| 
3366
 | 
     1  | 
(*  Title:      HOL/Divides.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
The division operators div, mod and the divides relation "dvd"
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
Divides = Arith +
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
consts
  | 
| 
 | 
    12  | 
  div, mod  :: [nat, nat] => nat          (infixl 70)
  | 
| 
 | 
    13  | 
  dvd     :: [nat,nat]=>bool              (infixl 70) 
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
defs
  | 
| 
 | 
    17  | 
  mod_def   "m mod n == wfrec (trancl pred_nat)
  | 
| 
 | 
    18  | 
                          (%f j. if j<n then j else f (j-n)) m"
  | 
| 
 | 
    19  | 
  div_def   "m div n == wfrec (trancl pred_nat) 
  | 
| 
 | 
    20  | 
                          (%f j. if j<n then 0 else Suc (f (j-n))) m"
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
  dvd_def   "m dvd n == EX k. n = m*k"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
end
  |