Various simplifications of the Constructible theories
authorpaulson
Fri, 04 Oct 2002 15:57:32 +0200
changeset 13628 87482b5e3f2e
parent 13627 67b0b7500a9d
child 13629 a46362d2b19b
Various simplifications of the Constructible theories
src/ZF/Constructible/L_axioms.thy
src/ZF/Constructible/Relative.thy
src/ZF/Constructible/Separation.thy
src/ZF/Constructible/Wellorderings.thy
src/ZF/Nat.thy
--- a/src/ZF/Constructible/L_axioms.thy	Fri Oct 04 15:23:58 2002 +0200
+++ b/src/ZF/Constructible/L_axioms.thy	Fri Oct 04 15:57:32 2002 +0200
@@ -95,8 +95,7 @@
 
 theorem M_trivial_L: "PROP M_trivial(L)"
   apply (rule M_trivial.intro)
-        apply (erule (1) transL)
-       apply (rule nonempty)
+       apply (erule (1) transL)
       apply (rule upair_ax)
      apply (rule Union_ax)
     apply (rule power_ax)
--- a/src/ZF/Constructible/Relative.thy	Fri Oct 04 15:23:58 2002 +0200
+++ b/src/ZF/Constructible/Relative.thy	Fri Oct 04 15:57:32 2002 +0200
@@ -21,7 +21,7 @@
     "upair(M,a,b,z) == a \<in> z & b \<in> z & (\<forall>x[M]. x\<in>z --> x = a | x = b)"
 
   pair :: "[i=>o,i,i,i] => o"
-    "pair(M,a,b,z) == \<exists>x[M]. upair(M,a,a,x) & 
+    "pair(M,a,b,z) == \<exists>x[M]. upair(M,a,a,x) &
                           (\<exists>y[M]. upair(M,a,b,y) & upair(M,x,y,z))"
 
 
@@ -62,17 +62,17 @@
     "big_union(M,A,z) == \<forall>x[M]. x \<in> z <-> (\<exists>y[M]. y\<in>A & x \<in> y)"
 
   big_inter :: "[i=>o,i,i] => o"
-    "big_inter(M,A,z) == 
+    "big_inter(M,A,z) ==
              (A=0 --> z=0) &
 	     (A\<noteq>0 --> (\<forall>x[M]. x \<in> z <-> (\<forall>y[M]. y\<in>A --> x \<in> y)))"
 
   cartprod :: "[i=>o,i,i,i] => o"
-    "cartprod(M,A,B,z) == 
+    "cartprod(M,A,B,z) ==
 	\<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))"
 
   is_sum :: "[i=>o,i,i,i] => o"
-    "is_sum(M,A,B,Z) == 
-       \<exists>A0[M]. \<exists>n1[M]. \<exists>s1[M]. \<exists>B1[M]. 
+    "is_sum(M,A,B,Z) ==
+       \<exists>A0[M]. \<exists>n1[M]. \<exists>s1[M]. \<exists>B1[M].
        number1(M,n1) & cartprod(M,n1,A,A0) & upair(M,n1,n1,s1) &
        cartprod(M,s1,B,B1) & union(M,A0,B1,Z)"
 
@@ -83,73 +83,73 @@
     "is_Inr(M,a,z) == \<exists>n1[M]. number1(M,n1) & pair(M,n1,a,z)"
 
   is_converse :: "[i=>o,i,i] => o"
-    "is_converse(M,r,z) == 
-	\<forall>x[M]. x \<in> z <-> 
+    "is_converse(M,r,z) ==
+	\<forall>x[M]. x \<in> z <->
              (\<exists>w[M]. w\<in>r & (\<exists>u[M]. \<exists>v[M]. pair(M,u,v,w) & pair(M,v,u,x)))"
 
   pre_image :: "[i=>o,i,i,i] => o"
-    "pre_image(M,r,A,z) == 
+    "pre_image(M,r,A,z) ==
 	\<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. y\<in>A & pair(M,x,y,w)))"
 
   is_domain :: "[i=>o,i,i] => o"
-    "is_domain(M,r,z) == 
+    "is_domain(M,r,z) ==
 	\<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. pair(M,x,y,w)))"
 
   image :: "[i=>o,i,i,i] => o"
-    "image(M,r,A,z) == 
+    "image(M,r,A,z) ==
         \<forall>y[M]. y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,w)))"
 
   is_range :: "[i=>o,i,i] => o"
-    --{*the cleaner 
+    --{*the cleaner
       @{term "\<exists>r'[M]. is_converse(M,r,r') & is_domain(M,r',z)"}
-      unfortunately needs an instance of separation in order to prove 
+      unfortunately needs an instance of separation in order to prove
         @{term "M(converse(r))"}.*}
-    "is_range(M,r,z) == 
+    "is_range(M,r,z) ==
 	\<forall>y[M]. y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. pair(M,x,y,w)))"
 
   is_field :: "[i=>o,i,i] => o"
-    "is_field(M,r,z) == 
-	\<exists>dr[M]. \<exists>rr[M]. is_domain(M,r,dr) & is_range(M,r,rr) & 
+    "is_field(M,r,z) ==
+	\<exists>dr[M]. \<exists>rr[M]. is_domain(M,r,dr) & is_range(M,r,rr) &
                         union(M,dr,rr,z)"
 
   is_relation :: "[i=>o,i] => o"
-    "is_relation(M,r) == 
+    "is_relation(M,r) ==
         (\<forall>z[M]. z\<in>r --> (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,z)))"
 
   is_function :: "[i=>o,i] => o"
-    "is_function(M,r) == 
-	\<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M]. 
+    "is_function(M,r) ==
+	\<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M].
            pair(M,x,y,p) --> pair(M,x,y',p') --> p\<in>r --> p'\<in>r --> y=y'"
 
   fun_apply :: "[i=>o,i,i,i] => o"
-    "fun_apply(M,f,x,y) == 
-        (\<exists>xs[M]. \<exists>fxs[M]. 
+    "fun_apply(M,f,x,y) ==
+        (\<exists>xs[M]. \<exists>fxs[M].
          upair(M,x,x,xs) & image(M,f,xs,fxs) & big_union(M,fxs,y))"
 
   typed_function :: "[i=>o,i,i,i] => o"
-    "typed_function(M,A,B,r) == 
+    "typed_function(M,A,B,r) ==
         is_function(M,r) & is_relation(M,r) & is_domain(M,r,A) &
         (\<forall>u[M]. u\<in>r --> (\<forall>x[M]. \<forall>y[M]. pair(M,x,y,u) --> y\<in>B))"
 
   is_funspace :: "[i=>o,i,i,i] => o"
-    "is_funspace(M,A,B,F) == 
+    "is_funspace(M,A,B,F) ==
         \<forall>f[M]. f \<in> F <-> typed_function(M,A,B,f)"
 
   composition :: "[i=>o,i,i,i] => o"
-    "composition(M,r,s,t) == 
-        \<forall>p[M]. p \<in> t <-> 
-               (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M]. 
-                pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) & 
+    "composition(M,r,s,t) ==
+        \<forall>p[M]. p \<in> t <->
+               (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M].
+                pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) &
                 xy \<in> s & yz \<in> r)"
 
   injection :: "[i=>o,i,i,i] => o"
-    "injection(M,A,B,f) == 
+    "injection(M,A,B,f) ==
 	typed_function(M,A,B,f) &
-        (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M]. 
+        (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M].
           pair(M,x,y,p) --> pair(M,x',y,p') --> p\<in>f --> p'\<in>f --> x=x')"
 
   surjection :: "[i=>o,i,i,i] => o"
-    "surjection(M,A,B,f) == 
+    "surjection(M,A,B,f) ==
         typed_function(M,A,B,f) &
         (\<forall>y[M]. y\<in>B --> (\<exists>x[M]. x\<in>A & fun_apply(M,f,x,y)))"
 
@@ -157,7 +157,7 @@
     "bijection(M,A,B,f) == injection(M,A,B,f) & surjection(M,A,B,f)"
 
   restriction :: "[i=>o,i,i,i] => o"
-    "restriction(M,r,A,z) == 
+    "restriction(M,r,A,z) ==
 	\<forall>x[M]. x \<in> z <-> (x \<in> r & (\<exists>u[M]. u\<in>A & (\<exists>v[M]. pair(M,u,v,x))))"
 
   transitive_set :: "[i=>o,i] => o"
@@ -169,19 +169,19 @@
 
   limit_ordinal :: "[i=>o,i] => o"
     --{*a limit ordinal is a non-empty, successor-closed ordinal*}
-    "limit_ordinal(M,a) == 
-	ordinal(M,a) & ~ empty(M,a) & 
+    "limit_ordinal(M,a) ==
+	ordinal(M,a) & ~ empty(M,a) &
         (\<forall>x[M]. x\<in>a --> (\<exists>y[M]. y\<in>a & successor(M,x,y)))"
 
   successor_ordinal :: "[i=>o,i] => o"
     --{*a successor ordinal is any ordinal that is neither empty nor limit*}
-    "successor_ordinal(M,a) == 
+    "successor_ordinal(M,a) ==
 	ordinal(M,a) & ~ empty(M,a) & ~ limit_ordinal(M,a)"
 
   finite_ordinal :: "[i=>o,i] => o"
     --{*an ordinal is finite if neither it nor any of its elements are limit*}
-    "finite_ordinal(M,a) == 
-	ordinal(M,a) & ~ limit_ordinal(M,a) & 
+    "finite_ordinal(M,a) ==
+	ordinal(M,a) & ~ limit_ordinal(M,a) &
         (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x))"
 
   omega :: "[i=>o,i] => o"
@@ -192,7 +192,7 @@
     "is_quasinat(M,z) == empty(M,z) | (\<exists>m[M]. successor(M,m,z))"
 
   is_nat_case :: "[i=>o, i, [i,i]=>o, i, i] => o"
-    "is_nat_case(M, a, is_b, k, z) == 
+    "is_nat_case(M, a, is_b, k, z) ==
        (empty(M,k) --> z=a) &
        (\<forall>m[M]. successor(M,m,k) --> is_b(m,z)) &
        (is_quasinat(M,k) | empty(M,z))"
@@ -202,7 +202,7 @@
 
   Relativize1 :: "[i=>o, i, [i,i]=>o, i=>i] => o"
     --{*as above, but typed*}
-    "Relativize1(M,A,is_f,f) == 
+    "Relativize1(M,A,is_f,f) ==
         \<forall>x[M]. \<forall>y[M]. x\<in>A --> is_f(x,y) <-> y = f(x)"
 
   relativize2 :: "[i=>o, [i,i,i]=>o, [i,i]=>i] => o"
@@ -213,42 +213,42 @@
         \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. x\<in>A --> y\<in>B --> is_f(x,y,z) <-> z = f(x,y)"
 
   relativize3 :: "[i=>o, [i,i,i,i]=>o, [i,i,i]=>i] => o"
-    "relativize3(M,is_f,f) == 
+    "relativize3(M,is_f,f) ==
        \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>u[M]. is_f(x,y,z,u) <-> u = f(x,y,z)"
 
