 
21  | 
"nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))"  | 
|
| 0 | 22  | 
|
| 12789 | 23  | 
nat_rec :: "[i, i, [i,i]=>i]=>i"  | 
24  | 
"nat_rec(k,a,b) ==  | 
|
| 1478 | 25  | 
wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"  | 
| 0 | 26  | 
|
| 12789 | 27  | 
(*Internalized relations on the naturals*)  | 
28  | 
||
29  | 
Le :: i  | 
|
30  | 
    "Le == {<x,y>:nat*nat. x le y}"
 | 
|
31  | 
||
32  | 
Lt :: i  | 
|
33  | 
    "Lt == {<x, y>:nat*nat. x < y}"
 | 
|
34  | 
||
35  | 
Ge :: i  | 
|
36  | 
    "Ge == {<x,y>:nat*nat. y le x}"
 | 
|
37  | 
||
38  | 
Gt :: i  | 
|
39  | 
    "Gt == {<x,y>:nat*nat. y < x}"
 | 
|
40  | 
||
| 13171 | 41  | 
greater_than :: "i=>i"  | 
| 12789 | 42  | 
    "greater_than(n) == {i:nat. n < i}"
 | 
43  | 
||
| 14046 | 44  | 
text{*No need for a less-than operator: a natural number is its list of
 | 
45  | 
predecessors!*}  | 
|
46  | 
||
47  | 
||
| 13171 | 48  | 
lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} Un {succ(i). i:X})"
 | 
49  | 
apply (rule bnd_monoI)  | 
|
| 13269 | 50  | 
apply (cut_tac infinity, blast, blast)  | 
| 13171 | 51  | 
done  | 
52  | 
||
53  | 
(* nat = {0} Un {succ(x). x:nat} *)
 | 
|
54  | 
lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold], standard]  | 
|
55  | 
||
56  | 
(** Type checking of 0 and successor **)  | 
|
57  | 
||
58  | 
lemma nat_0I [iff,TC]: "0 : nat"  | 
|
59  | 
apply (subst nat_unfold)  | 
|
60  | 
apply (rule singletonI [THEN UnI1])  | 
|
61  | 
done  | 
|
62  | 
||
63  | 
lemma nat_succI [intro!,TC]: "n : nat ==> succ(n) : nat"  | 
|
64  | 
apply (subst nat_unfold)  | 
|
65  | 
apply (erule RepFunI [THEN UnI2])  | 
|
66  | 
done  | 
|
67  | 
||
68  | 
lemma nat_1I [iff,TC]: "1 : nat"  | 
|
69  | 
by (rule nat_0I [THEN nat_succI])  | 
|
70  | 
||
71  | 
lemma nat_2I [iff,TC]: "2 : nat"  | 
|
72  | 
by (rule nat_1I [THEN nat_succI])  | 
|
73  | 
||
74  | 
lemma bool_subset_nat: "bool <= nat"  | 
|
75  | 
by (blast elim!: boolE)  | 
|
76  | 
||
77  | 
lemmas bool_into_nat = bool_subset_nat [THEN subsetD, standard]  | 
|
78  | 
||
79  | 
||
| 13356 | 80  | 
subsection{*Injectivity Properties and Induction*}
 | 
| 13171 | 81  | 
|
82  | 
(*Mathematical induction*)  | 
|
| 13524 | 83  | 
lemma nat_induct [case_names 0 succ, induct set: nat]:  | 
| 13171 | 84  | 
"[| n: nat; P(0); !!x. [| x: nat; P(x) |] ==> P(succ(x)) |] ==> P(n)"  | 
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
85  | 
by (erule def_induct [OF nat_def nat_bnd_mono], blast)  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
86  | 
|
| 13171 | 87  | 
lemma natE:  | 
88  | 
"[| n: nat; n=0 ==> P; !!x. [| x: nat; n=succ(x) |] ==> P |] ==> P"  | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
89  | 
by (erule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE], auto)  | 
| 13171 | 90  | 
|
