| author | Christian Sternagel | 
| Thu, 30 Aug 2012 13:06:04 +0900 | |
| changeset 49088 | 5cd8b4426a57 | 
| parent 47982 | 7aa35601ff65 | 
| child 51377 | 7da251a6c16e | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Library/Quotient_Sum.thy | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 2 | Author: Cezary Kaliszyk, Christian Urban and Brian Huffman | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 3 | *) | 
| 35788 | 4 | |
| 5 | header {* Quotient infrastructure for the sum type *}
 | |
| 6 | ||
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 7 | theory Quotient_Sum | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 8 | imports Main Quotient_Syntax | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 9 | begin | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 10 | |
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 11 | subsection {* Relator for sum type *}
 | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 12 | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 13 | fun | 
| 40542 
9a173a22771c
re-generalized type of option_rel and sum_rel (accident from 2989f9f3aa10)
 haftmann parents: 
40465diff
changeset | 14 |   sum_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd \<Rightarrow> bool"
 | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 15 | where | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 16 | "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 17 | | "sum_rel R1 R2 (Inl a1) (Inr b2) = False" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 18 | | "sum_rel R1 R2 (Inr a2) (Inl b1) = False" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 19 | | "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 20 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 21 | lemma sum_rel_unfold: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 22 | "sum_rel R1 R2 x y = (case (x, y) of (Inl x, Inl y) \<Rightarrow> R1 x y | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 23 | | (Inr x, Inr y) \<Rightarrow> R2 x y | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 24 | | _ \<Rightarrow> False)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 25 | by (cases x) (cases y, simp_all)+ | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 26 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 27 | lemma sum_rel_map1: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 28 | "sum_rel R1 R2 (sum_map f1 f2 x) y \<longleftrightarrow> sum_rel (\<lambda>x. R1 (f1 x)) (\<lambda>x. R2 (f2 x)) x y" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 29 | by (simp add: sum_rel_unfold split: sum.split) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 30 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 31 | lemma sum_rel_map2: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 32 | "sum_rel R1 R2 x (sum_map f1 f2 y) \<longleftrightarrow> sum_rel (\<lambda>x y. R1 x (f1 y)) (\<lambda>x y. R2 x (f2 y)) x y" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 33 | by (simp add: sum_rel_unfold split: sum.split) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 34 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 35 | lemma sum_map_id [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 36 | "sum_map id id = id" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 37 | by (simp add: id_def sum_map.identity fun_eq_iff) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 38 | |
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 39 | lemma sum_rel_eq [id_simps, relator_eq]: | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 40 | "sum_rel (op =) (op =) = (op =)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 41 | by (simp add: sum_rel_unfold fun_eq_iff split: sum.split) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 42 | |
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 43 | lemma split_sum_all: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (Inl x)) \<and> (\<forall>x. P (Inr x))" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 44 | by (metis sum.exhaust) (* TODO: move to Sum_Type.thy *) | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 45 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 46 | lemma split_sum_ex: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. P (Inl x)) \<or> (\<exists>x. P (Inr x))" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 47 | by (metis sum.exhaust) (* TODO: move to Sum_Type.thy *) | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 48 | |
| 47982 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 49 | lemma sum_reflp[reflexivity_rule]: | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 50 | "reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (sum_rel R1 R2)" | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 51 | unfolding reflp_def split_sum_all sum_rel.simps by fast | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 52 | |
| 47982 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 53 | lemma sum_left_total[reflexivity_rule]: | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 54 | "left_total R1 \<Longrightarrow> left_total R2 \<Longrightarrow> left_total (sum_rel R1 R2)" | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 55 | apply (intro left_totalI) | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 56 | unfolding split_sum_ex | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 57 | by (case_tac x) (auto elim: left_totalE) | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 58 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 59 | lemma sum_symp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 60 | "symp R1 \<Longrightarrow> symp R2 \<Longrightarrow> symp (sum_rel R1 R2)" | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 61 | unfolding symp_def split_sum_all sum_rel.simps by fast | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 62 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 63 | lemma sum_transp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 64 | "transp R1 \<Longrightarrow> transp R2 \<Longrightarrow> transp (sum_rel R1 R2)" | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 65 | unfolding transp_def split_sum_all sum_rel.simps by fast | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 66 | |
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 67 | lemma sum_equivp [quot_equiv]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 68 | "equivp R1 \<Longrightarrow> equivp R2 \<Longrightarrow> equivp (sum_rel R1 R2)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 69 | by (blast intro: equivpI sum_reflp sum_symp sum_transp elim: equivpE) | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 70 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 71 | lemma right_total_sum_rel [transfer_rule]: | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 72 | "right_total R1 \<Longrightarrow> right_total R2 \<Longrightarrow> right_total (sum_rel R1 R2)" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 73 | unfolding right_total_def split_sum_all split_sum_ex by simp | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 74 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 75 | lemma right_unique_sum_rel [transfer_rule]: | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 76 | "right_unique R1 \<Longrightarrow> right_unique R2 \<Longrightarrow> right_unique (sum_rel R1 R2)" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 77 | unfolding right_unique_def split_sum_all by simp | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 78 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 79 | lemma bi_total_sum_rel [transfer_rule]: | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 80 | "bi_total R1 \<Longrightarrow> bi_total R2 \<Longrightarrow> bi_total (sum_rel R1 R2)" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 81 | using assms unfolding bi_total_def split_sum_all split_sum_ex by simp | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 82 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 83 | lemma bi_unique_sum_rel [transfer_rule]: | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 84 | "bi_unique R1 \<Longrightarrow> bi_unique R2 \<Longrightarrow> bi_unique (sum_rel R1 R2)" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 85 | using assms unfolding bi_unique_def split_sum_all by simp | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 86 | |
