Moving div and mod from Arith to Divides
authorpaulson
Fri, 30 May 1997 15:15:57 +0200
changeset 3366 2402c6ab1561
parent 3365 86c0d1988622
child 3367 832c245d967c
Moving div and mod from Arith to Divides Moving dvd from ex/Primes to Divides
src/HOL/Arith.ML
src/HOL/Arith.thy
src/HOL/Divides.ML
src/HOL/Divides.thy
--- a/src/HOL/Arith.ML	Fri May 30 15:14:59 1997 +0200
+++ b/src/HOL/Arith.ML	Fri May 30 15:15:57 1997 +0200
@@ -388,6 +388,13 @@
 qed "diff_add_inverse2";
 Addsimps [diff_add_inverse2];
 
+goal Arith.thy "!!i j k::nat. i<=j ==> (j-i=k) = (j=k+i)";
+by (Step_tac 1);
+by (ALLGOALS 
+    (asm_simp_tac
+     (!simpset addsimps [add_diff_inverse, not_less_iff_le, add_commute])));
+qed "le_imp_diff_is_add";
+
 val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0";
 by (rtac (prem RS rev_mp) 1);
 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
@@ -470,154 +477,6 @@
 (*NOT added as rewrites, since sometimes they are used from right-to-left*)
 
 
-(** Less-then properties **)
-
-(*In ordinary notation: if 0<n and n<=m then m-n < m *)
-goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
-by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
-by (Blast_tac 1);
-by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by (ALLGOALS(asm_simp_tac(!simpset addsimps [diff_less_Suc])));
-qed "diff_less";
-
-val wf_less_trans = [eq_reflection, wf_pred_nat RS wf_trancl] MRS 
-                    def_wfrec RS trans;
-
-goalw Nat.thy [less_def] "(m,n) : pred_nat^+ = (m<n)";
-by (rtac refl 1);
-qed "less_eq";
-
-(*** Remainder ***)
-
-goal Arith.thy "(%m. m mod n) = wfrec (trancl pred_nat) \
-             \                      (%f j. if j<n then j else f (j-n))";
-by (simp_tac (!simpset addsimps [mod_def]) 1);
-qed "mod_eq";
-
-goal Arith.thy "!!m. m<n ==> m mod n = m";
-by (rtac (mod_eq RS wf_less_trans) 1);
-by (Asm_simp_tac 1);
-qed "mod_less";
-
-goal Arith.thy "!!m. [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n";
-by (rtac (mod_eq RS wf_less_trans) 1);
-by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
-qed "mod_geq";
-
-goal thy "!!n. 0<n ==> n mod n = 0";
-by (rtac (mod_eq RS wf_less_trans) 1);
-by (asm_simp_tac (!simpset addsimps [mod_less, diff_self_eq_0,
-				     cut_def, less_eq]) 1);
-qed "mod_nn_is_0";
-
-goal thy "!!n. 0<n ==> (m+n) mod n = m mod n";
-by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1);
-by (stac (mod_geq RS sym) 2);
-by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [add_commute])));
-qed "mod_eq_add";
-
-goal thy "!!n. 0<n ==> m*n mod n = 0";
-by (induct_tac "m" 1);
-by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
-by (dres_inst_tac [("m","m*n")] mod_eq_add 1);
-by (asm_full_simp_tac (!simpset addsimps [add_commute]) 1);
-qed "mod_prod_nn_is_0";
-
-
-(*** Quotient ***)
-
-goal Arith.thy "(%m. m div n) = wfrec (trancl pred_nat) \
-                        \            (%f j. if j<n then 0 else Suc (f (j-n)))";
-by (simp_tac (!simpset addsimps [div_def]) 1);
-qed "div_eq";
-
-goal Arith.thy "!!m. m<n ==> m div n = 0";
-by (rtac (div_eq RS wf_less_trans) 1);
-by (Asm_simp_tac 1);
-qed "div_less";
-
-goal Arith.thy "!!M. [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
-by (rtac (div_eq RS wf_less_trans) 1);
-by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
-qed "div_geq";
-
-(*Main Result about quotient and remainder.*)
-goal Arith.thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
-by (res_inst_tac [("n","m")] less_induct 1);
-by (rename_tac "k" 1);    (*Variable name used in line below*)
-by (case_tac "k<n" 1);
-by (ALLGOALS (asm_simp_tac(!simpset addsimps ([add_assoc] @
-                       [mod_less, mod_geq, div_less, div_geq,
-                        add_diff_inverse, diff_less]))));
-qed "mod_div_equality";
-
-
-(*** Further facts about mod (mainly for the mutilated chess board ***)
-
-goal Arith.thy
-    "!!m n. 0<n ==> \
-\           Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
-by (res_inst_tac [("n","m")] less_induct 1);
-by (excluded_middle_tac "Suc(na)<n" 1);
-(* case Suc(na) < n *)
-by (forward_tac [lessI RS less_trans] 2);
-by (asm_simp_tac (!simpset addsimps [mod_less, less_not_refl2 RS not_sym]) 2);
-(* case n <= Suc(na) *)
-by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, mod_geq]) 1);
-by (etac (le_imp_less_or_eq RS disjE) 1);
-by (asm_simp_tac (!simpset addsimps [Suc_diff_n]) 1);
-by (asm_full_simp_tac (!simpset addsimps [not_less_eq RS sym, 
-                                          diff_less, mod_geq]) 1);
-by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
-qed "mod_Suc";
-
-goal Arith.thy "!!m n. 0<n ==> m mod n < n";
-by (res_inst_tac [("n","m")] less_induct 1);
-by (excluded_middle_tac "na<n" 1);
-(*case na<n*)
-by (asm_simp_tac (!simpset addsimps [mod_less]) 2);
-(*case n le na*)
-by (asm_full_simp_tac (!simpset addsimps [mod_geq, diff_less]) 1);
-qed "mod_less_divisor";
-
-
-(** Evens and Odds **)
-
-(*With less_zeroE, causes case analysis on b<2*)
-AddSEs [less_SucE];
-
-goal thy "!!k b. b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)";
-by (subgoal_tac "k mod 2 < 2" 1);
-by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
-by (asm_simp_tac (!simpset setloop split_tac [expand_if]) 1);
-by (Blast_tac 1);
-qed "mod2_cases";
-
-goal thy "Suc(Suc(m)) mod 2 = m mod 2";
-by (subgoal_tac "m mod 2 < 2" 1);
-by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
-by (Step_tac 1);
-by (ALLGOALS (asm_simp_tac (!simpset addsimps [mod_Suc])));
-qed "mod2_Suc_Suc";
-Addsimps [mod2_Suc_Suc];
-
-goal Arith.thy "!!m. m mod 2 ~= 0 ==> m mod 2 = 1";
-by (subgoal_tac "m mod 2 < 2" 1);
-by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
-by (safe_tac (!claset addSEs [lessE]));
-by (ALLGOALS (blast_tac (!claset addIs [sym])));
-qed "mod2_neq_0";
-
-goal thy "(m+m) mod 2 = 0";
-by (induct_tac "m" 1);
-by (simp_tac (!simpset addsimps [mod_less]) 1);
-by (asm_simp_tac (!simpset addsimps [mod2_Suc_Suc, add_Suc_right]) 1);
-qed "mod2_add_self";
-Addsimps [mod2_add_self];
-
-Delrules [less_SucE];
-
-
 (*** Monotonicity of Multiplication ***)
 