91  | 
lemma nat_into_Ord [simp]: "n: nat ==> Ord(n)"  | 
|
92  | 
by (erule nat_induct, auto)  | 
|
93  | 
||
94  | 
(* i: nat ==> 0 le i; same thing as 0<succ(i) *)  | 
|
95  | 
lemmas nat_0_le = nat_into_Ord [THEN Ord_0_le, standard]  | 
|
96  | 
||
97  | 
(* i: nat ==> i le i; same thing as i<succ(i) *)  | 
|
98  | 
lemmas nat_le_refl = nat_into_Ord [THEN le_refl, standard]  | 
|
99  | 
||
100  | 
lemma Ord_nat [iff]: "Ord(nat)"  | 
|
101  | 
apply (rule OrdI)  | 
|
102  | 
apply (erule_tac [2] nat_into_Ord [THEN Ord_is_Transset])  | 
|
103  | 
apply (unfold Transset_def)  | 
|
104  | 
apply (rule ballI)  | 
|
105  | 
apply (erule nat_induct, auto)  | 
|
106  | 
done  | 
|
107  | 
||
108  | 
lemma Limit_nat [iff]: "Limit(nat)"  | 
|
109  | 
apply (unfold Limit_def)  | 
|
110  | 
apply (safe intro!: ltI Ord_nat)  | 
|
111  | 
apply (erule ltD)  | 
|
112  | 
done  | 
|
113  | 
||
| 
13628
 
87482b5e3f2e
Various simplifications of the Constructible theories
 
paulson 
parents: 
13524 
diff
changeset
 | 
114  | 
lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"  | 
| 
 
87482b5e3f2e
Various simplifications of the Constructible theories
 
paulson 
parents: 
13524 
diff
changeset
 | 
115  | 
by (induct a rule: nat_induct, auto)  | 
| 
 
87482b5e3f2e
Various simplifications of the Constructible theories
 
paulson 
parents: 
13524 
diff
changeset
 | 
116  | 
|
| 13823 | 117  | 
lemma succ_natD: "succ(i): nat ==> i: nat"  | 
| 13171 | 118  | 
by (rule Ord_trans [OF succI1], auto)  | 
119  | 
||
120  | 
lemma nat_succ_iff [iff]: "succ(n): nat <-> n: nat"  | 
|
| 13823 | 121  | 
by (blast dest!: succ_natD)  | 
| 13171 | 122  | 
|
123  | 
lemma nat_le_Limit: "Limit(i) ==> nat le i"  | 
|
124  | 
apply (rule subset_imp_le)  | 
|
125  | 
apply (simp_all add: Limit_is_Ord)  | 
|
126  | 
apply (rule subsetI)  | 
|
127  | 
apply (erule nat_induct)  | 
|
128  | 
apply (erule Limit_has_0 [THEN ltD])  | 
|
129  | 
apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord)  | 
|
130  | 
done  | 
|
131  | 
||
132  | 
(* [| succ(i): k; k: nat |] ==> i: k *)  | 
|
133  | 
lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord]  | 
|
134  | 
||
135  | 
lemma lt_nat_in_nat: "[| m<n; n: nat |] ==> m: nat"  | 
|
136  | 
apply (erule ltE)  | 
|
| 13269 | 137  | 
apply (erule Ord_trans, assumption, simp)  | 
| 13171 | 138  | 
done  | 
139  | 
||
140  | 
lemma le_in_nat: "[| m le n; n:nat |] ==> m:nat"  | 
|
141  | 
by (blast dest!: lt_nat_in_nat)  | 
|
142  | 
||
143  | 
||
| 13356 | 144  | 
subsection{*Variations on Mathematical Induction*}
 | 
| 13171 | 145  | 
|
146  | 
(*complete induction*)  | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
147  | 
|
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
148  | 
lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1]  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