   Relativize3 :: "[i=>o, i, i, i, [i,i,i,i]=>o, [i,i,i]=>i] => o"
-    "Relativize3(M,A,B,C,is_f,f) == 
-       \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>u[M]. 
+    "Relativize3(M,A,B,C,is_f,f) ==
+       \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>u[M].
          x\<in>A --> y\<in>B --> z\<in>C --> is_f(x,y,z,u) <-> u = f(x,y,z)"
 
   relativize4 :: "[i=>o, [i,i,i,i,i]=>o, [i,i,i,i]=>i] => o"
-    "relativize4(M,is_f,f) == 
+    "relativize4(M,is_f,f) ==
        \<forall>u[M]. \<forall>x[M]. \<forall>y[M]. \<forall>z[M]. \<forall>a[M]. is_f(u,x,y,z,a) <-> a = f(u,x,y,z)"
 
 
 text{*Useful when absoluteness reasoning has replaced the predicates by terms*}
 lemma triv_Relativize1:
      "Relativize1(M, A, \<lambda>x y. y = f(x), f)"
-by (simp add: Relativize1_def) 
+by (simp add: Relativize1_def)
 
 lemma triv_Relativize2:
      "Relativize2(M, A, B, \<lambda>x y a. a = f(x,y), f)"
-by (simp add: Relativize2_def) 
+by (simp add: Relativize2_def)
 
 
 subsection {*The relativized ZF axioms*}
 constdefs
 
   extensionality :: "(i=>o) => o"
-    "extensionality(M) == 
+    "extensionality(M) ==
 	\<forall>x[M]. \<forall>y[M]. (\<forall>z[M]. z \<in> x <-> z \<in> y) --> x=y"
 
   separation :: "[i=>o, i=>o] => o"
     --{*The formula @{text P} should only involve parameters
-        belonging to @{text M}.  But we can't prove separation as a scheme
-        anyway.  Every instance that we need must individually be assumed
-        and later proved.*}
-    "separation(M,P) == 
+        belonging to @{text M} and all its quantifiers must be relativized
+        to @{text M}.  We do not have separation as a scheme; every instance
+        that we need must be assumed (and later proved) separately.*}
+    "separation(M,P) ==
 	\<forall>z[M]. \<exists>y[M]. \<forall>x[M]. x \<in> y <-> x \<in> z & P(x)"
 
   upair_ax :: "(i=>o) => o"
@@ -261,73 +261,73 @@
     "power_ax(M) == \<forall>x[M]. \<exists>z[M]. powerset(M,x,z)"
 
   univalent :: "[i=>o, i, [i,i]=>o] => o"
-    "univalent(M,A,P) == 
-	(\<forall>x[M]. x\<in>A --> (\<forall>y[M]. \<forall>z[M]. P(x,y) & P(x,z) --> y=z))"
+    "univalent(M,A,P) ==
+	\<forall>x[M]. x\<in>A --> (\<forall>y[M]. \<forall>z[M]. P(x,y) & P(x,z) --> y=z)"
 
   replacement :: "[i=>o, [i,i]=>o] => o"
-    "replacement(M,P) == 
+    "replacement(M,P) ==
       \<forall>A[M]. univalent(M,A,P) -->
       (\<exists>Y[M]. \<forall>b[M]. (\<exists>x[M]. x\<in>A & P(x,b)) --> b \<in> Y)"
 
   strong_replacement :: "[i=>o, [i,i]=>o] => o"
-    "strong_replacement(M,P) == 
+    "strong_replacement(M,P) ==
       \<forall>A[M]. univalent(M,A,P) -->
       (\<exists>Y[M]. \<forall>b[M]. b \<in> Y <-> (\<exists>x[M]. x\<in>A & P(x,b)))"
 
   foundation_ax :: "(i=>o) => o"
-    "foundation_ax(M) == 
+    "foundation_ax(M) ==
 	\<forall>x[M]. (\<exists>y[M]. y\<in>x) --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & z \<in> y))"
 
 
 subsection{*A trivial consistency proof for $V_\omega$ *}
 
-text{*We prove that $V_\omega$ 
+text{*We prove that $V_\omega$
       (or @{text univ} in Isabelle) satisfies some ZF axioms.
      Kunen, Theorem IV 3.13, page 123.*}
 
 lemma univ0_downwards_mem: "[| y \<in> x; x \<in> univ(0) |] ==> y \<in> univ(0)"
-apply (insert Transset_univ [OF Transset_0])  
-apply (simp add: Transset_def, blast) 
+apply (insert Transset_univ [OF Transset_0])
+apply (simp add: Transset_def, blast)
 done
 
-lemma univ0_Ball_abs [simp]: 
-     "A \<in> univ(0) ==> (\<forall>x\<in>A. x \<in> univ(0) --> P(x)) <-> (\<forall>x\<in>A. P(x))" 
-by (blast intro: univ0_downwards_mem) 
+lemma univ0_Ball_abs [simp]:
+     "A \<in> univ(0) ==> (\<forall>x\<in>A. x \<in> univ(0) --> P(x)) <-> (\<forall>x\<in>A. P(x))"
+by (blast intro: univ0_downwards_mem)
 
-lemma univ0_Bex_abs [simp]: 
-     "A \<in> univ(0) ==> (\<exists>x\<in>A. x \<in> univ(0) & P(x)) <-> (\<exists>x\<in>A. P(x))" 
-by (blast intro: univ0_downwards_mem) 
+lemma univ0_Bex_abs [simp]:
+     "A \<in> univ(0) ==> (\<exists>x\<in>A. x \<in> univ(0) & P(x)) <-> (\<exists>x\<in>A. P(x))"
+by (blast intro: univ0_downwards_mem)
 
 text{*Congruence rule for separation: can assume the variable is in @{text M}*}
 lemma separation_cong [cong]:
-     "(!!x. M(x) ==> P(x) <-> P'(x)) 
+     "(!!x. M(x) ==> P(x) <-> P'(x))
       ==> separation(M, %x. P(x)) <-> separation(M, %x. P'(x))"
-by (simp add: separation_def) 
+by (simp add: separation_def)
 
 lemma univalent_cong [cong]:
-     "[| A=A'; !!x y. [| x\<in>A; M(x); M(y) |] ==> P(x,y) <-> P'(x,y) |] 
+     "[| A=A'; !!x y. [| x\<in>A; M(x); M(y) |] ==> P(x,y) <-> P'(x,y) |]
       ==> univalent(M, A, %x y. P(x,y)) <-> univalent(M, A', %x y. P'(x,y))"
-by (simp add: univalent_def) 
+by (simp add: univalent_def)
 
 lemma univalent_triv [intro,simp]:
      "univalent(M, A, \<lambda>x y. y = f(x))"
-by (simp add: univalent_def) 
+by (simp add: univalent_def)
 
 lemma univalent_conjI2 [intro,simp]:
      "univalent(M,A,Q) ==> univalent(M, A, \<lambda>x y. P(x,y) & Q(x,y))"
-by (simp add: univalent_def, blast) 
+by (simp add: univalent_def, blast)
 
 text{*Congruence rule for replacement*}
 lemma strong_replacement_cong [cong]:
-     "[| !!x y. [| M(x); M(y) |] ==> P(x,y) <-> P'(x,y) |] 
-      ==> strong_replacement(M, %x y. P(x,y)) <-> 
-          strong_replacement(M, %x y. P'(x,y))" 
-by (simp add: strong_replacement_def) 
+     "[| !!x y. [| M(x); M(y) |] ==> P(x,y) <-> P'(x,y) |]
+      ==> strong_replacement(M, %x y. P(x,y)) <->
+          strong_replacement(M, %x y. P'(x,y))"
+by (simp add: strong_replacement_def)
 
 text{*The extensionality axiom*}
 lemma "extensionality(\<lambda>x. x \<in> univ(0))"
 apply (simp add: extensionality_def)
-apply (blast intro: univ0_downwards_mem) 
+apply (blast intro: univ0_downwards_mem)
 done
 
 text{*The separation axiom requires some lemmas*}
@@ -339,7 +339,7 @@
 done
 
 lemma Collect_in_VLimit:
-     "[| X \<in> Vfrom(A,i);  Limit(i);  Transset(A) |] 
+     "[| X \<in> Vfrom(A,i);  Limit(i);  Transset(A) |]
       ==> Collect(X,P) \<in> Vfrom(A,i)"
 apply (rule Limit_VfromE, assumption+)
 apply (blast intro: Limit_has_succ VfromI Collect_in_Vfrom)
@@ -350,23 +350,23 @@
 by (simp add: univ_def Collect_in_VLimit Limit_nat)
 
 lemma "separation(\<lambda>x. x \<in> univ(0), P)"
-apply (simp add: separation_def, clarify) 
-apply (rule_tac x = "Collect(z,P)" in bexI) 
+apply (simp add: separation_def, clarify)
+apply (rule_tac x = "Collect(z,P)" in bexI)
 apply (blast intro: Collect_in_univ Transset_0)+
 done
 
 text{*Unordered pairing axiom*}
 lemma "upair_ax(\<lambda>x. x \<in> univ(0))"
-apply (simp add: upair_ax_def upair_def)  
-apply (blast intro: doubleton_in_univ) 
+apply (simp add: upair_ax_def upair_def)
+apply (blast intro: doubleton_in_univ)
 done
 
 text{*Union axiom*}
-lemma "Union_ax(\<lambda>x. x \<in> univ(0))"  
-apply (simp add: Union_ax_def big_union_def, clarify) 
-apply (rule_tac x="\<Union>x" in bexI)  
+lemma "Union_ax(\<lambda>x. x \<in> univ(0))"
+apply (simp add: Union_ax_def big_union_def, clarify)
+apply (rule_tac x="\<Union>x" in bexI)
  apply (blast intro: univ0_downwards_mem)
-apply (blast intro: Union_in_univ Transset_0) 
+apply (blast intro: Union_in_univ Transset_0)
 done
 
 text{*Powerset axiom*}
@@ -376,88 +376,88 @@
 apply (simp add: univ_def Pow_in_VLimit Limit_nat)
 done
 
-lemma "power_ax(\<lambda>x. x \<in> univ(0))"  
-apply (simp add: power_ax_def powerset_def subset_def, clarify) 
+lemma "power_ax(\<lambda>x. x \<in> univ(0))"
+apply (simp add: power_ax_def powerset_def subset_def, clarify)
 apply (rule_tac x="Pow(x)" in bexI)
  apply (blast intro: univ0_downwards_mem)
-apply (blast intro: Pow_in_univ Transset_0) 
+apply (blast intro: Pow_in_univ Transset_0)
 done
 
 text{*Foundation axiom*}
-lemma "foundation_ax(\<lambda>x. x \<in> univ(0))"  
+lemma "foundation_ax(\<lambda>x. x \<in> univ(0))"
 apply (simp add: foundation_ax_def, clarify)
-apply (cut_tac A=x in foundation) 
+apply (cut_tac A=x in foundation)
 apply (blast intro: univ0_downwards_mem)
 done
 
-lemma "replacement(\<lambda>x. x \<in> univ(0), P)"  
-apply (simp add: replacement_def, clarify) 
+lemma "replacement(\<lambda>x. x \<in> univ(0), P)"
+apply (simp add: replacement_def, clarify)
 oops
 text{*no idea: maybe prove by induction on the rank of A?*}
 
 text{*Still missing: Replacement, Choice*}
 
-subsection{*lemmas needed to reduce some set constructions to instances
+subsection{*Lemmas Needed to Reduce Some Set Constructions to Instances
       of Separation*}
 
 lemma image_iff_Collect: "r `` A = {y \<in> Union(Union(r)). \<exists>p\<in>r. \<exists>x\<in>A. p=<x,y>}"
-apply (rule equalityI, auto) 
-apply (simp add: Pair_def, blast) 
+apply (rule equalityI, auto)
+apply (simp add: Pair_def, blast)
 done
 
 lemma vimage_iff_Collect:
      "r -`` A = {x \<in> Union(Union(r)). \<exists>p\<in>r. \<exists>y\<in>A. p=<x,y>}"
-apply (rule equalityI, auto) 
-apply (simp add: Pair_def, blast) 
+apply (rule equalityI, auto)
+apply (simp add: Pair_def, blast)
 done
 
