author | blanchet |
Wed, 28 Apr 2010 14:19:26 +0200 | |
changeset 36490 | 5abf45444a16 |
parent 36319 | 8feb2c4bef1a |
child 39159 | 0dec18004e75 |
permissions | -rw-r--r-- |
17441 | 1 |
(* Title: CTT/Arith.thy |
1474 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1991 University of Cambridge |
4 |
*) |
|
5 |
||
19761 | 6 |
header {* Elementary arithmetic *} |
17441 | 7 |
|
8 |
theory Arith |
|
9 |
imports Bool |
|
10 |
begin |
|
0 | 11 |
|
19761 | 12 |
subsection {* Arithmetic operators and their definitions *} |
17441 | 13 |
|
19762 | 14 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
15 |
add :: "[i,i]=>i" (infixr "#+" 65) where |
19762 | 16 |
"a#+b == rec(a, b, %u v. succ(v))" |
0 | 17 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
18 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
19 |
diff :: "[i,i]=>i" (infixr "-" 65) where |
19762 | 20 |
"a-b == rec(b, a, %u v. rec(v, 0, %x y. x))" |
21 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
22 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
23 |
absdiff :: "[i,i]=>i" (infixr "|-|" 65) where |
19762 | 24 |
"a|-|b == (a-b) #+ (b-a)" |
25 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
26 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
27 |
mult :: "[i,i]=>i" (infixr "#*" 70) where |
19762 | 28 |
"a#*b == rec(a, 0, %u v. b #+ v)" |
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
29 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
30 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
31 |
mod :: "[i,i]=>i" (infixr "mod" 70) where |
19762 | 32 |
"a mod b == rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))" |
33 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
34 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
35 |
div :: "[i,i]=>i" (infixr "div" 70) where |
19762 | 36 |
"a div b == rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))" |
37 |
||
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
38 |
|
21210 | 39 |
notation (xsymbols) |
19762 | 40 |
mult (infixr "#\<times>" 70) |
41 |
||
21210 | 42 |
notation (HTML output) |
19762 | 43 |
mult (infixr "#\<times>" 70) |
44 |
||
17441 | 45 |
|
19761 | 46 |
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def |
47 |
||
48 |
||
49 |
subsection {* Proofs about elementary arithmetic: addition, multiplication, etc. *} |
|
50 |
||
51 |
(** Addition *) |
|
52 |
||
53 |
(*typing of add: short and long versions*) |
|
54 |
||
55 |
lemma add_typing: "[| a:N; b:N |] ==> a #+ b : N" |
|
56 |
apply (unfold arith_defs) |
|
57 |
apply (tactic "typechk_tac []") |
|
58 |
done |
|
59 |
||
60 |
lemma add_typingL: "[| a=c:N; b=d:N |] ==> a #+ b = c #+ d : N" |
|
61 |
apply (unfold arith_defs) |
|
62 |
apply (tactic "equal_tac []") |
|
63 |
done |
|
64 |
||
65 |
||
66 |
(*computation for add: 0 and successor cases*) |
|
67 |
||
68 |
lemma addC0: "b:N ==> 0 #+ b = b : N" |
|
69 |
apply (unfold arith_defs) |
|
70 |
apply (tactic "rew_tac []") |
|
71 |
done |
|
72 |
||
73 |
lemma addC_succ: "[| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N" |
|
74 |
apply (unfold arith_defs) |
|
75 |
apply (tactic "rew_tac []") |
|
76 |
done |
|
77 |
||
78 |
||
79 |
(** Multiplication *) |
|
80 |
||
81 |
(*typing of mult: short and long versions*) |
|
82 |
||
83 |
lemma mult_typing: "[| a:N; b:N |] ==> a #* b : N" |