 goal Arith.thy "!!i::nat. i<=j ==> i*k<=j*k";
@@ -688,44 +547,6 @@
 Addsimps [mult_cancel1, mult_cancel2];
 
 
-(*** More division laws ***)
-
-goal thy "!!n. 0<n ==> m*n div n = m";
-by (cut_inst_tac [("m", "m*n")] mod_div_equality 1);
-ba 1;
-by (asm_full_simp_tac (!simpset addsimps [mod_prod_nn_is_0]) 1);
-qed "div_prod_nn_is_m";
-Addsimps [div_prod_nn_is_m];
-
-(*Cancellation law for division*)
-goal Arith.thy "!!k. [| 0<n; 0<k |] ==> (k*m) div (k*n) = m div n";
-by (res_inst_tac [("n","m")] less_induct 1);
-by (case_tac "na<n" 1);
-by (asm_simp_tac (!simpset addsimps [div_less, zero_less_mult_iff, 
-                                     mult_less_mono2]) 1);
-by (subgoal_tac "~ k*na < k*n" 1);
-by (asm_simp_tac
-     (!simpset addsimps [zero_less_mult_iff, div_geq,
-                         diff_mult_distrib2 RS sym, diff_less]) 1);
-by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, 
-                                          le_refl RS mult_le_mono]) 1);
-qed "div_cancel";
-Addsimps [div_cancel];
-
-goal Arith.thy "!!k. [| 0<n; 0<k |] ==> (k*m) mod (k*n) = k * (m mod n)";
-by (res_inst_tac [("n","m")] less_induct 1);
-by (case_tac "na<n" 1);
-by (asm_simp_tac (!simpset addsimps [mod_less, zero_less_mult_iff, 
-                                     mult_less_mono2]) 1);
-by (subgoal_tac "~ k*na < k*n" 1);
-by (asm_simp_tac
-     (!simpset addsimps [zero_less_mult_iff, mod_geq,
-                         diff_mult_distrib2 RS sym, diff_less]) 1);
-by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, 
-                                          le_refl RS mult_le_mono]) 1);
-qed "mult_mod_distrib";
-
-
 (** Lemma for gcd **)
 