-text{*These two lemmas lets us prove @{text domain_closed} and 
+text{*These two lemmas lets us prove @{text domain_closed} and
       @{text range_closed} without new instances of separation*}
 
 lemma domain_eq_vimage: "domain(r) = r -`` Union(Union(r))"
 apply (rule equalityI, auto)
 apply (rule vimageI, assumption)
-apply (simp add: Pair_def, blast) 
+apply (simp add: Pair_def, blast)
 done
 
 lemma range_eq_image: "range(r) = r `` Union(Union(r))"
 apply (rule equalityI, auto)
 apply (rule imageI, assumption)
-apply (simp add: Pair_def, blast) 
+apply (simp add: Pair_def, blast)
 done
 
 lemma replacementD:
     "[| replacement(M,P); M(A);  univalent(M,A,P) |]
      ==> \<exists>Y[M]. (\<forall>b[M]. ((\<exists>x[M]. x\<in>A & P(x,b)) --> b \<in> Y))"
-by (simp add: replacement_def) 
+by (simp add: replacement_def)
 
 lemma strong_replacementD:
     "[| strong_replacement(M,P); M(A);  univalent(M,A,P) |]
      ==> \<exists>Y[M]. (\<forall>b[M]. (b \<in> Y <-> (\<exists>x[M]. x\<in>A & P(x,b))))"
-by (simp add: strong_replacement_def) 
+by (simp add: strong_replacement_def)
 
 lemma separationD:
     "[| separation(M,P); M(z) |] ==> \<exists>y[M]. \<forall>x[M]. x \<in> y <-> x \<in> z & P(x)"
-by (simp add: separation_def) 
+by (simp add: separation_def)
 
 
 text{*More constants, for order types*}
 constdefs
 
   order_isomorphism :: "[i=>o,i,i,i,i,i] => o"
-    "order_isomorphism(M,A,r,B,s,f) == 
-        bijection(M,A,B,f) & 
+    "order_isomorphism(M,A,r,B,s,f) ==
+        bijection(M,A,B,f) &
         (\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A -->
           (\<forall>p[M]. \<forall>fx[M]. \<forall>fy[M]. \<forall>q[M].
-            pair(M,x,y,p) --> fun_apply(M,f,x,fx) --> fun_apply(M,f,y,fy) --> 
+            pair(M,x,y,p) --> fun_apply(M,f,x,fx) --> fun_apply(M,f,y,fy) -->
             pair(M,fx,fy,q) --> (p\<in>r <-> q\<in>s))))"
 
   pred_set :: "[i=>o,i,i,i,i] => o"
-    "pred_set(M,A,x,r,B) == 
+    "pred_set(M,A,x,r,B) ==
 	\<forall>y[M]. y \<in> B <-> (\<exists>p[M]. p\<in>r & y \<in> A & pair(M,y,x,p))"
 
   membership :: "[i=>o,i,i] => o" --{*membership relation*}
-    "membership(M,A,r) == 
+    "membership(M,A,r) ==
 	\<forall>p[M]. p \<in> r <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>A & x\<in>y & pair(M,x,y,p)))"
 
 
@@ -468,67 +468,72 @@
 locale M_trivial =
   fixes M
   assumes transM:           "[| y\<in>x; M(x) |] ==> M(y)"
-      and nonempty [simp]:  "M(0)"
       and upair_ax:	    "upair_ax(M)"
       and Union_ax:	    "Union_ax(M)"
       and power_ax:         "power_ax(M)"
       and replacement:      "replacement(M,P)"
       and M_nat [iff]:      "M(nat)"           (*i.e. the axiom of infinity*)
 
-lemma (in M_trivial) rall_abs [simp]: 
-     "M(A) ==> (\<forall>x[M]. x\<in>A --> P(x)) <-> (\<forall>x\<in>A. P(x))" 
-by (blast intro: transM) 
+
+text{*Automatically discovers the proof using @{text transM}, @{text nat_0I}
+and @{text M_nat}.*}
+lemma (in M_trivial) nonempty [simp]: "M(0)"
+by (blast intro: transM)
 
-lemma (in M_trivial) rex_abs [simp]: 
-     "M(A) ==> (\<exists>x[M]. x\<in>A & P(x)) <-> (\<exists>x\<in>A. P(x))" 
-by (blast intro: transM) 
+lemma (in M_trivial) rall_abs [simp]:
+     "M(A) ==> (\<forall>x[M]. x\<in>A --> P(x)) <-> (\<forall>x\<in>A. P(x))"
+by (blast intro: transM)
 
-lemma (in M_trivial) ball_iff_equiv: 
-     "M(A) ==> (\<forall>x[M]. (x\<in>A <-> P(x))) <-> 
-               (\<forall>x\<in>A. P(x)) & (\<forall>x. P(x) --> M(x) --> x\<in>A)" 
+lemma (in M_trivial) rex_abs [simp]:
+     "M(A) ==> (\<exists>x[M]. x\<in>A & P(x)) <-> (\<exists>x\<in>A. P(x))"
+by (blast intro: transM)
+
+lemma (in M_trivial) ball_iff_equiv:
+     "M(A) ==> (\<forall>x[M]. (x\<in>A <-> P(x))) <->
+               (\<forall>x\<in>A. P(x)) & (\<forall>x. P(x) --> M(x) --> x\<in>A)"
 by (blast intro: transM)
 
 text{*Simplifies proofs of equalities when there's an iff-equality
       available for rewriting, universally quantified over M. *}
-lemma (in M_trivial) M_equalityI: 
+lemma (in M_trivial) M_equalityI:
      "[| !!x. M(x) ==> x\<in>A <-> x\<in>B; M(A); M(B) |] ==> A=B"
-by (blast intro!: equalityI dest: transM) 
+by (blast intro!: equalityI dest: transM)
 
 
 subsubsection{*Trivial Absoluteness Proofs: Empty Set, Pairs, etc.*}
 
-lemma (in M_trivial) empty_abs [simp]: 
+lemma (in M_trivial) empty_abs [simp]:
      "M(z) ==> empty(M,z) <-> z=0"
 apply (simp add: empty_def)
-apply (blast intro: transM) 
+apply (blast intro: transM)
 done
 
-lemma (in M_trivial) subset_abs [simp]: 
+lemma (in M_trivial) subset_abs [simp]:
      "M(A) ==> subset(M,A,B) <-> A \<subseteq> B"
-apply (simp add: subset_def) 
-apply (blast intro: transM) 
+apply (simp add: subset_def)
+apply (blast intro: transM)
 done
 
-lemma (in M_trivial) upair_abs [simp]: 
+lemma (in M_trivial) upair_abs [simp]:
      "M(z) ==> upair(M,a,b,z) <-> z={a,b}"
-apply (simp add: upair_def) 
-apply (blast intro: transM) 
+apply (simp add: upair_def)
+apply (blast intro: transM)
 done
 
 lemma (in M_trivial) upair_in_M_iff [iff]:
      "M({a,b}) <-> M(a) & M(b)"
-apply (insert upair_ax, simp add: upair_ax_def) 
-apply (blast intro: transM) 
+apply (insert upair_ax, simp add: upair_ax_def)
+apply (blast intro: transM)
 done
 
 lemma (in M_trivial) singleton_in_M_iff [iff]:
      "M({a}) <-> M(a)"
-by (insert upair_in_M_iff [of a a], simp) 
+by (insert upair_in_M_iff [of a a], simp)
 
-lemma (in M_trivial) pair_abs [simp]: 
+lemma (in M_trivial) pair_abs [simp]:
      "M(z) ==> pair(M,a,b,z) <-> z=<a,b>"
 apply (simp add: pair_def ZF.Pair_def)
-apply (blast intro: transM) 
+apply (blast intro: transM)
 done
 
 lemma (in M_trivial) pair_in_M_iff [iff]:
@@ -538,84 +543,84 @@
 lemma (in M_trivial) pair_components_in_M:
      "[| <x,y> \<in> A; M(A) |] ==> M(x) & M(y)"
 apply (simp add: Pair_def)
-apply (blast dest: transM) 
+apply (blast dest: transM)
 done
 
-lemma (in M_trivial) cartprod_abs [simp]: 
+lemma (in M_trivial) cartprod_abs [simp]:
      "[| M(A); M(B); M(z) |] ==> cartprod(M,A,B,z) <-> z = A*B"
 apply (simp add: cartprod_def)
-apply (rule iffI) 
- apply (blast intro!: equalityI intro: transM dest!: rspec) 
-apply (blast dest: transM) 
+apply (rule iffI)
+ apply (blast intro!: equalityI intro: transM dest!: rspec)
+apply (blast dest: transM)
 done
 
 subsubsection{*Absoluteness for Unions and Intersections*}
 
-lemma (in M_trivial) union_abs [simp]: 
+lemma (in M_trivial) union_abs [simp]:
      "[| M(a); M(b); M(z) |] ==> union(M,a,b,z) <-> z = a Un b"
-apply (simp add: union_def) 
-apply (blast intro: transM) 
+apply (simp add: union_def)
+apply (blast intro: transM)
 done
 
-lemma (in M_trivial) inter_abs [simp]: 
+lemma (in M_trivial) inter_abs [simp]:
      "[| M(a); M(b); M(z) |] ==> inter(M,a,b,z) <-> z = a Int b"
-apply (simp add: inter_def) 
-apply (blast intro: transM) 
+apply (simp add: inter_def)
+apply (blast intro: transM)
 done
 
-lemma (in M_trivial) setdiff_abs [simp]: 
+lemma (in M_trivial) setdiff_abs [simp]:
      "[| M(a); M(b); M(z) |] ==> setdiff(M,a,b,z) <-> z = a-b"
-apply (simp add: setdiff_def) 
-apply (blast intro: transM) 
+apply (simp add: setdiff_def)
+apply (blast intro: transM)
 done
 
-lemma (in M_trivial) Union_abs [simp]: 
+lemma (in M_trivial) Union_abs [simp]:
      "[| M(A); M(z) |] ==> big_union(M,A,z) <-> z = Union(A)"
-apply (simp add: big_union_def) 
-apply (blast intro!: equalityI dest: transM) 
+apply (simp add: big_union_def)
+apply (blast intro!: equalityI dest: transM)
 done
 
 lemma (in M_trivial) Union_closed [intro,simp]:
      "M(A) ==> M(Union(A))"
-by (insert Union_ax, simp add: Union_ax_def) 
+by (insert Union_ax, simp add: Union_ax_def)
 
 lemma (in M_trivial) Un_closed [intro,simp]:
      "[| M(A); M(B) |] ==> M(A Un B)"
-by (simp only: Un_eq_Union, blast) 
+by (simp only: Un_eq_Union, blast)
 
 lemma (in M_trivial) cons_closed [intro,simp]:
      "[| M(a); M(A) |] ==> M(cons(a,A))"
-by (subst cons_eq [symmetric], blast) 
+by (subst cons_eq [symmetric], blast)
 
-lemma (in M_trivial) cons_abs [simp]: 
+lemma (in M_trivial) cons_abs [simp]:
      "[| M(b); M(z) |] ==> is_cons(M,a,b,z) <-> z = cons(a,b)"
-by (simp add: is_cons_def, blast intro: transM)  
+by (simp add: is_cons_def, blast intro: transM)
 
-lemma (in M_trivial) successor_abs [simp]: 
+lemma (in M_trivial) successor_abs [simp]:
      "[| M(a); M(z) |] ==> successor(M,a,z) <-> z = succ(a)"
-by (simp add: successor_def, blast)  
+by (simp add: successor_def, blast)
 
 lemma (in M_trivial) succ_in_M_iff [iff]:
      "M(succ(a)) <-> M(a)"
-apply (simp add: succ_def) 
-apply (blast intro: transM) 
+apply (simp add: succ_def)
+apply (blast intro: transM)
 done
 
 subsubsection{*Absoluteness for Separation and Replacement*}
 
 lemma (in M_trivial) separation_closed [intro,simp]:
      "[| separation(M,P); M(A) |] ==> M(Collect(A,P))"
-apply (insert separation, simp add: separation_def) 
-apply (drule rspec, assumption, clarify) 
+apply (insert separation, simp add: separation_def)
+apply (drule rspec, assumption, clarify)
 apply (subgoal_tac "y = Collect(A,P)", blast)
-apply (blast dest: transM) 
+apply (blast dest: transM)
 done
 
 lemma separation_iff:
      "separation(M,P) <-> (\<forall>z[M]. \<exists>y[M]. is_Collect(M,z,P,y))"
-by (simp add: separation_def is_Collect_def) 
+by (simp add: separation_def is_Collect_def)
 
-lemma (in M_trivial) Collect_abs [simp]: 
+lemma (in M_trivial) Collect_abs [simp]:
      "[| M(A); M(z) |] ==> is_Collect(M,A,P,z) <-> z = Collect(A,P)"
 apply (simp add: is_Collect_def)
 apply (blast intro!: equalityI dest: transM)
@@ -625,70 +630,68 @@
 lemma (in M_trivial) strong_replacementI [rule_format]:
     "[| \<forall>A[M]. separation(M, %u. \<exists>x[M]. x\<in>A & P(x,u)) |]
      ==> strong_replacement(M,P)"
-apply (simp add: strong_replacement_def, clarify) 
-apply (frule replacementD [OF replacement], assumption, clarify) 
-apply (drule_tac x=A in rspec, clarify)  
-apply (drule_tac z=Y in separationD, assumption, clarify) 
-apply (rule_tac x=y in rexI) 
-apply (blast dest: transM)+
+apply (simp add: strong_replacement_def, clarify)
+apply (frule replacementD [OF replacement], assumption, clarify)
+apply (drule_tac x=A in rspec, clarify)
+apply (drule_tac z=Y in separationD, assumption, clarify)
+apply (rule_tac x=y in rexI, force, assumption)
 done
 