|
84 |
apply (unfold arith_defs) |
|
85 |
apply (tactic {* typechk_tac [thm "add_typing"] *}) |
|
86 |
done |
|
87 |
||
88 |
lemma mult_typingL: "[| a=c:N; b=d:N |] ==> a #* b = c #* d : N" |
|
89 |
apply (unfold arith_defs) |
|
90 |
apply (tactic {* equal_tac [thm "add_typingL"] *}) |
|
91 |
done |
|
92 |
||
93 |
(*computation for mult: 0 and successor cases*) |
|
94 |
||
95 |
lemma multC0: "b:N ==> 0 #* b = 0 : N" |
|
96 |
apply (unfold arith_defs) |
|
97 |
apply (tactic "rew_tac []") |
|
98 |
done |
|
99 |
||
100 |
lemma multC_succ: "[| a:N; b:N |] ==> succ(a) #* b = b #+ (a #* b) : N" |
|
101 |
apply (unfold arith_defs) |
|
102 |
apply (tactic "rew_tac []") |
|
103 |
done |
|
104 |
||
105 |
||
106 |
(** Difference *) |
|
107 |
||
108 |
(*typing of difference*) |
|
109 |
||
110 |
lemma diff_typing: "[| a:N; b:N |] ==> a - b : N" |
|
111 |
apply (unfold arith_defs) |
|
112 |
apply (tactic "typechk_tac []") |
|
113 |
done |
|
114 |
||
115 |
lemma diff_typingL: "[| a=c:N; b=d:N |] ==> a - b = c - d : N" |
|
116 |
apply (unfold arith_defs) |
|
117 |
apply (tactic "equal_tac []") |
|
118 |
done |
|
119 |
||
120 |
||
121 |
(*computation for difference: 0 and successor cases*) |
|
122 |
||
123 |
lemma diffC0: "a:N ==> a - 0 = a : N" |
|
124 |
apply (unfold arith_defs) |
|
125 |
apply (tactic "rew_tac []") |
|
126 |
done |
|
127 |
||
128 |
(*Note: rec(a, 0, %z w.z) is pred(a). *) |
|
129 |
||
130 |
lemma diff_0_eq_0: "b:N ==> 0 - b = 0 : N" |
|
131 |
apply (unfold arith_defs) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
132 |
apply (tactic {* NE_tac @{context} "b" 1 *}) |
19761 | 133 |
apply (tactic "hyp_rew_tac []") |
134 |
done |
|
135 |
||
136 |
||
137 |
(*Essential to simplify FIRST!! (Else we get a critical pair) |
|
138 |
succ(a) - succ(b) rewrites to pred(succ(a) - b) *) |
|
139 |
lemma diff_succ_succ: "[| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N" |
|
140 |
apply (unfold arith_defs) |
|
141 |
apply (tactic "hyp_rew_tac []") |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
142 |
apply (tactic {* NE_tac @{context} "b" 1 *}) |
19761 | 143 |
apply (tactic "hyp_rew_tac []") |
144 |
done |
|
145 |
||
146 |
||
147 |
subsection {* Simplification *} |
|
148 |
||
149 |
lemmas arith_typing_rls = add_typing mult_typing diff_typing |
|
150 |
and arith_congr_rls = add_typingL mult_typingL diff_typingL |
|
151 |
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls |
|
152 |
||
153 |
lemmas arithC_rls = |
|
154 |
addC0 addC_succ |
|
155 |
multC0 multC_succ |
|
156 |
diffC0 diff_0_eq_0 diff_succ_succ |
|
157 |
||
158 |
ML {* |
|
159 |
||
160 |
structure Arith_simp_data: TSIMP_DATA = |
|
161 |
struct |
|
162 |
val refl = thm "refl_elem" |
|
163 |
val sym = thm "sym_elem" |
|
164 |
val trans = thm "trans_elem" |
|
165 |
val refl_red = thm "refl_red" |
|
166 |
val trans_red = thm "trans_red" |
|
167 |
val red_if_equal = thm "red_if_equal" |
|
168 |
val default_rls = thms "arithC_rls" @ thms "comp_rls" |
|
169 |
val routine_tac = routine_tac (thms "arith_typing_rls" @ thms "routine_rls") |
|
170 |
end |
|
171 |
||
172 |
structure Arith_simp = TSimpFun (Arith_simp_data) |
|
173 |
||
174 |
local val congr_rls = thms "congr_rls" in |
|
175 |
||
176 |
fun arith_rew_tac prems = make_rew_tac |
|
177 |
(Arith_simp.norm_tac(congr_rls, prems)) |