149  | 
|
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
150  | 
lemmas complete_induct_rule =  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
151  | 
complete_induct [rule_format, case_names less, consumes 1]  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
152  | 
|
| 13171 | 153  | 
|
154  | 
lemma nat_induct_from_lemma [rule_format]:  | 
|
155  | 
"[| n: nat; m: nat;  | 
|
156  | 
!!x. [| x: nat; m le x; P(x) |] ==> P(succ(x)) |]  | 
|
157  | 
==> m le n --> P(m) --> P(n)"  | 
|
158  | 
apply (erule nat_induct)  | 
|
159  | 
apply (simp_all add: distrib_simps le0_iff le_succ_iff)  | 
|
160  | 
done  | 
|
161  | 
||
162  | 
(*Induction starting from m rather than 0*)  | 
|
163  | 
lemma nat_induct_from:  | 
|
164  | 
"[| m le n; m: nat; n: nat;  | 
|
165  | 
P(m);  | 
|
166  | 
!!x. [| x: nat; m le x; P(x) |] ==> P(succ(x)) |]  | 
|
167  | 
==> P(n)"  | 
|
168  | 
apply (blast intro: nat_induct_from_lemma)  | 
|
169  | 
done  | 
|
170  | 
||
171  | 
(*Induction suitable for subtraction and less-than*)  | 
|
| 13524 | 172  | 
lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]:  | 
| 13171 | 173  | 
"[| m: nat; n: nat;  | 
174  | 
!!x. x: nat ==> P(x,0);  | 
|
175  | 
!!y. y: nat ==> P(0,succ(y));  | 
|
176  | 
!!x y. [| x: nat; y: nat; P(x,y) |] ==> P(succ(x),succ(y)) |]  | 
|
177  | 
==> P(m,n)"  | 
|
| 13784 | 178  | 
apply (erule_tac x = m in rev_bspec)  | 
| 13171 | 179  | 
apply (erule nat_induct, simp)  | 
180  | 
apply (rule ballI)  | 
|
181  | 
apply (rename_tac i j)  | 
|
182  | 
apply (erule_tac n=j in nat_induct, auto)  | 
|
183  | 
done  | 
|
184  | 
||
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
185  | 
|
| 13171 | 186  | 
(** Induction principle analogous to trancl_induct **)  | 
187  | 
||
188  | 
lemma succ_lt_induct_lemma [rule_format]:  | 
|
189  | 
"m: nat ==> P(m,succ(m)) --> (ALL x: nat. P(m,x) --> P(m,succ(x))) -->  | 
|
190  | 
(ALL n:nat. m<n --> P(m,n))"  | 
|
191  | 
apply (erule nat_induct)  | 
|
192  | 
apply (intro impI, rule nat_induct [THEN ballI])  | 
|
193  | 
prefer 4 apply (intro impI, rule nat_induct [THEN ballI])  | 
|
194  | 
apply (auto simp add: le_iff)  | 
|
195  | 
done  | 
|
196  | 
||
197  | 
lemma succ_lt_induct:  | 
|
198  | 
"[| m<n; n: nat;  | 
|
199  | 
P(m,succ(m));  | 
|
200  | 
!!x. [| x: nat; P(m,x) |] ==> P(m,succ(x)) |]  | 
|
201  | 
==> P(m,n)"  | 
|
202  | 
by (blast intro: succ_lt_induct_lemma lt_nat_in_nat)  | 
|
203  | 
||
| 13269 | 204  | 
subsection{*quasinat: to allow a case-split rule for @{term nat_case}*}
 | 
205  | 
||
206  | 
text{*True if the argument is zero or any successor*}
 | 
|
207  | 
lemma [iff]: "quasinat(0)"  | 
|
208  | 
by (simp add: quasinat_def)  | 
|
209  | 
||
210  | 
lemma [iff]: "quasinat(succ(x))"  | 
|
211  | 
by (simp add: quasinat_def)  | 