-
 subsubsection{*The Operator @{term is_Replace}*}
 
 
 lemma is_Replace_cong [cong]:
-     "[| A=A'; 
+     "[| A=A';
          !!x y. [| M(x); M(y) |] ==> P(x,y) <-> P'(x,y);
-         z=z' |] 
-      ==> is_Replace(M, A, %x y. P(x,y), z) <-> 
-          is_Replace(M, A', %x y. P'(x,y), z')" 
-by (simp add: is_Replace_def) 
+         z=z' |]
+      ==> is_Replace(M, A, %x y. P(x,y), z) <->
+          is_Replace(M, A', %x y. P'(x,y), z')"
+by (simp add: is_Replace_def)
 
-lemma (in M_trivial) univalent_Replace_iff: 
+lemma (in M_trivial) univalent_Replace_iff:
      "[| M(A); univalent(M,A,P);
-         !!x y. [| x\<in>A; P(x,y) |] ==> M(y) |] 
+         !!x y. [| x\<in>A; P(x,y) |] ==> M(y) |]
       ==> u \<in> Replace(A,P) <-> (\<exists>x. x\<in>A & P(x,u))"
-apply (simp add: Replace_iff univalent_def) 
+apply (simp add: Replace_iff univalent_def)
 apply (blast dest: transM)
 done
 
 (*The last premise expresses that P takes M to M*)
 lemma (in M_trivial) strong_replacement_closed [intro,simp]:
-     "[| strong_replacement(M,P); M(A); univalent(M,A,P); 
+     "[| strong_replacement(M,P); M(A); univalent(M,A,P);
          !!x y. [| x\<in>A; P(x,y) |] ==> M(y) |] ==> M(Replace(A,P))"
-apply (simp add: strong_replacement_def) 
-apply (drule_tac x=A in rspec, safe) 
+apply (simp add: strong_replacement_def)
+apply (drule_tac x=A in rspec, safe)
 apply (subgoal_tac "Replace(A,P) = Y")
- apply simp 
+ apply simp
 apply (rule equality_iffI)
 apply (simp add: univalent_Replace_iff)
-apply (blast dest: transM) 
+apply (blast dest: transM)
 done
 
-lemma (in M_trivial) Replace_abs: 
+lemma (in M_trivial) Replace_abs:
      "[| M(A); M(z); univalent(M,A,P); strong_replacement(M, P);
-         !!x y. [| x\<in>A; P(x,y) |] ==> M(y)  |] 
+         !!x y. [| x\<in>A; P(x,y) |] ==> M(y)  |]
       ==> is_Replace(M,A,P,z) <-> z = Replace(A,P)"
 apply (simp add: is_Replace_def)
-apply (rule iffI) 
-apply (rule M_equalityI) 
-apply (simp_all add: univalent_Replace_iff, blast, blast) 
+apply (rule iffI)
+apply (rule M_equalityI)
+apply (simp_all add: univalent_Replace_iff, blast, blast)
 done
 
 (*The first premise can't simply be assumed as a schema.
   It is essential to take care when asserting instances of Replacement.
   Let K be a nonconstructible subset of nat and define
-  f(x) = x if x:K and f(x)=0 otherwise.  Then RepFun(nat,f) = cons(0,K), a 
+  f(x) = x if x:K and f(x)=0 otherwise.  Then RepFun(nat,f) = cons(0,K), a
   nonconstructible set.  So we cannot assume that M(X) implies M(RepFun(X,f))
   even for f : M -> M.
 *)
 lemma (in M_trivial) RepFun_closed:
      "[| strong_replacement(M, \<lambda>x y. y = f(x)); M(A); \<forall>x\<in>A. M(f(x)) |]
       ==> M(RepFun(A,f))"
-apply (simp add: RepFun_def) 
-apply (rule strong_replacement_closed) 
-apply (auto dest: transM  simp add: univalent_def) 
+apply (simp add: RepFun_def)
+apply (rule strong_replacement_closed)
+apply (auto dest: transM  simp add: univalent_def)
 done
 
 lemma Replace_conj_eq: "{y . x \<in> A, x\<in>A & y=f(x)} = {y . x\<in>A, y=f(x)}"
@@ -701,69 +704,69 @@
       ==> M(RepFun(A, %x. f(x)))"
 apply (simp add: RepFun_def)
 apply (frule strong_replacement_closed, assumption)
-apply (auto dest: transM  simp add: Replace_conj_eq univalent_def) 
+apply (auto dest: transM  simp add: Replace_conj_eq univalent_def)
 done
 
 subsubsection {*Absoluteness for @{term Lambda}*}
 
 constdefs
  is_lambda :: "[i=>o, i, [i,i]=>o, i] => o"
-    "is_lambda(M, A, is_b, z) == 
+    "is_lambda(M, A, is_b, z) ==
        \<forall>p[M]. p \<in> z <->
         (\<exists>u[M]. \<exists>v[M]. u\<in>A & pair(M,u,v,p) & is_b(u,v))"
 
 lemma (in M_trivial) lam_closed:
      "[| strong_replacement(M, \<lambda>x y. y = <x,b(x)>); M(A); \<forall>x\<in>A. M(b(x)) |]
       ==> M(\<lambda>x\<in>A. b(x))"
-by (simp add: lam_def, blast intro: RepFun_closed dest: transM) 
+by (simp add: lam_def, blast intro: RepFun_closed dest: transM)
 
 text{*Better than @{text lam_closed}: has the formula @{term "x\<in>A"}*}
 lemma (in M_trivial) lam_closed2:
   "[|strong_replacement(M, \<lambda>x y. x\<in>A & y = \<langle>x, b(x)\<rangle>);
      M(A); \<forall>m[M]. m\<in>A --> M(b(m))|] ==> M(Lambda(A,b))"
 apply (simp add: lam_def)
-apply (blast intro: RepFun_closed2 dest: transM)  
+apply (blast intro: RepFun_closed2 dest: transM)
 done
 
-lemma (in M_trivial) lambda_abs2 [simp]: 
+lemma (in M_trivial) lambda_abs2 [simp]:
      "[| strong_replacement(M, \<lambda>x y. x\<in>A & y = \<langle>x, b(x)\<rangle>);
-         Relativize1(M,A,is_b,b); M(A); \<forall>m[M]. m\<in>A --> M(b(m)); M(z) |] 
+         Relativize1(M,A,is_b,b); M(A); \<forall>m[M]. m\<in>A --> M(b(m)); M(z) |]
       ==> is_lambda(M,A,is_b,z) <-> z = Lambda(A,b)"
 apply (simp add: Relativize1_def is_lambda_def)
 apply (rule iffI)
- prefer 2 apply (simp add: lam_def) 
+ prefer 2 apply (simp add: lam_def)
 apply (rule M_equalityI)
-  apply (simp add: lam_def) 
+  apply (simp add: lam_def)
  apply (simp add: lam_closed2)+
 done
 
 lemma is_lambda_cong [cong]:
-     "[| A=A';  z=z'; 
-         !!x y. [| x\<in>A; M(x); M(y) |] ==> is_b(x,y) <-> is_b'(x,y) |] 
-      ==> is_lambda(M, A, %x y. is_b(x,y), z) <-> 
-          is_lambda(M, A', %x y. is_b'(x,y), z')" 
-by (simp add: is_lambda_def) 
+     "[| A=A';  z=z';
+         !!x y. [| x\<in>A; M(x); M(y) |] ==> is_b(x,y) <-> is_b'(x,y) |]
+      ==> is_lambda(M, A, %x y. is_b(x,y), z) <->
+          is_lambda(M, A', %x y. is_b'(x,y), z')"
+by (simp add: is_lambda_def)
 
-lemma (in M_trivial) image_abs [simp]: 
+lemma (in M_trivial) image_abs [simp]:
      "[| M(r); M(A); M(z) |] ==> image(M,r,A,z) <-> z = r``A"
 apply (simp add: image_def)
-apply (rule iffI) 
- apply (blast intro!: equalityI dest: transM, blast) 
+apply (rule iffI)
+ apply (blast intro!: equalityI dest: transM, blast)
 done
 
 text{*What about @{text Pow_abs}?  Powerset is NOT absolute!
       This result is one direction of absoluteness.*}
 
-lemma (in M_trivial) powerset_Pow: 
+lemma (in M_trivial) powerset_Pow:
      "powerset(M, x, Pow(x))"
 by (simp add: powerset_def)
 
 text{*But we can't prove that the powerset in @{text M} includes the
       real powerset.*}
-lemma (in M_trivial) powerset_imp_subset_Pow: 
+lemma (in M_trivial) powerset_imp_subset_Pow:
      "[| powerset(M,x,y); M(y) |] ==> y <= Pow(x)"
-apply (simp add: powerset_def) 
-apply (blast dest: transM) 
+apply (simp add: powerset_def)
+apply (blast dest: transM)
 done
 
 subsubsection{*Absoluteness for the Natural Numbers*}
@@ -774,126 +777,123 @@
 
 lemma (in M_trivial) nat_case_closed [intro,simp]:
   "[|M(k); M(a); \<forall>m[M]. M(b(m))|] ==> M(nat_case(a,b,k))"
-apply (case_tac "k=0", simp) 
+apply (case_tac "k=0", simp)
 apply (case_tac "\<exists>m. k = succ(m)", force)
-apply (simp add: nat_case_def) 
+apply (simp add: nat_case_def)
 done
 
-lemma (in M_trivial) quasinat_abs [simp]: 
+lemma (in M_trivial) quasinat_abs [simp]:
      "M(z) ==> is_quasinat(M,z) <-> quasinat(z)"
 by (auto simp add: is_quasinat_def quasinat_def)
 
-lemma (in M_trivial) nat_case_abs [simp]: 
-     "[| relativize1(M,is_b,b); M(k); M(z) |] 
+lemma (in M_trivial) nat_case_abs [simp]:
+     "[| relativize1(M,is_b,b); M(k); M(z) |]
       ==> is_nat_case(M,a,is_b,k,z) <-> z = nat_case(a,b,k)"
-apply (case_tac "quasinat(k)") 
- prefer 2 
- apply (simp add: is_nat_case_def non_nat_case) 
- apply (force simp add: quasinat_def) 
+apply (case_tac "quasinat(k)")
+ prefer 2
+ apply (simp add: is_nat_case_def non_nat_case)
+ apply (force simp add: quasinat_def)
 apply (simp add: quasinat_def is_nat_case_def)
-apply (elim disjE exE) 
- apply (simp_all add: relativize1_def) 
+apply (elim disjE exE)
+ apply (simp_all add: relativize1_def)
 done
 
-(*NOT for the simplifier.  The assumption M(z') is apparently necessary, but 
+(*NOT for the simplifier.  The assumption M(z') is apparently necessary, but
   causes the error "Failed congruence proof!"  It may be better to replace
   is_nat_case by nat_case before attempting congruence reasoning.*)
 lemma is_nat_case_cong:
      "[| a = a'; k = k';  z = z';  M(z');
        !!x y. [| M(x); M(y) |] ==> is_b(x,y) <-> is_b'(x,y) |]
       ==> is_nat_case(M, a, is_b, k, z) <-> is_nat_case(M, a', is_b', k', z')"
-by (simp add: is_nat_case_def) 
+by (simp add: is_nat_case_def)
 
 
 subsection{*Absoluteness for Ordinals*}
 text{*These results constitute Theorem IV 5.1 of Kunen (page 126).*}
 
 lemma (in M_trivial) lt_closed:
-     "[| j<i; M(i) |] ==> M(j)" 
-by (blast dest: ltD intro: transM) 
+     "[| j<i; M(i) |] ==> M(j)"
+by (blast dest: ltD intro: transM)
 
-lemma (in M_trivial) transitive_set_abs [simp]: 
+lemma (in M_trivial) transitive_set_abs [simp]:
      "M(a) ==> transitive_set(M,a) <-> Transset(a)"
 by (simp add: transitive_set_def Transset_def)
 
-lemma (in M_trivial) ordinal_abs [simp]: 
+lemma (in M_trivial) ordinal_abs [simp]:
      "M(a) ==> ordinal(M,a) <-> Ord(a)"
 by (simp add: ordinal_def Ord_def)
 