 goal Arith.thy "!!m n. m = m*n ==> n=1 | m=0";
--- a/src/HOL/Arith.thy	Fri May 30 15:14:59 1997 +0200
+++ b/src/HOL/Arith.thy	Fri May 30 15:15:57 1997 +0200
@@ -3,38 +3,32 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
-Arithmetic operators and their definitions
+Arithmetic operators + - and * (for div, mod and dvd, see Divides)
 *)
 
 Arith = Nat +
 
 instance
-  nat :: {plus, minus, times}
+  nat :: {plus, minus, times, power}
 
 consts
   pred      :: nat => nat
-  div, mod  :: [nat, nat] => nat  (infixl 70)
   (* size of a datatype value; overloaded *)
   size      :: 'a => nat
 
 defs
   pred_def  "pred(m) == case m of 0 => 0 | Suc n => n"
 
-  mod_def   "m mod n == wfrec (trancl pred_nat)
-                          (%f j. if j<n then j else f (j-n)) m"
-  div_def   "m div n == wfrec (trancl pred_nat) 
-                          (%f j. if j<n then 0 else Suc (f (j-n))) m"
-
 primrec "op +" nat 
-  "0 + n = n"
-  "Suc m + n = Suc(m + n)"
+  add_0    "0 + n = n"
+  add_Suc  "Suc m + n = Suc(m + n)"
 
 primrec "op -" nat 
   diff_0   "m - 0 = m"
   diff_Suc "m - Suc n = pred(m - n)"
 
 primrec "op *"  nat 
-  "0 * n = 0"
-  "Suc m * n = n + (m * n)"
+  mult_0   "0 * n = 0"
+  mult_Suc "Suc m * n = n + (m * n)"
 