| 47635 
ebb79474262c
rename 'correspondence' method to 'transfer_prover'
 huffman parents: 
47634diff
changeset | 87 | subsection {* Transfer rules for transfer package *}
 | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 88 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 89 | lemma Inl_transfer [transfer_rule]: "(A ===> sum_rel A B) Inl Inl" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 90 | unfolding fun_rel_def by simp | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 91 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 92 | lemma Inr_transfer [transfer_rule]: "(B ===> sum_rel A B) Inr Inr" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 93 | unfolding fun_rel_def by simp | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 94 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 95 | lemma sum_case_transfer [transfer_rule]: | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 96 | "((A ===> C) ===> (B ===> C) ===> sum_rel A B ===> C) sum_case sum_case" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 97 | unfolding fun_rel_def sum_rel_unfold by (simp split: sum.split) | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 98 | |
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 99 | subsection {* Setup for lifting package *}
 | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 100 | |
| 47777 
f29e7dcd7c40
use a quot_map theorem attribute instead of the complicated map attribute
 kuncar parents: 
47635diff
changeset | 101 | lemma Quotient_sum[quot_map]: | 
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 102 | assumes "Quotient R1 Abs1 Rep1 T1" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 103 | assumes "Quotient R2 Abs2 Rep2 T2" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 104 | shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 105 | (sum_map Rep1 Rep2) (sum_rel T1 T2)" | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 106 | using assms unfolding Quotient_alt_def | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 107 | by (simp add: split_sum_all) | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 108 | |
| 47634 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 109 | fun sum_pred :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> bool"
 | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 110 | where | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 111 | "sum_pred R1 R2 (Inl a) = R1 a" | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 112 | | "sum_pred R1 R2 (Inr a) = R2 a" | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 113 | |
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 114 | lemma sum_invariant_commute [invariant_commute]: | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 115 | "sum_rel (Lifting.invariant P1) (Lifting.invariant P2) = Lifting.invariant (sum_pred P1 P2)" | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 116 | apply (simp add: fun_eq_iff Lifting.invariant_def) | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 117 | apply (intro allI) | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 118 | apply (case_tac x rule: sum.exhaust) | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 119 | apply (case_tac xa rule: sum.exhaust) | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 120 | apply auto[2] | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 121 | apply (case_tac xa rule: sum.exhaust) | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 122 | apply auto | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 123 | done | 
| 
091bcd569441
hide the invariant constant for relators: invariant_commute infrastracture
 kuncar parents: 
47624diff
changeset | 124 | |
| 47624 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 125 | subsection {* Rules for quotient package *}
 | 
| 
16d433895d2e
add new transfer rules and setup for lifting package
 huffman parents: 
47455diff
changeset | 126 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 127 | lemma sum_quotient [quot_thm]: | 
| 47308 | 128 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 129 | assumes q2: "Quotient3 R2 Abs2 Rep2" | |
| 130 | shows "Quotient3 (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)" | |
| 131 | apply (rule Quotient3I) | |
| 41372 | 132 | apply (simp_all add: sum_map.compositionality comp_def sum_map.identity sum_rel_eq sum_rel_map1 sum_rel_map2 | 
| 47308 | 133 | Quotient3_abs_rep [OF q1] Quotient3_rel_rep [OF q1] Quotient3_abs_rep [OF q2] Quotient3_rel_rep [OF q2]) | 
| 134 | using Quotient3_rel [OF q1] Quotient3_rel [OF q2] | |
| 41372 | 135 | apply (simp add: sum_rel_unfold comp_def split: sum.split) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 136 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 137 | |
| 47308 | 138 | declare [[mapQ3 sum = (sum_rel, sum_quotient)]] | 
| 47094 | 139 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 140 | lemma sum_Inl_rsp [quot_respect]: | 
| 47308 | 141 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 142 | assumes q2: "Quotient3 R2 Abs2 Rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 143 | shows "(R1 ===> sum_rel R1 R2) Inl Inl" | 
| 40465 
2989f9f3aa10
more appropriate specification packages; fun_rel_def is no simp rule by default
 haftmann parents: 
39302diff
changeset | 144 | by auto | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 145 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 146 | lemma sum_Inr_rsp [quot_respect]: | 
| 47308 | 147 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 148 | assumes q2: "Quotient3 R2 Abs2 Rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 149 | shows "(R2 ===> sum_rel R1 R2) Inr Inr" | 
| 40465 
2989f9f3aa10
more appropriate specification packages; fun_rel_def is no simp rule by default
 haftmann parents: 
39302diff
changeset | 150 | by auto | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 151 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 152 | lemma sum_Inl_prs [quot_preserve]: | 
| 47308 | 153 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 154 | assumes q2: "Quotient3 R2 Abs2 Rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 155 | shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 156 | apply(simp add: fun_eq_iff) | 
| 47308 | 157 | apply(simp add: Quotient3_abs_rep[OF q1]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 158 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 159 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40610diff
changeset | 160 | lemma sum_Inr_prs [quot_preserve]: | 
| 47308 | 161 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 162 | assumes q2: "Quotient3 R2 Abs2 Rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 163 | shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 164 | apply(simp add: fun_eq_iff) | 
| 47308 | 165 | apply(simp add: Quotient3_abs_rep[OF q2]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 166 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 167 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 168 | end |