-lemma (in M_trivial) limit_ordinal_abs [simp]: 
-     "M(a) ==> limit_ordinal(M,a) <-> Limit(a)" 
-apply (unfold Limit_def limit_ordinal_def) 
-apply (simp add: Ord_0_lt_iff) 
-apply (simp add: lt_def, blast) 
+lemma (in M_trivial) limit_ordinal_abs [simp]:
+     "M(a) ==> limit_ordinal(M,a) <-> Limit(a)"
+apply (unfold Limit_def limit_ordinal_def)
+apply (simp add: Ord_0_lt_iff)
+apply (simp add: lt_def, blast)
 done
 
-lemma (in M_trivial) successor_ordinal_abs [simp]: 
+lemma (in M_trivial) successor_ordinal_abs [simp]:
      "M(a) ==> successor_ordinal(M,a) <-> Ord(a) & (\<exists>b[M]. a = succ(b))"
 apply (simp add: successor_ordinal_def, safe)
-apply (drule Ord_cases_disj, auto) 
+apply (drule Ord_cases_disj, auto)
 done
 
 lemma finite_Ord_is_nat:
       "[| Ord(a); ~ Limit(a); \<forall>x\<in>a. ~ Limit(x) |] ==> a \<in> nat"
 by (induct a rule: trans_induct3, simp_all)
 
-lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
-by (induct a rule: nat_induct, auto)
-
-lemma (in M_trivial) finite_ordinal_abs [simp]: 
+lemma (in M_trivial) finite_ordinal_abs [simp]:
      "M(a) ==> finite_ordinal(M,a) <-> a \<in> nat"
 apply (simp add: finite_ordinal_def)
-apply (blast intro: finite_Ord_is_nat intro: nat_into_Ord 
+apply (blast intro: finite_Ord_is_nat intro: nat_into_Ord
              dest: Ord_trans naturals_not_limit)
 done
 
 lemma Limit_non_Limit_implies_nat:
      "[| Limit(a); \<forall>x\<in>a. ~ Limit(x) |] ==> a = nat"
-apply (rule le_anti_sym) 
-apply (rule all_lt_imp_le, blast, blast intro: Limit_is_Ord)  
- apply (simp add: lt_def)  
- apply (blast intro: Ord_in_Ord Ord_trans finite_Ord_is_nat) 
+apply (rule le_anti_sym)
+apply (rule all_lt_imp_le, blast, blast intro: Limit_is_Ord)
+ apply (simp add: lt_def)
+ apply (blast intro: Ord_in_Ord Ord_trans finite_Ord_is_nat)
 apply (erule nat_le_Limit)
 done
 
-lemma (in M_trivial) omega_abs [simp]: 
+lemma (in M_trivial) omega_abs [simp]:
      "M(a) ==> omega(M,a) <-> a = nat"
-apply (simp add: omega_def) 
+apply (simp add: omega_def)
 apply (blast intro: Limit_non_Limit_implies_nat dest: naturals_not_limit)
 done
 
-lemma (in M_trivial) number1_abs [simp]: 
+lemma (in M_trivial) number1_abs [simp]:
      "M(a) ==> number1(M,a) <-> a = 1"
-by (simp add: number1_def) 
+by (simp add: number1_def)
 
-lemma (in M_trivial) number2_abs [simp]: 
+lemma (in M_trivial) number2_abs [simp]:
      "M(a) ==> number2(M,a) <-> a = succ(1)"
-by (simp add: number2_def) 
+by (simp add: number2_def)
 
-lemma (in M_trivial) number3_abs [simp]: 
+lemma (in M_trivial) number3_abs [simp]:
      "M(a) ==> number3(M,a) <-> a = succ(succ(1))"
-by (simp add: number3_def) 
+by (simp add: number3_def)
 
 text{*Kunen continued to 20...*}
 
-(*Could not get this to work.  The \<lambda>x\<in>nat is essential because everything 
+(*Could not get this to work.  The \<lambda>x\<in>nat is essential because everything
   but the recursion variable must stay unchanged.  But then the recursion
-  equations only hold for x\<in>nat (or in some other set) and not for the 
+  equations only hold for x\<in>nat (or in some other set) and not for the
   whole of the class M.
   consts
     natnumber_aux :: "[i=>o,i] => i"
 
   primrec
       "natnumber_aux(M,0) = (\<lambda>x\<in>nat. if empty(M,x) then 1 else 0)"
-      "natnumber_aux(M,succ(n)) = 
-	   (\<lambda>x\<in>nat. if (\<exists>y[M]. natnumber_aux(M,n)`y=1 & successor(M,y,x)) 
+      "natnumber_aux(M,succ(n)) =
+	   (\<lambda>x\<in>nat. if (\<exists>y[M]. natnumber_aux(M,n)`y=1 & successor(M,y,x))
 		     then 1 else 0)"
 
   constdefs
     natnumber :: "[i=>o,i,i] => o"
       "natnumber(M,n,x) == natnumber_aux(M,n)`x = 1"
 
-  lemma (in M_trivial) [simp]: 
+  lemma (in M_trivial) [simp]:
        "natnumber(M,0,x) == x=0"
 *)
 
@@ -905,114 +905,110 @@
   and Diff_separation:
      "M(B) ==> separation(M, \<lambda>x. x \<notin> B)"
   and cartprod_separation:
-     "[| M(A); M(B) |] 
+     "[| M(A); M(B) |]
       ==> separation(M, \<lambda>z. \<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,z)))"
   and image_separation:
-     "[| M(A); M(r) |] 
+     "[| M(A); M(r) |]
       ==> separation(M, \<lambda>y. \<exists>p[M]. p\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,p)))"
   and converse_separation:
-     "M(r) ==> separation(M, 
+     "M(r) ==> separation(M,
          \<lambda>z. \<exists>p[M]. p\<in>r & (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,p) & pair(M,y,x,z)))"
   and restrict_separation:
      "M(A) ==> separation(M, \<lambda>z. \<exists>x[M]. x\<in>A & (\<exists>y[M]. pair(M,x,y,z)))"
   and comp_separation:
      "[| M(r); M(s) |]
-      ==> separation(M, \<lambda>xz. \<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M]. 
-		  pair(M,x,z,xz) & pair(M,x,y,xy) & pair(M,y,z,yz) & 
+      ==> separation(M, \<lambda>xz. \<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M].
+		  pair(M,x,z,xz) & pair(M,x,y,xy) & pair(M,y,z,yz) &
                   xy\<in>s & yz\<in>r)"
   and pred_separation:
      "[| M(r); M(x) |] ==> separation(M, \<lambda>y. \<exists>p[M]. p\<in>r & pair(M,y,x,p))"
   and Memrel_separation:
      "separation(M, \<lambda>z. \<exists>x[M]. \<exists>y[M]. pair(M,x,y,z) & x \<in> y)"
   and funspace_succ_replacement:
-     "M(n) ==> 
-      strong_replacement(M, \<lambda>p z. \<exists>f[M]. \<exists>b[M]. \<exists>nb[M]. \<exists>cnbf[M]. 
+     "M(n) ==>
+      strong_replacement(M, \<lambda>p z. \<exists>f[M]. \<exists>b[M]. \<exists>nb[M]. \<exists>cnbf[M].
                 pair(M,f,b,p) & pair(M,n,b,nb) & is_cons(M,nb,f,cnbf) &
                 upair(M,cnbf,cnbf,z))"
   and well_ord_iso_separation:
-     "[| M(A); M(f); M(r) |] 
-      ==> separation (M, \<lambda>x. x\<in>A --> (\<exists>y[M]. (\<exists>p[M]. 
+     "[| M(A); M(f); M(r) |]
+      ==> separation (M, \<lambda>x. x\<in>A --> (\<exists>y[M]. (\<exists>p[M].
 		     fun_apply(M,f,x,y) & pair(M,y,x,p) & p \<in> r)))"
   and obase_separation:
      --{*part of the order type formalization*}
-     "[| M(A); M(r) |] 
-      ==> separation(M, \<lambda>a. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
+     "[| M(A); M(r) |]
+      ==> separation(M, \<lambda>a. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M].
 	     ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) &
 	     order_isomorphism(M,par,r,x,mx,g))"
   and obase_equals_separation:
-     "[| M(A); M(r) |] 
-      ==> separation (M, \<lambda>x. x\<in>A --> ~(\<exists>y[M]. \<exists>g[M]. 
-			      ordinal(M,y) & (\<exists>my[M]. \<exists>pxr[M]. 
+     "[| M(A); M(r) |]
+      ==> separation (M, \<lambda>x. x\<in>A --> ~(\<exists>y[M]. \<exists>g[M].
+			      ordinal(M,y) & (\<exists>my[M]. \<exists>pxr[M].
 			      membership(M,y,my) & pred_set(M,A,x,r,pxr) &
 			      order_isomorphism(M,pxr,r,y,my,g))))"
   and omap_replacement:
-     "[| M(A); M(r) |] 
+     "[| M(A); M(r) |]
       ==> strong_replacement(M,
-             \<lambda>a z. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
-	     ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) & 
+             \<lambda>a z. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M].
+	     ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) &
 	     pred_set(M,A,a,r,par) & order_isomorphism(M,par,r,x,mx,g))"
   and is_recfun_separation:
      --{*for well-founded recursion*}
-     "[| M(r); M(f); M(g); M(a); M(b) |] 
-     ==> separation(M, 
-            \<lambda>x. \<exists>xa[M]. \<exists>xb[M]. 
-                pair(M,x,a,xa) & xa \<in> r & pair(M,x,b,xb) & xb \<in> r & 
-                (\<exists>fx[M]. \<exists>gx[M]. fun_apply(M,f,x,fx) & fun_apply(M,g,x,gx) & 
+     "[| M(r); M(f); M(g); M(a); M(b) |]
+     ==> separation(M,
+            \<lambda>x. \<exists>xa[M]. \<exists>xb[M].
+                pair(M,x,a,xa) & xa \<in> r & pair(M,x,b,xb) & xb \<in> r &
+                (\<exists>fx[M]. \<exists>gx[M]. fun_apply(M,f,x,fx) & fun_apply(M,g,x,gx) &
                                    fx \<noteq> gx))"
 
 lemma (in M_basic) cartprod_iff_lemma:
-     "[| M(C);  \<forall>u[M]. u \<in> C <-> (\<exists>x\<in>A. \<exists>y\<in>B. u = {{x}, {x,y}}); 
+     "[| M(C);  \<forall>u[M]. u \<in> C <-> (\<exists>x\<in>A. \<exists>y\<in>B. u = {{x}, {x,y}});
          powerset(M, A \<union> B, p1); powerset(M, p1, p2);  M(p2) |]
        ==> C = {u \<in> p2 . \<exists>x\<in>A. \<exists>y\<in>B. u = {{x}, {x,y}}}"
-apply (simp add: powerset_def) 
+apply (simp add: powerset_def)
 apply (rule equalityI, clarify, simp)
- apply (frule transM, assumption) 
+ apply (frule transM, assumption)
  apply (frule transM, assumption, simp (no_asm_simp))
- apply blast 
+ apply blast
 apply clarify
-apply (frule transM, assumption, force) 
+apply (frule transM, assumption, force)
 done
 
 lemma (in M_basic) cartprod_iff:
-     "[| M(A); M(B); M(C) |] 
-      ==> cartprod(M,A,B,C) <-> 
-          (\<exists>p1 p2. M(p1) & M(p2) & powerset(M,A Un B,p1) & powerset(M,p1,p2) &
+     "[| M(A); M(B); M(C) |]
+      ==> cartprod(M,A,B,C) <->
+          (\<exists>p1[M]. \<exists>p2[M]. powerset(M,A Un B,p1) & powerset(M,p1,p2) &
                    C = {z \<in> p2. \<exists>x\<in>A. \<exists>y\<in>B. z = <x,y>})"
 apply (simp add: Pair_def cartprod_def, safe)
-defer 1 
-  apply (simp add: powerset_def) 
- apply blast 
+defer 1
+  apply (simp add: powerset_def)
+ apply blast
 txt{*Final, difficult case: the left-to-right direction of the theorem.*}
-apply (insert power_ax, simp add: power_ax_def) 
-apply (frule_tac x="A Un B" and P="\<lambda>x. rex(M,?Q(x))" in rspec) 
-apply (blast, clarify) 
+apply (insert power_ax, simp add: power_ax_def)
+apply (frule_tac x="A Un B" and P="\<lambda>x. rex(M,?Q(x))" in rspec)
+apply (blast, clarify)
 apply (drule_tac x=z and P="\<lambda>x. rex(M,?Q(x))" in rspec)
 apply assumption
-apply (blast intro: cartprod_iff_lemma) 
+apply (blast intro: cartprod_iff_lemma)
 done
 