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Divides.ML	Fri May 30 15:15:57 1997 +0200
@@ -0,0 +1,333 @@
+(*  Title:      HOL/Divides.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+The division operators div, mod and the divides relation "dvd"
+*)
+
+
+(** Less-then properties **)
+
+(*In ordinary notation: if 0<n and n<=m then m-n < m *)
+goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
+by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
+by (Blast_tac 1);
+by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
+by (ALLGOALS(asm_simp_tac(!simpset addsimps [diff_less_Suc])));
+qed "diff_less";
+
+val wf_less_trans = [eq_reflection, wf_pred_nat RS wf_trancl] MRS 
+                    def_wfrec RS trans;
+
+(*** Remainder ***)
+
+goal thy "(%m. m mod n) = wfrec (trancl pred_nat) \
+             \                      (%f j. if j<n then j else f (j-n))";
+by (simp_tac (!simpset addsimps [mod_def]) 1);
+qed "mod_eq";
+
+goal thy "!!m. m<n ==> m mod n = m";
+by (rtac (mod_eq RS wf_less_trans) 1);
+by (Asm_simp_tac 1);
+qed "mod_less";
+
+goal thy "!!m. [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n";
+by (rtac (mod_eq RS wf_less_trans) 1);
+by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
+qed "mod_geq";
+
+goal thy "m mod 1 = 0";
+by (induct_tac "m" 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [mod_less, mod_geq])));
+qed "mod_1";
+Addsimps [mod_1];
+
+goal thy "!!n. 0<n ==> n mod n = 0";
+by (asm_simp_tac (!simpset addsimps [mod_less, mod_geq]) 1);
+qed "mod_self";
+
+goal thy "!!n. 0<n ==> (m+n) mod n = m mod n";
+by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1);
+by (stac (mod_geq RS sym) 2);
+by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [add_commute])));
+qed "mod_eq_add";
+
+goal thy "!!k. [| 0<k; 0<n |] ==> (m mod n)*k = (m*k) mod (n*k)";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (case_tac "na<n" 1);
+(*case na<n*)
+by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
+(*case n<=na*)
+by (asm_simp_tac (!simpset addsimps [mod_geq, diff_less, zero_less_mult_iff, 
+				     diff_mult_distrib]) 1);
+qed "mod_mult_distrib";
+
+goal thy "!!k. [| 0<k; 0<n |] ==> k*(m mod n) = (k*m) mod (k*n)";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (case_tac "na<n" 1);
+(*case na<n*)
+by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
+(*case n<=na*)
+by (asm_simp_tac (!simpset addsimps [mod_geq, diff_less, zero_less_mult_iff, 
+				     diff_mult_distrib2]) 1);
+qed "mod_mult_distrib2";
+
+goal thy "!!n. 0<n ==> m*n mod n = 0";
+by (induct_tac "m" 1);
+by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
+by (dres_inst_tac [("m","m*n")] mod_eq_add 1);
+by (asm_full_simp_tac (!simpset addsimps [add_commute]) 1);
+qed "mod_mult_self_is_0";
+Addsimps [mod_mult_self_is_0];
+
+(*** Quotient ***)
+
+goal thy "(%m. m div n) = wfrec (trancl pred_nat) \
+                        \            (%f j. if j<n then 0 else Suc (f (j-n)))";
+by (simp_tac (!simpset addsimps [div_def]) 1);
+qed "div_eq";
+
+goal thy "!!m. m<n ==> m div n = 0";
+by (rtac (div_eq RS wf_less_trans) 1);
+by (Asm_simp_tac 1);
+qed "div_less";
+
+goal thy "!!M. [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
+by (rtac (div_eq RS wf_less_trans) 1);
+by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
+qed "div_geq";
+
+(*Main Result about quotient and remainder.*)
+goal thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (rename_tac "k" 1);    (*Variable name used in line below*)
+by (case_tac "k<n" 1);
+by (ALLGOALS (asm_simp_tac(!simpset addsimps ([add_assoc] @
+                       [mod_less, mod_geq, div_less, div_geq,
+                        add_diff_inverse, diff_less]))));
+qed "mod_div_equality";
+
+goal thy "m div 1 = m";
+by (induct_tac "m" 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [div_less, div_geq])));
+qed "div_1";
+Addsimps [div_1];
+
+goal thy "!!n. 0<n ==> n div n = 1";
+by (asm_simp_tac (!simpset addsimps [div_less, div_geq]) 1);
+qed "div_self";
+
+