|
178 |
||
179 |
fun hyp_arith_rew_tac prems = make_rew_tac |
|
180 |
(Arith_simp.cond_norm_tac(prove_cond_tac, congr_rls, prems)) |
|
17441 | 181 |
|
0 | 182 |
end |
19761 | 183 |
*} |
184 |
||
185 |
||
186 |
subsection {* Addition *} |
|
187 |
||
188 |
(*Associative law for addition*) |
|
189 |
lemma add_assoc: "[| a:N; b:N; c:N |] ==> (a #+ b) #+ c = a #+ (b #+ c) : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
190 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 191 |
apply (tactic "hyp_arith_rew_tac []") |
192 |
done |
|
193 |
||
194 |
||
195 |
(*Commutative law for addition. Can be proved using three inductions. |
|
196 |
Must simplify after first induction! Orientation of rewrites is delicate*) |
|
197 |
lemma add_commute: "[| a:N; b:N |] ==> a #+ b = b #+ a : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
198 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 199 |
apply (tactic "hyp_arith_rew_tac []") |
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
200 |
apply (tactic {* NE_tac @{context} "b" 2 *}) |
19761 | 201 |
apply (rule sym_elem) |
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
202 |
apply (tactic {* NE_tac @{context} "b" 1 *}) |
19761 | 203 |
apply (tactic "hyp_arith_rew_tac []") |
204 |
done |
|
205 |
||
206 |
||
207 |
subsection {* Multiplication *} |
|
208 |
||
209 |
(*right annihilation in product*) |
|
210 |
lemma mult_0_right: "a:N ==> a #* 0 = 0 : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
211 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 212 |
apply (tactic "hyp_arith_rew_tac []") |
213 |
done |
|
214 |
||
215 |
(*right successor law for multiplication*) |
|
216 |
lemma mult_succ_right: "[| a:N; b:N |] ==> a #* succ(b) = a #+ (a #* b) : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
217 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
218 |
apply (tactic {* hyp_arith_rew_tac [@{thm add_assoc} RS @{thm sym_elem}] *}) |
19761 | 219 |
apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+ |
220 |
done |
|
221 |
||
222 |
(*Commutative law for multiplication*) |
|
223 |
lemma mult_commute: "[| a:N; b:N |] ==> a #* b = b #* a : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
224 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
225 |
apply (tactic {* hyp_arith_rew_tac [@{thm mult_0_right}, @{thm mult_succ_right}] *}) |
19761 | 226 |
done |
227 |
||
228 |
(*addition distributes over multiplication*) |
|
229 |
lemma add_mult_distrib: "[| a:N; b:N; c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
230 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
231 |
apply (tactic {* hyp_arith_rew_tac [@{thm add_assoc} RS @{thm sym_elem}] *}) |
19761 | 232 |
done |
233 |
||
234 |
(*Associative law for multiplication*) |
|
235 |
lemma mult_assoc: "[| a:N; b:N; c:N |] ==> (a #* b) #* c = a #* (b #* c) : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
236 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
237 |
apply (tactic {* hyp_arith_rew_tac [@{thm add_mult_distrib}] *}) |
19761 | 238 |
done |
239 |
||
240 |
||
241 |
subsection {* Difference *} |
|
242 |
||
243 |
text {* |
|
244 |
Difference on natural numbers, without negative numbers |
|
245 |
a - b = 0 iff a<=b a - b = succ(c) iff a>b *} |
|
246 |
||
247 |