 lemma (in M_basic) cartprod_closed_lemma:
      "[| M(A); M(B) |] ==> \<exists>C[M]. cartprod(M,A,B,C)"
 apply (simp del: cartprod_abs add: cartprod_iff)
-apply (insert power_ax, simp add: power_ax_def) 
-apply (frule_tac x="A Un B" and P="\<lambda>x. rex(M,?Q(x))" in rspec) 
-apply (blast, clarify) 
-apply (drule_tac x=z and P="\<lambda>x. rex(M,?Q(x))" in rspec) 
+apply (insert power_ax, simp add: power_ax_def)
+apply (frule_tac x="A Un B" and P="\<lambda>x. rex(M,?Q(x))" in rspec)
 apply (blast, clarify)
-apply (intro rexI exI conjI) 
-prefer 5 apply (rule refl) 
-prefer 3 apply assumption
-prefer 3 apply assumption
-apply (insert cartprod_separation [of A B], auto)
+apply (drule_tac x=z and P="\<lambda>x. rex(M,?Q(x))" in rspec, auto)
+apply (intro rexI conjI, simp+)
+apply (insert cartprod_separation [of A B], simp)
 done
 
 text{*All the lemmas above are necessary because Powerset is not absolute.
       I should have used Replacement instead!*}
-lemma (in M_basic) cartprod_closed [intro,simp]: 
+lemma (in M_basic) cartprod_closed [intro,simp]:
      "[| M(A); M(B) |] ==> M(A*B)"
 by (frule cartprod_closed_lemma, assumption, force)
 
-lemma (in M_basic) sum_closed [intro,simp]: 
+lemma (in M_basic) sum_closed [intro,simp]:
      "[| M(A); M(B) |] ==> M(A+B)"
 by (simp add: sum_def)
 
@@ -1022,7 +1018,7 @@
 
 lemma (in M_trivial) Inl_in_M_iff [iff]:
      "M(Inl(a)) <-> M(a)"
-by (simp add: Inl_def) 
+by (simp add: Inl_def)
 
 lemma (in M_trivial) Inl_abs [simp]:
      "M(Z) ==> is_Inl(M,a,Z) <-> (Z = Inl(a))"
@@ -1030,7 +1026,7 @@
 
 lemma (in M_trivial) Inr_in_M_iff [iff]:
      "M(Inr(a)) <-> M(a)"
-by (simp add: Inr_def) 
+by (simp add: Inr_def)
 
 lemma (in M_trivial) Inr_abs [simp]:
      "M(Z) ==> is_Inr(M,a,Z) <-> (Z = Inr(a))"
@@ -1040,27 +1036,27 @@
 subsubsection {*converse of a relation*}
 
 lemma (in M_basic) M_converse_iff:
-     "M(r) ==> 
-      converse(r) = 
-      {z \<in> Union(Union(r)) * Union(Union(r)). 
+     "M(r) ==>
+      converse(r) =
+      {z \<in> Union(Union(r)) * Union(Union(r)).
        \<exists>p\<in>r. \<exists>x[M]. \<exists>y[M]. p = \<langle>x,y\<rangle> & z = \<langle>y,x\<rangle>}"
 apply (rule equalityI)
- prefer 2 apply (blast dest: transM, clarify, simp) 
-apply (simp add: Pair_def) 
-apply (blast dest: transM) 
+ prefer 2 apply (blast dest: transM, clarify, simp)
+apply (simp add: Pair_def)
+apply (blast dest: transM)
 done
 
-lemma (in M_basic) converse_closed [intro,simp]: 
+lemma (in M_basic) converse_closed [intro,simp]:
      "M(r) ==> M(converse(r))"
 apply (simp add: M_converse_iff)
 apply (insert converse_separation [of r], simp)
 done
 
-lemma (in M_basic) converse_abs [simp]: 
+lemma (in M_basic) converse_abs [simp]:
      "[| M(r); M(z) |] ==> is_converse(M,r,z) <-> z = converse(r)"
 apply (simp add: is_converse_def)
 apply (rule iffI)
- prefer 2 apply blast 
+ prefer 2 apply blast
 apply (rule M_equalityI)
   apply simp
   apply (blast dest: transM)+
@@ -1069,98 +1065,98 @@
 
 subsubsection {*image, preimage, domain, range*}
 
-lemma (in M_basic) image_closed [intro,simp]: 
+lemma (in M_basic) image_closed [intro,simp]:
      "[| M(A); M(r) |] ==> M(r``A)"
 apply (simp add: image_iff_Collect)
-apply (insert image_separation [of A r], simp) 
+apply (insert image_separation [of A r], simp)
 done
 
-lemma (in M_basic) vimage_abs [simp]: 
+lemma (in M_basic) vimage_abs [simp]:
      "[| M(r); M(A); M(z) |] ==> pre_image(M,r,A,z) <-> z = r-``A"
 apply (simp add: pre_image_def)
-apply (rule iffI) 
- apply (blast intro!: equalityI dest: transM, blast) 
+apply (rule iffI)
+ apply (blast intro!: equalityI dest: transM, blast)
 done
 
-lemma (in M_basic) vimage_closed [intro,simp]: 
+lemma (in M_basic) vimage_closed [intro,simp]:
      "[| M(A); M(r) |] ==> M(r-``A)"
 by (simp add: vimage_def)
 
 
 subsubsection{*Domain, range and field*}
 
-lemma (in M_basic) domain_abs [simp]: 
+lemma (in M_basic) domain_abs [simp]:
      "[| M(r); M(z) |] ==> is_domain(M,r,z) <-> z = domain(r)"
-apply (simp add: is_domain_def) 
-apply (blast intro!: equalityI dest: transM) 
+apply (simp add: is_domain_def)
+apply (blast intro!: equalityI dest: transM)
 done
 
-lemma (in M_basic) domain_closed [intro,simp]: 
+lemma (in M_basic) domain_closed [intro,simp]:
      "M(r) ==> M(domain(r))"
 apply (simp add: domain_eq_vimage)
 done
 
-lemma (in M_basic) range_abs [simp]: 
+lemma (in M_basic) range_abs [simp]:
      "[| M(r); M(z) |] ==> is_range(M,r,z) <-> z = range(r)"
 apply (simp add: is_range_def)
 apply (blast intro!: equalityI dest: transM)
 done
 
-lemma (in M_basic) range_closed [intro,simp]: 
+lemma (in M_basic) range_closed [intro,simp]:
      "M(r) ==> M(range(r))"
 apply (simp add: range_eq_image)
 done
 
-lemma (in M_basic) field_abs [simp]: 
+lemma (in M_basic) field_abs [simp]:
      "[| M(r); M(z) |] ==> is_field(M,r,z) <-> z = field(r)"
 by (simp add: domain_closed range_closed is_field_def field_def)
 
-lemma (in M_basic) field_closed [intro,simp]: 
+lemma (in M_basic) field_closed [intro,simp]:
      "M(r) ==> M(field(r))"
-by (simp add: domain_closed range_closed Un_closed field_def) 
+by (simp add: domain_closed range_closed Un_closed field_def)
 
 
 subsubsection{*Relations, functions and application*}
 
-lemma (in M_basic) relation_abs [simp]: 
+lemma (in M_basic) relation_abs [simp]:
      "M(r) ==> is_relation(M,r) <-> relation(r)"
-apply (simp add: is_relation_def relation_def) 
+apply (simp add: is_relation_def relation_def)
 apply (blast dest!: bspec dest: pair_components_in_M)+
 done
 
-lemma (in M_basic) function_abs [simp]: 
+lemma (in M_basic) function_abs [simp]:
      "M(r) ==> is_function(M,r) <-> function(r)"
-apply (simp add: is_function_def function_def, safe) 
-   apply (frule transM, assumption) 
+apply (simp add: is_function_def function_def, safe)
+   apply (frule transM, assumption)
   apply (blast dest: pair_components_in_M)+
 done
 
-lemma (in M_basic) apply_closed [intro,simp]: 
+lemma (in M_basic) apply_closed [intro,simp]:
      "[|M(f); M(a)|] ==> M(f`a)"
 by (simp add: apply_def)
 
-lemma (in M_basic) apply_abs [simp]: 
+lemma (in M_basic) apply_abs [simp]:
      "[| M(f); M(x); M(y) |] ==> fun_apply(M,f,x,y) <-> f`x = y"
-apply (simp add: fun_apply_def apply_def, blast) 
+apply (simp add: fun_apply_def apply_def, blast)
 done
 
-lemma (in M_basic) typed_function_abs [simp]: 
+lemma (in M_basic) typed_function_abs [simp]:
      "[| M(A); M(f) |] ==> typed_function(M,A,B,f) <-> f \<in> A -> B"
-apply (auto simp add: typed_function_def relation_def Pi_iff) 
+apply (auto simp add: typed_function_def relation_def Pi_iff)
 apply (blast dest: pair_components_in_M)+
 done
 
-lemma (in M_basic) injection_abs [simp]: 
+lemma (in M_basic) injection_abs [simp]:
      "[| M(A); M(f) |] ==> injection(M,A,B,f) <-> f \<in> inj(A,B)"
 apply (simp add: injection_def apply_iff inj_def apply_closed)
-apply (blast dest: transM [of _ A]) 
+apply (blast dest: transM [of _ A])
 done
 
-lemma (in M_basic) surjection_abs [simp]: 
+lemma (in M_basic) surjection_abs [simp]:
      "[| M(A); M(B); M(f) |] ==> surjection(M,A,B,f) <-> f \<in> surj(A,B)"
 by (simp add: surjection_def surj_def)
 
-lemma (in M_basic) bijection_abs [simp]: 
+lemma (in M_basic) bijection_abs [simp]:
      "[| M(A); M(B); M(f) |] ==> bijection(M,A,B,f) <-> f \<in> bij(A,B)"
 by (simp add: bijection_def bij_def)
 
@@ -1168,31 +1164,31 @@
 subsubsection{*Composition of relations*}
 
 lemma (in M_basic) M_comp_iff:
-     "[| M(r); M(s) |] 
-      ==> r O s = 
-          {xz \<in> domain(s) * range(r).  
+     "[| M(r); M(s) |]
+      ==> r O s =
+          {xz \<in> domain(s) * range(r).
             \<exists>x[M]. \<exists>y[M]. \<exists>z[M]. xz = \<langle>x,z\<rangle> & \<langle>x,y\<rangle> \<in> s & \<langle>y,z\<rangle> \<in> r}"
 apply (simp add: comp_def)
-apply (rule equalityI) 
- apply clarify 
- apply simp 
+apply (rule equalityI)
+ apply clarify
+ apply simp
  apply  (blast dest:  transM)+
 done
 
-lemma (in M_basic) comp_closed [intro,simp]: 
+lemma (in M_basic) comp_closed [intro,simp]:
      "[| M(r); M(s) |] ==> M(r O s)"
 apply (simp add: M_comp_iff)
-apply (insert comp_separation [of r s], simp) 
+apply (insert comp_separation [of r s], simp)
 done
 
-lemma (in M_basic) composition_abs [simp]: 
-     "[| M(r); M(s); M(t) |] 
+lemma (in M_basic) composition_abs [simp]:
+     "[| M(r); M(s); M(t) |]
       ==> composition(M,r,s,t) <-> t = r O s"
 apply safe
  txt{*Proving @{term "composition(M, r, s, r O s)"}*}
- prefer 2 
+ prefer 2
  apply (simp add: composition_def comp_def)
- apply (blast dest: transM) 
+ apply (blast dest: transM)
 txt{*Opposite implication*}
 apply (rule M_equalityI)
   apply (simp add: composition_def comp_def)
@@ -1200,18 +1196,18 @@
 done
 
 text{*no longer needed*}
-lemma (in M_basic) restriction_is_function: 
-     "[| restriction(M,f,A,z); function(f); M(f); M(A); M(z) |] 
+lemma (in M_basic) restriction_is_function:
+     "[| restriction(M,f,A,z); function(f); M(f); M(A); M(z) |]
       ==> function(z)"
-apply (simp add: restriction_def ball_iff_equiv) 
-apply (unfold function_def, blast) 
+apply (simp add: restriction_def ball_iff_equiv)
+apply (unfold function_def, blast)
 done
 