|
212  | 
||
213  | 
lemma nat_imp_quasinat: "n \<in> nat ==> quasinat(n)"  | 
|
214  | 
by (erule natE, simp_all)  | 
|
215  | 
||
216  | 
lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0"  | 
|
217  | 
by (simp add: quasinat_def nat_case_def)  | 
|
218  | 
||
219  | 
lemma nat_cases_disj: "k=0 | (\<exists>y. k = succ(y)) | ~ quasinat(k)"  | 
|
| 14153 | 220  | 
apply (case_tac "k=0", simp)  | 
221  | 
apply (case_tac "\<exists>m. k = succ(m)")  | 
|
222  | 
apply (simp_all add: quasinat_def)  | 
|
| 13269 | 223  | 
done  | 
224  | 
||
225  | 
lemma nat_cases:  | 
|
226  | 
"[|k=0 ==> P; !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P"  | 
|
| 13356 | 227  | 
by (insert nat_cases_disj [of k], blast)  | 
| 13269 | 228  | 
|
| 13171 | 229  | 
(** nat_case **)  | 
230  | 
||
231  | 
lemma nat_case_0 [simp]: "nat_case(a,b,0) = a"  | 
|
| 13174 | 232  | 
by (simp add: nat_case_def)  | 
| 13173 | 233  | 
|
234  | 
lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)"  | 
|
| 13174 | 235  | 
by (simp add: nat_case_def)  | 
| 13171 | 236  | 
|
| 13173 | 237  | 
lemma nat_case_type [TC]:  | 
238  | 
"[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) |]  | 
|
239  | 
==> nat_case(a,b,n) : C(n)";  | 
|
240  | 
by (erule nat_induct, auto)  | 
|
241  | 
||
| 13269 | 242  | 
lemma split_nat_case:  | 
243  | 
"P(nat_case(a,b,k)) <->  | 
|
244  | 
((k=0 --> P(a)) & (\<forall>x. k=succ(x) --> P(b(x))) & (~ quasinat(k) \<longrightarrow> P(0)))"  | 
|
245  | 
apply (rule nat_cases [of k])  | 
|
246  | 
apply (auto simp add: non_nat_case)  | 
|
| 13171 | 247  | 
done  | 
248  | 
||
| 13173 | 249  | 
|
| 13356 | 250  | 
subsection{*Recursion on the Natural Numbers*}
 | 
| 13171 | 251  | 
|
| 13356 | 252  | 
(** nat_rec is used to define eclose and transrec, then becomes obsolete.  | 
253  | 
The operator rec, from arith.thy, has fewer typing conditions **)  | 
|
| 13171 | 254  | 
|
255  | 
lemma nat_rec_0: "nat_rec(0,a,b) = a"  | 
|
256  | 
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])  | 
|
257  | 
apply (rule wf_Memrel)  | 
|
258  | 
apply (rule nat_case_0)  | 
|
259  | 
done  | 
|
260  | 
||
261  | 
lemma nat_rec_succ: "m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"  | 
|
262  | 
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])  | 
|
263  | 
apply (rule wf_Memrel)  | 
|
264  | 
apply (simp add: vimage_singleton_iff)  | 
|
265  | 
done  | 
|
266  | 
||
267  | 
(** The union of two natural numbers is a natural number -- their maximum **)  | 
|
268  | 
||
| 13173 | 269  | 
lemma Un_nat_type [TC]: "[| i: nat; j: nat |] ==> i Un j: nat"  | 
| 13171 | 270  | 
apply (rule Un_least_lt [THEN ltD])  | 
271  | 
apply (simp_all add: lt_def)  | 
|
272  | 
done  | 
|
273  | 
||
| 13173 | 274  | 
lemma Int_nat_type [TC]: "[| i: nat; j: nat |] ==> i Int j: nat"  | 