lemma diff_self_eq_0: "a:N ==> a - a = 0 : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
248 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 249 |
apply (tactic "hyp_arith_rew_tac []") |
250 |
done |
|
251 |
||
252 |
||
253 |
lemma add_0_right: "[| c : N; 0 : N; c : N |] ==> c #+ 0 = c : N" |
|
254 |
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]]) |
|
255 |
||
256 |
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x. |
|
257 |
An example of induction over a quantified formula (a product). |
|
258 |
Uses rewriting with a quantified, implicative inductive hypothesis.*) |
|
36319 | 259 |
schematic_lemma add_diff_inverse_lemma: |
260 |
"b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
261 |
apply (tactic {* NE_tac @{context} "b" 1 *}) |
19761 | 262 |
(*strip one "universal quantifier" but not the "implication"*) |
263 |
apply (rule_tac [3] intr_rls) |
|
264 |
(*case analysis on x in |
|
265 |
(succ(u) <= x) --> (succ(u)#+(x-succ(u)) = x) *) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
266 |
apply (tactic {* NE_tac @{context} "x" 4 *}, tactic "assume_tac 4") |
19761 | 267 |
(*Prepare for simplification of types -- the antecedent succ(u)<=x *) |
268 |
apply (rule_tac [5] replace_type) |
|
269 |
apply (rule_tac [4] replace_type) |
|
270 |
apply (tactic "arith_rew_tac []") |
|
271 |
(*Solves first 0 goal, simplifies others. Two sugbgoals remain. |
|
272 |
Both follow by rewriting, (2) using quantified induction hyp*) |
|
273 |
apply (tactic "intr_tac []") (*strips remaining PRODs*) |
|
274 |
apply (tactic {* hyp_arith_rew_tac [thm "add_0_right"] *}) |
|
275 |
apply assumption |
|
276 |
done |
|
277 |
||
278 |
||
279 |
(*Version of above with premise b-a=0 i.e. a >= b. |
|
280 |
Using ProdE does not work -- for ?B(?a) is ambiguous. |
|
281 |
Instead, add_diff_inverse_lemma states the desired induction scheme |
|
282 |
the use of RS below instantiates Vars in ProdE automatically. *) |
|
283 |
lemma add_diff_inverse: "[| a:N; b:N; b-a = 0 : N |] ==> b #+ (a-b) = a : N" |
|
284 |
apply (rule EqE) |
|
285 |
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE]) |
|
286 |
apply (assumption | rule EqI)+ |
|
287 |
done |
|
288 |
||
289 |
||
290 |
subsection {* Absolute difference *} |
|
291 |
||
292 |
(*typing of absolute difference: short and long versions*) |
|
293 |
||
294 |
lemma absdiff_typing: "[| a:N; b:N |] ==> a |-| b : N" |
|
295 |
apply (unfold arith_defs) |
|
296 |
apply (tactic "typechk_tac []") |
|
297 |
done |
|
298 |
||
299 |
lemma absdiff_typingL: "[| a=c:N; b=d:N |] ==> a |-| b = c |-| d : N" |
|
300 |
apply (unfold arith_defs) |
|
301 |
apply (tactic "equal_tac []") |
|
302 |
done |
|
303 |
||
304 |
lemma absdiff_self_eq_0: "a:N ==> a |-| a = 0 : N" |
|
305 |
apply (unfold absdiff_def) |
|
306 |
apply (tactic {* arith_rew_tac [thm "diff_self_eq_0"] *}) |
|
307 |
done |
|
308 |
||
309 |
lemma absdiffC0: "a:N ==> 0 |-| a = a : N" |
|
310 |
apply (unfold absdiff_def) |
|
311 |
apply (tactic "hyp_arith_rew_tac []") |
|
312 |
done |
|
313 |
||
314 |
||
315 |
lemma absdiff_succ_succ: "[| a:N; b:N |] ==> succ(a) |-| succ(b) = a |-| b : N" |
|
316 |
apply (unfold absdiff_def) |
|
317 |
apply (tactic "hyp_arith_rew_tac []") |
|
318 |
done |
|
319 |
||
320 |
(*Note how easy using commutative laws can be? ...not always... *) |
|
321 |