-lemma (in M_basic) restriction_abs [simp]: 
-     "[| M(f); M(A); M(z) |] 
+lemma (in M_basic) restriction_abs [simp]:
+     "[| M(f); M(A); M(z) |]
       ==> restriction(M,f,A,z) <-> z = restrict(f,A)"
 apply (simp add: ball_iff_equiv restriction_def restrict_def)
-apply (blast intro!: equalityI dest: transM) 
+apply (blast intro!: equalityI dest: transM)
 done
 
 
@@ -1219,16 +1215,16 @@
      "M(r) ==> restrict(r,A) = {z \<in> r . \<exists>x\<in>A. \<exists>y[M]. z = \<langle>x, y\<rangle>}"
 by (simp add: restrict_def, blast dest: transM)
 
-lemma (in M_basic) restrict_closed [intro,simp]: 
+lemma (in M_basic) restrict_closed [intro,simp]:
      "[| M(A); M(r) |] ==> M(restrict(r,A))"
 apply (simp add: M_restrict_iff)
-apply (insert restrict_separation [of A], simp) 
+apply (insert restrict_separation [of A], simp)
 done
 
-lemma (in M_basic) Inter_abs [simp]: 
+lemma (in M_basic) Inter_abs [simp]:
      "[| M(A); M(z) |] ==> big_inter(M,A,z) <-> z = Inter(A)"
-apply (simp add: big_inter_def Inter_def) 
-apply (blast intro!: equalityI dest: transM) 
+apply (simp add: big_inter_def Inter_def)
+apply (blast intro!: equalityI dest: transM)
 done
 
 lemma (in M_basic) Inter_closed [intro,simp]:
@@ -1238,7 +1234,7 @@
 lemma (in M_basic) Int_closed [intro,simp]:
      "[| M(A); M(B) |] ==> M(A Int B)"
 apply (subgoal_tac "M({A,B})")
-apply (frule Inter_closed, force+) 
+apply (frule Inter_closed, force+)
 done
 
 lemma (in M_basic) Diff_closed [intro,simp]:
@@ -1250,7 +1246,7 @@
 lemma (in M_basic) separation_conj:
      "[|separation(M,P); separation(M,Q)|] ==> separation(M, \<lambda>z. P(z) & Q(z))"
 by (simp del: separation_closed
-         add: separation_iff Collect_Int_Collect_eq [symmetric]) 
+         add: separation_iff Collect_Int_Collect_eq [symmetric])
 
 (*???equalities*)
 lemma Collect_Un_Collect_eq:
@@ -1262,90 +1258,74 @@
 by blast
 
 lemma (in M_trivial) Collect_rall_eq:
-     "M(Y) ==> Collect(A, %x. \<forall>y[M]. y\<in>Y --> P(x,y)) = 
+     "M(Y) ==> Collect(A, %x. \<forall>y[M]. y\<in>Y --> P(x,y)) =
                (if Y=0 then A else (\<Inter>y \<in> Y. {x \<in> A. P(x,y)}))"
-apply simp 
-apply (blast intro!: equalityI dest: transM) 
+apply simp
+apply (blast intro!: equalityI dest: transM)
 done
 
 lemma (in M_basic) separation_disj:
      "[|separation(M,P); separation(M,Q)|] ==> separation(M, \<lambda>z. P(z) | Q(z))"
 by (simp del: separation_closed
-         add: separation_iff Collect_Un_Collect_eq [symmetric]) 
+         add: separation_iff Collect_Un_Collect_eq [symmetric])
 
 lemma (in M_basic) separation_neg:
      "separation(M,P) ==> separation(M, \<lambda>z. ~P(z))"
 by (simp del: separation_closed
-         add: separation_iff Diff_Collect_eq [symmetric]) 
+         add: separation_iff Diff_Collect_eq [symmetric])
 
 lemma (in M_basic) separation_imp:
-     "[|separation(M,P); separation(M,Q)|] 
+     "[|separation(M,P); separation(M,Q)|]
       ==> separation(M, \<lambda>z. P(z) --> Q(z))"
-by (simp add: separation_neg separation_disj not_disj_iff_imp [symmetric]) 
+by (simp add: separation_neg separation_disj not_disj_iff_imp [symmetric])
 
-text{*This result is a hint of how little can be done without the Reflection 
+text{*This result is a hint of how little can be done without the Reflection
   Theorem.  The quantifier has to be bounded by a set.  We also need another
   instance of Separation!*}
 lemma (in M_basic) separation_rall:
-     "[|M(Y); \<forall>y[M]. separation(M, \<lambda>x. P(x,y)); 
+     "[|M(Y); \<forall>y[M]. separation(M, \<lambda>x. P(x,y));
         \<forall>z[M]. strong_replacement(M, \<lambda>x y. y = {u \<in> z . P(u,x)})|]
-      ==> separation(M, \<lambda>x. \<forall>y[M]. y\<in>Y --> P(x,y))" 
+      ==> separation(M, \<lambda>x. \<forall>y[M]. y\<in>Y --> P(x,y))"
 apply (simp del: separation_closed rall_abs
-         add: separation_iff Collect_rall_eq) 
-apply (blast intro!: Inter_closed RepFun_closed dest: transM) 
+         add: separation_iff Collect_rall_eq)
+apply (blast intro!: Inter_closed RepFun_closed dest: transM)
 done
 
 
 subsubsection{*Functions and function space*}
 
-text{*M contains all finite functions*}
-lemma (in M_basic) finite_fun_closed_lemma [rule_format]: 
-     "[| n \<in> nat; M(A) |] ==> \<forall>f \<in> n -> A. M(f)"
-apply (induct_tac n, simp)
-apply (rule ballI)  
-apply (simp add: succ_def) 
-apply (frule fun_cons_restrict_eq)
-apply (erule ssubst) 
-apply (subgoal_tac "M(f`x) & restrict(f,x) \<in> x -> A") 
- apply (simp add: cons_closed nat_into_M apply_closed) 
-apply (blast intro: apply_funtype transM restrict_type2) 
-done
-
-lemma (in M_basic) finite_fun_closed [rule_format]: 
-     "[| f \<in> n -> A; n \<in> nat; M(A) |] ==> M(f)"
-by (blast intro: finite_fun_closed_lemma) 
-
-text{*The assumption @{term "M(A->B)"} is unusual, but essential: in 
+text{*The assumption @{term "M(A->B)"} is unusual, but essential: in
 all but trivial cases, A->B cannot be expected to belong to @{term M}.*}
 lemma (in M_basic) is_funspace_abs [simp]:
      "[|M(A); M(B); M(F); M(A->B)|] ==> is_funspace(M,A,B,F) <-> F = A->B";
 apply (simp add: is_funspace_def)
 apply (rule iffI)
- prefer 2 apply blast 
+ prefer 2 apply blast
 apply (rule M_equalityI)
   apply simp_all
 done
 
 lemma (in M_basic) succ_fun_eq2:
      "[|M(B); M(n->B)|] ==>
-      succ(n) -> B = 
+      succ(n) -> B =
       \<Union>{z. p \<in> (n->B)*B, \<exists>f[M]. \<exists>b[M]. p = <f,b> & z = {cons(<n,b>, f)}}"
 apply (simp add: succ_fun_eq)
-apply (blast dest: transM)  
+apply (blast dest: transM)
 done
 
 lemma (in M_basic) funspace_succ:
      "[|M(n); M(B); M(n->B) |] ==> M(succ(n) -> B)"
-apply (insert funspace_succ_replacement [of n], simp) 
-apply (force simp add: succ_fun_eq2 univalent_def) 
+apply (insert funspace_succ_replacement [of n], simp)
+apply (force simp add: succ_fun_eq2 univalent_def)
 done
 
 text{*@{term M} contains all finite function spaces.  Needed to prove the
-absoluteness of transitive closure.*}
+absoluteness of transitive closure.  See the definition of
+@{text rtrancl_alt} in in @{text WF_absolute.thy}.*}
 lemma (in M_basic) finite_funspace_closed [intro,simp]:
      "[|n\<in>nat; M(B)|] ==> M(n->B)"
 apply (induct_tac n, simp)
-apply (simp add: funspace_succ nat_into_M) 
+apply (simp add: funspace_succ nat_into_M)
 done
 
 
@@ -1356,50 +1336,50 @@
    "is_bool_of_o(M,P,z) == (P & number1(M,z)) | (~P & empty(M,z))"
 
   is_not :: "[i=>o, i, i] => o"
-   "is_not(M,a,z) == (number1(M,a)  & empty(M,z)) | 
+   "is_not(M,a,z) == (number1(M,a)  & empty(M,z)) |
                      (~number1(M,a) & number1(M,z))"
 
   is_and :: "[i=>o, i, i, i] => o"
-   "is_and(M,a,b,z) == (number1(M,a)  & z=b) | 
+   "is_and(M,a,b,z) == (number1(M,a)  & z=b) |
                        (~number1(M,a) & empty(M,z))"
 
   is_or :: "[i=>o, i, i, i] => o"
-   "is_or(M,a,b,z) == (number1(M,a)  & number1(M,z)) | 
+   "is_or(M,a,b,z) == (number1(M,a)  & number1(M,z)) |
                       (~number1(M,a) & z=b)"
 
-lemma (in M_trivial) bool_of_o_abs [simp]: 
-     "M(z) ==> is_bool_of_o(M,P,z) <-> z = bool_of_o(P)" 
-by (simp add: is_bool_of_o_def bool_of_o_def) 
+lemma (in M_trivial) bool_of_o_abs [simp]:
+     "M(z) ==> is_bool_of_o(M,P,z) <-> z = bool_of_o(P)"
+by (simp add: is_bool_of_o_def bool_of_o_def)
 
 
-lemma (in M_trivial) not_abs [simp]: 
+lemma (in M_trivial) not_abs [simp]:
      "[| M(a); M(z)|] ==> is_not(M,a,z) <-> z = not(a)"
-by (simp add: Bool.not_def cond_def is_not_def) 
+by (simp add: Bool.not_def cond_def is_not_def)
 
-lemma (in M_trivial) and_abs [simp]: 
+lemma (in M_trivial) and_abs [simp]:
      "[| M(a); M(b); M(z)|] ==> is_and(M,a,b,z) <-> z = a and b"
-by (simp add: Bool.and_def cond_def is_and_def) 
+by (simp add: Bool.and_def cond_def is_and_def)
 