| 13171 | 275  | 
apply (rule Int_greatest_lt [THEN ltD])  | 
276  | 
apply (simp_all add: lt_def)  | 
|
277  | 
done  | 
|
278  | 
||
279  | 
(*needed to simplify unions over nat*)  | 
|
280  | 
lemma nat_nonempty [simp]: "nat ~= 0"  | 
|
281  | 
by blast  | 
|
282  | 
||
| 14046 | 283  | 
text{*A natural number is the set of its predecessors*}
 | 
284  | 
lemma nat_eq_Collect_lt: "i \<in> nat ==> {j\<in>nat. j<i} = i"
 | 
|
285  | 
apply (rule equalityI)  | 
|
286  | 
apply (blast dest: ltD)  | 
|
287  | 
apply (auto simp add: Ord_mem_iff_lt)  | 
|
288  | 
apply (blast intro: lt_trans)  | 
|
289  | 
done  | 
|
290  | 
||
| 14054 | 291  | 
lemma Le_iff [iff]: "<x,y> : Le <-> x le y & x : nat & y : nat"  | 
292  | 
by (force simp add: Le_def)  | 
|
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13185 
diff
changeset
 | 
293  | 
|
| 13171 | 294  | 
ML  | 
295  | 
{*
 | 
|
296  | 
val Le_def = thm "Le_def";  | 
|
297  | 
val Lt_def = thm "Lt_def";  | 
|
298  | 
val Ge_def = thm "Ge_def";  | 
|
299  | 
val Gt_def = thm "Gt_def";  | 
|
300  | 
val greater_than_def = thm "greater_than_def";  | 
|
301  | 
||
302  | 
val nat_bnd_mono = thm "nat_bnd_mono";  | 
|
303  | 
val nat_unfold = thm "nat_unfold";  | 
|
304  | 
val nat_0I = thm "nat_0I";  | 
|
305  | 
val nat_succI = thm "nat_succI";  | 
|
306  | 
val nat_1I = thm "nat_1I";  | 
|
307  | 
val nat_2I = thm "nat_2I";  | 
|
308  | 
val bool_subset_nat = thm "bool_subset_nat";  | 
|
309  | 
val bool_into_nat = thm "bool_into_nat";  | 
|
310  | 
val nat_induct = thm "nat_induct";  | 
|
311  | 
val natE = thm "natE";  | 
|
312  | 
val nat_into_Ord = thm "nat_into_Ord";  | 
|
313  | 
val nat_0_le = thm "nat_0_le";  | 
|
314  | 
val nat_le_refl = thm "nat_le_refl";  | 
|
315  | 
val Ord_nat = thm "Ord_nat";  | 
|
316  | 
val Limit_nat = thm "Limit_nat";  | 
|
317  | 
val succ_natD = thm "succ_natD";  | 
|
318  | 
val nat_succ_iff = thm "nat_succ_iff";  | 
|
319  | 
val nat_le_Limit = thm "nat_le_Limit";  | 
|
320  | 
val succ_in_naturalD = thm "succ_in_naturalD";  | 
|
321  | 
val lt_nat_in_nat = thm "lt_nat_in_nat";  | 
|
322  | 
val le_in_nat = thm "le_in_nat";  | 
|
323  | 
val complete_induct = thm "complete_induct";  | 
|
324  | 
val nat_induct_from = thm "nat_induct_from";  | 
|
325  | 
val diff_induct = thm "diff_induct";  | 
|
326  | 
val succ_lt_induct = thm "succ_lt_induct";  | 
|
327  | 
val nat_case_0 = thm "nat_case_0";  | 
|
328  | 
val nat_case_succ = thm "nat_case_succ";  | 
|
329  | 
val nat_case_type = thm "nat_case_type";  | 
|
330  | 
val nat_rec_0 = thm "nat_rec_0";  | 
|
331  | 
val nat_rec_succ = thm "nat_rec_succ";  | 
|
332  | 
val Un_nat_type = thm "Un_nat_type";  | 
|
333  | 
val Int_nat_type = thm "Int_nat_type";  | 
|
334  | 
val nat_nonempty = thm "nat_nonempty";  | 
|
335  | 
*}  | 
|
336  | 
||
| 0 | 337  | 
end  |