+(*** Further facts about mod (mainly for the mutilated chess board ***)
+
+goal thy
+    "!!m n. 0<n ==> \
+\           Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (excluded_middle_tac "Suc(na)<n" 1);
+(* case Suc(na) < n *)
+by (forward_tac [lessI RS less_trans] 2);
+by (asm_simp_tac (!simpset addsimps [mod_less, less_not_refl2 RS not_sym]) 2);
+(* case n <= Suc(na) *)
+by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, mod_geq]) 1);
+by (etac (le_imp_less_or_eq RS disjE) 1);
+by (asm_simp_tac (!simpset addsimps [Suc_diff_n]) 1);
+by (asm_full_simp_tac (!simpset addsimps [not_less_eq RS sym, 
+                                          diff_less, mod_geq]) 1);
+by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
+qed "mod_Suc";
+
+goal thy "!!m n. 0<n ==> m mod n < n";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (excluded_middle_tac "na<n" 1);
+(*case na<n*)
+by (asm_simp_tac (!simpset addsimps [mod_less]) 2);
+(*case n le na*)
+by (asm_full_simp_tac (!simpset addsimps [mod_geq, diff_less]) 1);
+qed "mod_less_divisor";
+
+
+(** Evens and Odds **)
+
+(*With less_zeroE, causes case analysis on b<2*)
+AddSEs [less_SucE];
+
+goal thy "!!k b. b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)";
+by (subgoal_tac "k mod 2 < 2" 1);
+by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
+by (asm_simp_tac (!simpset setloop split_tac [expand_if]) 1);
+by (Blast_tac 1);
+qed "mod2_cases";
+
+goal thy "Suc(Suc(m)) mod 2 = m mod 2";
+by (subgoal_tac "m mod 2 < 2" 1);
+by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
+by (Step_tac 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [mod_Suc])));
+qed "mod2_Suc_Suc";
+Addsimps [mod2_Suc_Suc];
+
+goal thy "!!m. m mod 2 ~= 0 ==> m mod 2 = 1";
+by (subgoal_tac "m mod 2 < 2" 1);
+by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
+by (safe_tac (!claset addSEs [lessE]));
+by (ALLGOALS (blast_tac (!claset addIs [sym])));
+qed "mod2_neq_0";
+
+goal thy "(m+m) mod 2 = 0";
+by (induct_tac "m" 1);
+by (simp_tac (!simpset addsimps [mod_less]) 1);
+by (asm_simp_tac (!simpset addsimps [mod2_Suc_Suc, add_Suc_right]) 1);
+qed "mod2_add_self";
+Addsimps [mod2_add_self];
+
+Delrules [less_SucE];
+
+
+(*** More division laws ***)
+
+goal thy "!!n. 0<n ==> m*n div n = m";
+by (cut_inst_tac [("m", "m*n")] mod_div_equality 1);
+ba 1;
+by (asm_full_simp_tac (!simpset addsimps [mod_mult_self_is_0]) 1);
+qed "div_mult_self_is_m";
+Addsimps [div_mult_self_is_m];
+
+(*Cancellation law for division*)
+goal thy "!!k. [| 0<n; 0<k |] ==> (k*m) div (k*n) = m div n";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (case_tac "na<n" 1);
+by (asm_simp_tac (!simpset addsimps [div_less, zero_less_mult_iff, 
+                                     mult_less_mono2]) 1);
+by (subgoal_tac "~ k*na < k*n" 1);
+by (asm_simp_tac
+     (!simpset addsimps [zero_less_mult_iff, div_geq,
+                         diff_mult_distrib2 RS sym, diff_less]) 1);
+by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, 
+                                          le_refl RS mult_le_mono]) 1);
+qed "div_cancel";
+Addsimps [div_cancel];
+
+goal thy "!!k. [| 0<n; 0<k |] ==> (k*m) mod (k*n) = k * (m mod n)";
+by (res_inst_tac [("n","m")] less_induct 1);
+by (case_tac "na<n" 1);
+by (asm_simp_tac (!simpset addsimps [mod_less, zero_less_mult_iff, 
+                                     mult_less_mono2]) 1);
+by (subgoal_tac "~ k*na < k*n" 1);
+by (asm_simp_tac
+     (!simpset addsimps [zero_less_mult_iff, mod_geq,
+                         diff_mult_distrib2 RS sym, diff_less]) 1);
+by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, 
+                                          le_refl RS mult_le_mono]) 1);
+qed "mult_mod_distrib";
+
+
+(************************************************)
+(** Divides Relation                           **)
+(************************************************)
+
+goalw thy [dvd_def] "m dvd 0";
+by (fast_tac (!claset addIs [mult_0_right RS sym]) 1);
+qed "dvd_0_right";
+Addsimps [dvd_0_right];
+