-lemma (in M_trivial) or_abs [simp]: 
+lemma (in M_trivial) or_abs [simp]:
      "[| M(a); M(b); M(z)|] ==> is_or(M,a,b,z) <-> z = a or b"
 by (simp add: Bool.or_def cond_def is_or_def)
 
 
 lemma (in M_trivial) bool_of_o_closed [intro,simp]:
      "M(bool_of_o(P))"
-by (simp add: bool_of_o_def) 
+by (simp add: bool_of_o_def)
 
 lemma (in M_trivial) and_closed [intro,simp]:
      "[| M(p); M(q) |] ==> M(p and q)"
-by (simp add: and_def cond_def) 
+by (simp add: and_def cond_def)
 
 lemma (in M_trivial) or_closed [intro,simp]:
      "[| M(p); M(q) |] ==> M(p or q)"
-by (simp add: or_def cond_def) 
+by (simp add: or_def cond_def)
 
 lemma (in M_trivial) not_closed [intro,simp]:
      "M(p) ==> M(not(p))"
-by (simp add: Bool.not_def cond_def) 
+by (simp add: Bool.not_def cond_def)
 
 
 subsection{*Relativization and Absoluteness for List Operators*}
@@ -1422,7 +1402,7 @@
 by (simp add: is_Nil_def Nil_def)
 
 lemma (in M_trivial) Cons_in_M_iff [iff]: "M(Cons(a,l)) <-> M(a) & M(l)"
-by (simp add: Cons_def) 
+by (simp add: Cons_def)
 
 lemma (in M_trivial) Cons_abs [simp]:
      "[|M(a); M(l); M(Z)|] ==> is_Cons(M,a,l,Z) <-> (Z = Cons(a,l))"
@@ -1439,35 +1419,35 @@
 
   list_case' :: "[i, [i,i]=>i, i] => i"
     --{*A version of @{term list_case} that's always defined.*}
-    "list_case'(a,b,xs) == 
-       if quasilist(xs) then list_case(a,b,xs) else 0"  
+    "list_case'(a,b,xs) ==
+       if quasilist(xs) then list_case(a,b,xs) else 0"
 
   is_list_case :: "[i=>o, i, [i,i,i]=>o, i, i] => o"
     --{*Returns 0 for non-lists*}
-    "is_list_case(M, a, is_b, xs, z) == 
+    "is_list_case(M, a, is_b, xs, z) ==
        (is_Nil(M,xs) --> z=a) &
        (\<forall>x[M]. \<forall>l[M]. is_Cons(M,x,l,xs) --> is_b(x,l,z)) &
        (is_quasilist(M,xs) | empty(M,z))"
 
   hd' :: "i => i"
     --{*A version of @{term hd} that's always defined.*}
-    "hd'(xs) == if quasilist(xs) then hd(xs) else 0"  
+    "hd'(xs) == if quasilist(xs) then hd(xs) else 0"
 
   tl' :: "i => i"
     --{*A version of @{term tl} that's always defined.*}
-    "tl'(xs) == if quasilist(xs) then tl(xs) else 0"  
+    "tl'(xs) == if quasilist(xs) then tl(xs) else 0"
 
   is_hd :: "[i=>o,i,i] => o"
      --{* @{term "hd([]) = 0"} no constraints if not a list.
           Avoiding implication prevents the simplifier's looping.*}
-    "is_hd(M,xs,H) == 
+    "is_hd(M,xs,H) ==
        (is_Nil(M,xs) --> empty(M,H)) &
        (\<forall>x[M]. \<forall>l[M]. ~ is_Cons(M,x,l,xs) | H=x) &
        (is_quasilist(M,xs) | empty(M,H))"
 
   is_tl :: "[i=>o,i,i] => o"
      --{* @{term "tl([]) = []"}; see comments about @{term is_hd}*}
-    "is_tl(M,xs,T) == 
+    "is_tl(M,xs,T) ==
        (is_Nil(M,xs) --> T=xs) &
        (\<forall>x[M]. \<forall>l[M]. ~ is_Cons(M,x,l,xs) | T=l) &
        (is_quasilist(M,xs) | empty(M,T))"
@@ -1491,8 +1471,8 @@
 lemma list_case'_Cons [simp]: "list_case'(a,b,Cons(x,l)) = b(x,l)"
 by (simp add: list_case'_def quasilist_def)
 
-lemma non_list_case: "~ quasilist(x) ==> list_case'(a,b,x) = 0" 
-by (simp add: quasilist_def list_case'_def) 
+lemma non_list_case: "~ quasilist(x) ==> list_case'(a,b,x) = 0"
+by (simp add: quasilist_def list_case'_def)
 
 lemma list_case'_eq_list_case [simp]:
      "xs \<in> list(A) ==>list_case'(a,b,xs) = list_case(a,b,xs)"
@@ -1500,25 +1480,25 @@
 
 lemma (in M_basic) list_case'_closed [intro,simp]:
   "[|M(k); M(a); \<forall>x[M]. \<forall>y[M]. M(b(x,y))|] ==> M(list_case'(a,b,k))"
-apply (case_tac "quasilist(k)") 
- apply (simp add: quasilist_def, force) 
-apply (simp add: non_list_case) 
+apply (case_tac "quasilist(k)")
+ apply (simp add: quasilist_def, force)
+apply (simp add: non_list_case)
 done
 
-lemma (in M_trivial) quasilist_abs [simp]: 
+lemma (in M_trivial) quasilist_abs [simp]:
      "M(z) ==> is_quasilist(M,z) <-> quasilist(z)"
 by (auto simp add: is_quasilist_def quasilist_def)
 
-lemma (in M_trivial) list_case_abs [simp]: 
-     "[| relativize2(M,is_b,b); M(k); M(z) |] 
+lemma (in M_trivial) list_case_abs [simp]:
+     "[| relativize2(M,is_b,b); M(k); M(z) |]
       ==> is_list_case(M,a,is_b,k,z) <-> z = list_case'(a,b,k)"
-apply (case_tac "quasilist(k)") 
- prefer 2 
- apply (simp add: is_list_case_def non_list_case) 
- apply (force simp add: quasilist_def) 
+apply (case_tac "quasilist(k)")
+ prefer 2
+ apply (simp add: is_list_case_def non_list_case)
+ apply (force simp add: quasilist_def)
 apply (simp add: quasilist_def is_list_case_def)
-apply (elim disjE exE) 
- apply (simp_all add: relativize2_def) 
+apply (elim disjE exE)
+ apply (simp_all add: relativize2_def)
 done
 
 
@@ -1529,34 +1509,34 @@
 
 lemma (in M_trivial) is_hd_Cons:
      "[|M(a); M(l)|] ==> is_hd(M,Cons(a,l),Z) <-> Z = a"
-by (force simp add: is_hd_def) 
+by (force simp add: is_hd_def)
 
 lemma (in M_trivial) hd_abs [simp]:
      "[|M(x); M(y)|] ==> is_hd(M,x,y) <-> y = hd'(x)"
 apply (simp add: hd'_def)
 apply (intro impI conjI)
- prefer 2 apply (force simp add: is_hd_def) 
+ prefer 2 apply (force simp add: is_hd_def)
 apply (simp add: quasilist_def is_hd_def)
 apply (elim disjE exE, auto)
-done 
+done
 
 lemma (in M_trivial) is_tl_Nil: "is_tl(M,[],Z) <-> Z = []"
 by (simp add: is_tl_def)
 
 lemma (in M_trivial) is_tl_Cons:
      "[|M(a); M(l)|] ==> is_tl(M,Cons(a,l),Z) <-> Z = l"
-by (force simp add: is_tl_def) 
+by (force simp add: is_tl_def)
 
 lemma (in M_trivial) tl_abs [simp]:
      "[|M(x); M(y)|] ==> is_tl(M,x,y) <-> y = tl'(x)"
 apply (simp add: tl'_def)
 apply (intro impI conjI)
- prefer 2 apply (force simp add: is_tl_def) 
+ prefer 2 apply (force simp add: is_tl_def)
 apply (simp add: quasilist_def is_tl_def)
 apply (elim disjE exE, auto)
-done 
+done
 
-lemma (in M_trivial) relativize1_tl: "relativize1(M, is_tl(M), tl')"  
+lemma (in M_trivial) relativize1_tl: "relativize1(M, is_tl(M), tl')"
 by (simp add: relativize1_def)
 
 lemma hd'_Nil: "hd'([]) = 0"
@@ -1572,8 +1552,8 @@
 by (simp add: tl'_def)
 
 lemma iterates_tl_Nil: "n \<in> nat ==> tl'^n ([]) = []"
-apply (induct_tac n) 
-apply (simp_all add: tl'_Nil) 
+apply (induct_tac n)
+apply (simp_all add: tl'_Nil)
 done
 
 lemma (in M_basic) tl'_closed: "M(x) ==> M(tl'(x))"
--- a/src/ZF/Constructible/Separation.thy	Fri Oct 04 15:23:58 2002 +0200
+++ b/src/ZF/Constructible/Separation.thy	Fri Oct 04 15:57:32 2002 +0200
@@ -458,7 +458,6 @@
   and Inter_abs = M_basic.Inter_abs [OF M_basic_L]
   and Inter_closed = M_basic.Inter_closed [OF M_basic_L]
   and Int_closed = M_basic.Int_closed [OF M_basic_L]
-  and finite_fun_closed = M_basic.finite_fun_closed [OF M_basic_L]
   and is_funspace_abs = M_basic.is_funspace_abs [OF M_basic_L]
   and succ_fun_eq2 = M_basic.succ_fun_eq2 [OF M_basic_L]
   and funspace_succ = M_basic.funspace_succ [OF M_basic_L]
@@ -488,7 +487,6 @@
   and wellfounded_iff_wellfounded_on_field = M_basic.wellfounded_iff_wellfounded_on_field [OF M_basic_L]
   and wellfounded_induct = M_basic.wellfounded_induct [OF M_basic_L]
   and wellfounded_on_induct = M_basic.wellfounded_on_induct [OF M_basic_L]
-  and wellfounded_on_induct2 = M_basic.wellfounded_on_induct2 [OF M_basic_L]
   and linear_imp_relativized = M_basic.linear_imp_relativized [OF M_basic_L]
   and trans_on_imp_relativized = M_basic.trans_on_imp_relativized [OF M_basic_L]
   and wf_on_imp_relativized = M_basic.wf_on_imp_relativized [OF M_basic_L]
--- a/src/ZF/Constructible/Wellorderings.thy	Fri Oct 04 15:23:58 2002 +0200
+++ b/src/ZF/Constructible/Wellorderings.thy	Fri Oct 04 15:57:32 2002 +0200
@@ -33,13 +33,11 @@
   wellfounded :: "[i=>o,i]=>o"
     --{*EVERY non-empty set has an @{text r}-minimal element*}
     "wellfounded(M,r) == 
-	\<forall>x[M]. ~ empty(M,x) 
-                 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
+	\<forall>x[M]. x\<noteq>0 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
   wellfounded_on :: "[i=>o,i,i]=>o"
     --{*every non-empty SUBSET OF @{text A} has an @{text r}-minimal element*}
     "wellfounded_on(M,A,r) == 
-	\<forall>x[M]. ~ empty(M,x) --> subset(M,x,A)
-                 --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
+	\<forall>x[M]. x\<noteq>0 --> x\<subseteq>A --> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
 
   wellordered :: "[i=>o,i,i]=>o"
     --{*linear and wellfounded on @{text A}*}
@@ -124,15 +122,6 @@
 apply (blast intro: transM)+
 done
 
-text{*The assumption @{term "r \<subseteq> A*A"} justifies strengthening the induction
-      hypothesis by removing the restriction to @{term A}.*}
-lemma (in M_basic) wellfounded_on_induct2: 
-     "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  r \<subseteq> A*A;  
-       separation(M, \<lambda>x. x\<in>A --> ~P(x));  
-       \<forall>x\<in>A. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
-      ==> P(a)";
-by (rule wellfounded_on_induct, assumption+, blast)
-
 
 subsubsection {*Kunen's lemma IV 3.14, page 123*}
 
@@ -297,13 +286,13 @@
 by (simp add: wellordered_def, blast dest: wellfounded_on_asym)
 
 
-text{*Surely a shorter proof using lemmas in @{text Order}?
-     Like @{text well_ord_iso_preserving}?*}
+text{*Can't use @{text well_ord_iso_preserving} because it needs the
+strong premise @{term "well_ord(A,r)"}*}
 lemma (in M_basic) ord_iso_pred_imp_lt:
      "[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
-       g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
-       wellordered(M,A,r);  x \<in> A;  y \<in> A; M(A); M(r); M(f); M(g); M(j);
-       Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |]
+         g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
+         wellordered(M,A,r);  x \<in> A;  y \<in> A; M(A); M(r); M(f); M(g); M(j);
+         Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |]
       ==> i < j"
 apply (frule wellordered_is_trans_on, assumption)
 apply (frule_tac y=y in transM, assumption) 
@@ -351,9 +340,8 @@
    "obase(M,A,r,z) == 
 	\<forall>a[M]. 
          a \<in> z <-> 
-          (a\<in>A & (\<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. 
-                   ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) &
-                   order_isomorphism(M,par,r,x,mx,g)))"
+          (a\<in>A & (\<exists>x[M]. \<exists>g[M]. Ord(x) & 
+                   order_isomorphism(M,Order.pred(A,a,r),r,x,Memrel(x),g)))"
 
 
   omap :: "[i=>o,i,i,i] => o"  
--- a/src/ZF/Nat.thy	Fri Oct 04 15:23:58 2002 +0200
+++ b/src/ZF/Nat.thy	Fri Oct 04 15:57:32 2002 +0200
@@ -110,6 +110,9 @@
 apply (erule ltD)
 done
 
+lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
+by (induct a rule: nat_induct, auto)
+
 lemma succ_natD [dest!]: "succ(i): nat ==> i: nat"
 by (rule Ord_trans [OF succI1], auto)