lemma absdiff_commute: "[| a:N; b:N |] ==> a |-| b = b |-| a : N" |
|
322 |
apply (unfold absdiff_def) |
|
323 |
apply (rule add_commute) |
|
324 |
apply (tactic {* typechk_tac [thm "diff_typing"] *}) |
|
325 |
done |
|
326 |
||
327 |
(*If a+b=0 then a=0. Surprisingly tedious*) |
|
36319 | 328 |
schematic_lemma add_eq0_lemma: "[| a:N; b:N |] ==> ?c : PROD u: Eq(N,a#+b,0) . Eq(N,a,0)" |
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
329 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 330 |
apply (rule_tac [3] replace_type) |
331 |
apply (tactic "arith_rew_tac []") |
|
332 |
apply (tactic "intr_tac []") (*strips remaining PRODs*) |
|
333 |
apply (rule_tac [2] zero_ne_succ [THEN FE]) |
|
334 |
apply (erule_tac [3] EqE [THEN sym_elem]) |
|
335 |
apply (tactic {* typechk_tac [thm "add_typing"] *}) |
|
336 |
done |
|
337 |
||
338 |
(*Version of above with the premise a+b=0. |
|
339 |
Again, resolution instantiates variables in ProdE *) |
|
340 |
lemma add_eq0: "[| a:N; b:N; a #+ b = 0 : N |] ==> a = 0 : N" |
|
341 |
apply (rule EqE) |
|
342 |
apply (rule add_eq0_lemma [THEN ProdE]) |
|
343 |
apply (rule_tac [3] EqI) |
|
344 |
apply (tactic "typechk_tac []") |
|
345 |
done |
|
346 |
||
347 |
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *) |
|
36319 | 348 |
schematic_lemma absdiff_eq0_lem: |
19761 | 349 |
"[| a:N; b:N; a |-| b = 0 : N |] ==> |
350 |
?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)" |
|
351 |
apply (unfold absdiff_def) |
|
352 |
apply (tactic "intr_tac []") |
|
353 |
apply (tactic eqintr_tac) |
|
354 |
apply (rule_tac [2] add_eq0) |
|
355 |
apply (rule add_eq0) |
|
356 |
apply (rule_tac [6] add_commute [THEN trans_elem]) |
|
357 |
apply (tactic {* typechk_tac [thm "diff_typing"] *}) |
|
358 |
done |
|
359 |
||
360 |
(*if a |-| b = 0 then a = b |
|
361 |
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*) |
|
362 |
lemma absdiff_eq0: "[| a |-| b = 0 : N; a:N; b:N |] ==> a = b : N" |
|
363 |
apply (rule EqE) |
|
364 |
apply (rule absdiff_eq0_lem [THEN SumE]) |
|
365 |
apply (tactic "TRYALL assume_tac") |
|
366 |
apply (tactic eqintr_tac) |
|
367 |
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem]) |
|
368 |
apply (rule_tac [3] EqE, tactic "assume_tac 3") |
|
369 |
apply (tactic {* hyp_arith_rew_tac [thm "add_0_right"] *}) |
|
370 |
done |
|
371 |
||
372 |
||
373 |
subsection {* Remainder and Quotient *} |
|
374 |
||
375 |
(*typing of remainder: short and long versions*) |
|
376 |
||
377 |
lemma mod_typing: "[| a:N; b:N |] ==> a mod b : N" |
|
378 |
apply (unfold mod_def) |
|
379 |
apply (tactic {* typechk_tac [thm "absdiff_typing"] *}) |
|
380 |
done |
|
381 |
||
382 |
lemma mod_typingL: "[| a=c:N; b=d:N |] ==> a mod b = c mod d : N" |
|
383 |
apply (unfold mod_def) |
|
384 |
apply (tactic {* equal_tac [thm "absdiff_typingL"] *}) |
|
385 |
done |
|
386 |
||
387 |
||
388 |
(*computation for mod : 0 and successor cases*) |
|
389 |
||
390 |
lemma modC0: "b:N ==> 0 mod b = 0 : N" |
|
391 |
apply (unfold mod_def) |
|
392 |
apply (tactic {* rew_tac [thm "absdiff_typing"] *}) |
|
393 |
done |
|
394 |
||
395 |
lemma modC_succ: |
|
396 |
"[| a:N; b:N |] ==> succ(a) mod b = rec(succ(a mod b) |-| b, 0, %x y. succ(a mod b)) : N" |
|
397 |
apply (unfold mod_def) |
|
398 |
apply (tactic {* rew_tac [thm "absdiff_typing"] *}) |