+goalw thy [dvd_def] "!!m. 0 dvd m ==> m = 0";
+by (fast_tac (!claset addss !simpset) 1);
+qed "dvd_0_left";
+
+goalw thy [dvd_def] "1 dvd k";
+by (Simp_tac 1);
+qed "dvd_1_left";
+AddIffs [dvd_1_left];
+
+goalw thy [dvd_def] "m dvd m";
+by (fast_tac (!claset addIs [mult_1_right RS sym]) 1);
+qed "dvd_refl";
+Addsimps [dvd_refl];
+
+goalw thy [dvd_def] "!!m n p. [| m dvd n; n dvd p |] ==> m dvd p";
+by (fast_tac (!claset addIs [mult_assoc] ) 1);
+qed "dvd_trans";
+
+goalw thy [dvd_def] "!!m n. [| m dvd n; n dvd m |] ==> m=n";
+by (fast_tac (!claset addDs [mult_eq_self_implies_10]
+                     addss (!simpset addsimps [mult_assoc, mult_eq_1_iff])) 1);
+qed "dvd_anti_sym";
+
+goalw thy [dvd_def] "!!k. [| k dvd m; k dvd n |] ==> k dvd (m + n)";
+by (blast_tac (!claset addIs [add_mult_distrib2 RS sym]) 1);
+qed "dvd_add";
+
+goalw thy [dvd_def] "!!k. [| k dvd m; k dvd n |] ==> k dvd (m-n)";
+by (blast_tac (!claset addIs [diff_mult_distrib2 RS sym]) 1);
+qed "dvd_diff";
+
+goal thy "!!k. [| k dvd (m-n); k dvd n; n<=m |] ==> k dvd m";
+be (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1;
+by (blast_tac (!claset addIs [dvd_add]) 1);
+qed "dvd_diffD";
+
+goalw thy [dvd_def] "!!k. k dvd n ==> k dvd (m*n)";
+by (blast_tac (!claset addIs [mult_left_commute]) 1);
+qed "dvd_mult";
+
+goal thy "!!k. k dvd m ==> k dvd (m*n)";
+by (stac mult_commute 1);
+by (etac dvd_mult 1);
+qed "dvd_mult2";
+
+(* k dvd (m*k) *)
+AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2];
+
+goalw thy [dvd_def] "!!m. [| f dvd m; f dvd n; 0<n |] ==> f dvd (m mod n)";
+by (Step_tac 1);
+by (full_simp_tac (!simpset addsimps [zero_less_mult_iff]) 1);
+by (res_inst_tac 
+    [("x", "(((k div ka)*ka + k mod ka) - ((f*k) div (f*ka)) * ka)")] 
+    exI 1);
+by (asm_simp_tac (!simpset addsimps [diff_mult_distrib2, 
+                                     mult_mod_distrib, add_mult_distrib2]) 1);
+qed "dvd_mod";
+
+goal thy "!!k. [| k dvd (m mod n); k dvd n; n~=0 |] ==> k dvd m";
+by (subgoal_tac "k dvd ((m div n)*n + m mod n)" 1);
+by (asm_simp_tac (!simpset addsimps [dvd_add, dvd_mult]) 2);
+by (asm_full_simp_tac (!simpset addsimps [mod_div_equality, zero_less_eq]) 1);
+qed "dvd_mod_imp_dvd";
+
+goalw thy [dvd_def]  "!!k m n. [| (k*m) dvd (k*n); 0<k |] ==> m dvd n";
+by (etac exE 1);
+by (asm_full_simp_tac (!simpset addsimps mult_ac) 1);
+by (Blast_tac 1);
+qed "dvd_mult_cancel";
+
+goalw thy [dvd_def] "!!i j. [| i dvd m; j dvd n|] ==> (i*j) dvd (m*n)";
+by (Step_tac 1);
+by (res_inst_tac [("x","k*ka")] exI 1);
+by (asm_simp_tac (!simpset addsimps mult_ac) 1);
+qed "mult_dvd_mono";
+
+goalw thy [dvd_def] "!!c. (i*j) dvd k ==> i dvd k";
+by (full_simp_tac (!simpset addsimps [mult_assoc]) 1);
+by (Blast_tac 1);
+qed "dvd_mult_left";
+
+goalw thy [dvd_def] "!!n. [| k dvd n; 0 < n |] ==> k <= n";
+by (Step_tac 1);
+by (ALLGOALS (full_simp_tac (!simpset addsimps [zero_less_mult_iff])));
+be conjE 1;
+br le_trans 1;
+br (le_refl RS mult_le_mono) 2;
+by (etac Suc_leI 2);
+by (Simp_tac 1);
+qed "dvd_imp_le";
+
+goalw thy [dvd_def] "!!k. 0<k ==> (k dvd n) = (n mod k = 0)";
+by (Step_tac 1);
+by (stac mult_commute 1);
+by (Asm_simp_tac 1);
+by (eres_inst_tac [("t","n")] (mod_div_equality RS subst) 1);
+by (asm_simp_tac (!simpset addsimps [mult_commute]) 1);
+by (Blast_tac 1);
+qed "dvd_eq_mod_eq_0";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Divides.thy	Fri May 30 15:15:57 1997 +0200
@@ -0,0 +1,24 @@
+(*  Title:      HOL/Divides.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+The division operators div, mod and the divides relation "dvd"
+*)
+
+Divides = Arith +
+
+consts
+  div, mod  :: [nat, nat] => nat          (infixl 70)
+  dvd     :: [nat,nat]=>bool              (infixl 70) 
+
+
+defs
+  mod_def   "m mod n == wfrec (trancl pred_nat)
+                          (%f j. if j<n then j else f (j-n)) m"
+  div_def   "m div n == wfrec (trancl pred_nat) 
+                          (%f j. if j<n then 0 else Suc (f (j-n))) m"
+
+  dvd_def   "m dvd n == EX k. n = m*k"
+
+end