|
399 |
done |
|
400 |
||
401 |
||
402 |
(*typing of quotient: short and long versions*) |
|
403 |
||
404 |
lemma div_typing: "[| a:N; b:N |] ==> a div b : N" |
|
405 |
apply (unfold div_def) |
|
406 |
apply (tactic {* typechk_tac [thm "absdiff_typing", thm "mod_typing"] *}) |
|
407 |
done |
|
408 |
||
409 |
lemma div_typingL: "[| a=c:N; b=d:N |] ==> a div b = c div d : N" |
|
410 |
apply (unfold div_def) |
|
411 |
apply (tactic {* equal_tac [thm "absdiff_typingL", thm "mod_typingL"] *}) |
|
412 |
done |
|
413 |
||
414 |
lemmas div_typing_rls = mod_typing div_typing absdiff_typing |
|
415 |
||
416 |
||
417 |
(*computation for quotient: 0 and successor cases*) |
|
418 |
||
419 |
lemma divC0: "b:N ==> 0 div b = 0 : N" |
|
420 |
apply (unfold div_def) |
|
421 |
apply (tactic {* rew_tac [thm "mod_typing", thm "absdiff_typing"] *}) |
|
422 |
done |
|
423 |
||
424 |
lemma divC_succ: |
|
425 |
"[| a:N; b:N |] ==> succ(a) div b = |
|
426 |
rec(succ(a) mod b, succ(a div b), %x y. a div b) : N" |
|
427 |
apply (unfold div_def) |
|
428 |
apply (tactic {* rew_tac [thm "mod_typing"] *}) |
|
429 |
done |
|
430 |
||
431 |
||
432 |
(*Version of above with same condition as the mod one*) |
|
433 |
lemma divC_succ2: "[| a:N; b:N |] ==> |
|
434 |
succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), %x y. a div b) : N" |
|
435 |
apply (rule divC_succ [THEN trans_elem]) |
|
436 |
apply (tactic {* rew_tac (thms "div_typing_rls" @ [thm "modC_succ"]) *}) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
437 |
apply (tactic {* NE_tac @{context} "succ (a mod b) |-|b" 1 *}) |
19761 | 438 |
apply (tactic {* rew_tac [thm "mod_typing", thm "div_typing", thm "absdiff_typing"] *}) |
439 |
done |
|
440 |
||
441 |
(*for case analysis on whether a number is 0 or a successor*) |
|
442 |
lemma iszero_decidable: "a:N ==> rec(a, inl(eq), %ka kb. inr(<ka, eq>)) : |
|
443 |
Eq(N,a,0) + (SUM x:N. Eq(N,a, succ(x)))" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
444 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 445 |
apply (rule_tac [3] PlusI_inr) |
446 |
apply (rule_tac [2] PlusI_inl) |
|
447 |
apply (tactic eqintr_tac) |
|
448 |
apply (tactic "equal_tac []") |
|
449 |
done |
|
450 |
||
451 |
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *) |
|
452 |
lemma mod_div_equality: "[| a:N; b:N |] ==> a mod b #+ (a div b) #* b = a : N" |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
21404
diff
changeset
|
453 |
apply (tactic {* NE_tac @{context} "a" 1 *}) |
19761 | 454 |
apply (tactic {* arith_rew_tac (thms "div_typing_rls" @ |
455 |
[thm "modC0", thm "modC_succ", thm "divC0", thm "divC_succ2"]) *}) |
|
456 |
apply (rule EqE) |
|
457 |
(*case analysis on succ(u mod b)|-|b *) |
|
458 |
apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE]) |
|
459 |
apply (erule_tac [3] SumE) |
|
460 |
apply (tactic {* hyp_arith_rew_tac (thms "div_typing_rls" @ |
|
461 |
[thm "modC0", thm "modC_succ", thm "divC0", thm "divC_succ2"]) *}) |
|
462 |
(*Replace one occurence of b by succ(u mod b). Clumsy!*) |
|
463 |
apply (rule add_typingL [THEN trans_elem]) |
|
464 |
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem]) |
|
465 |
apply (rule_tac [3] refl_elem) |
|
466 |
apply (tactic {* hyp_arith_rew_tac (thms "div_typing_rls") *}) |
|
467 |
done |
|
468 |
||
469 |
end |