1465
|
1 |
(* Title: HOL/Hoare/Examples.thy
|
1335
|
2 |
ID: $Id$
|
1465
|
3 |
Author: Norbert Galm
|
1335
|
4 |
Copyright 1995 TUM
|
|
5 |
|
|
6 |
Various arithmetic examples.
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Examples;
|
|
10 |
|
|
11 |
(*** multiplication by successive addition ***)
|
|
12 |
|
|
13 |
goal thy
|
|
14 |
"{m=0 & s=0} \
|
|
15 |
\ WHILE m ~= a DO {s = m*b} s := s+b; m := Suc(m) END\
|
|
16 |
\ {s = a*b}";
|
|
17 |
by(hoare_tac 1);
|
|
18 |
by(ALLGOALS (asm_full_simp_tac (!simpset addsimps add_ac)));
|
|
19 |
qed "multiply_by_add";
|
|
20 |
|
|
21 |
|
|
22 |
(*** Euclid's algorithm for GCD ***)
|
|
23 |
|
|
24 |
goal thy
|
|
25 |
" {0<A & 0<B & a=A & b=B} \
|
|
26 |
\ WHILE a ~= b \
|
|
27 |
\ DO {0<a & 0<b & gcd A B = gcd a b} \
|
|
28 |
\ IF a<b \
|
|
29 |
\ THEN \
|
|
30 |
\ b:=b-a \
|
|
31 |
\ ELSE \
|
|
32 |
\ a:=a-b \
|
|
33 |
\ END \
|
|
34 |
\ END \
|
|
35 |
\ {a = gcd A B}";
|
|
36 |
|
|
37 |
by (hoare_tac 1);
|
|
38 |
|
|
39 |
by (safe_tac HOL_cs);
|
|
40 |
|
1465
|
41 |
by (etac less_imp_diff_positive 1);
|
|
42 |
by (etac gcd_diff_r 1);
|
1335
|
43 |
|
|
44 |
by (cut_facts_tac [less_linear] 1);
|
|
45 |
by (cut_facts_tac [less_linear] 2);
|
1465
|
46 |
by (rtac less_imp_diff_positive 1);
|
|
47 |
by (rtac gcd_diff_l 2);
|
1335
|
48 |
|
1465
|
49 |
by (dtac gcd_nnn 3);
|
1335
|
50 |
|
|
51 |
by (ALLGOALS (fast_tac HOL_cs));
|
|
52 |
|
|
53 |
qed "Euclid_GCD";
|
|
54 |
|
|
55 |
|
|
56 |
(*** Power by interated squaring and multiplication ***)
|
|
57 |
|
|
58 |
goal thy
|
|
59 |
" {a=A & b=B} \
|
|
60 |
\ c:=1; \
|
|
61 |
\ WHILE b~=0 \
|
|
62 |
\ DO {A pow B = c * a pow b} \
|
|
63 |
\ WHILE b mod 2=0 \
|
|
64 |
\ DO {A pow B = c * a pow b} \
|
|
65 |
\ a:=a*a; \
|
|
66 |
\ b:=b div 2 \
|
|
67 |
\ END; \
|
|
68 |
\ c:=c*a; \
|
|
69 |
\ b:=b-1 \
|
|
70 |
\ END \
|
|
71 |
\ {c = A pow B}";
|
|
72 |
|
|
73 |
by (hoare_tac 1);
|
|
74 |
|
|
75 |
by (simp_tac ((simpset_of "Arith") addsimps [pow_0]) 3);
|
|
76 |
|
|
77 |
by (safe_tac HOL_cs);
|
|
78 |
|
|
79 |
by (subgoal_tac "a*a=a pow 2" 1);
|
|
80 |
by (Asm_simp_tac 1);
|
1465
|
81 |
by (rtac (pow_pow_reduce RS ssubst) 1);
|
1335
|
82 |
|
|
83 |
by (subgoal_tac "(b div 2)*2=b" 1);
|
|
84 |
by (subgoal_tac "0<2" 2);
|
|
85 |
by (dres_inst_tac [("m","b")] mod_div_equality 2);
|
|
86 |
|
|
87 |
by (ALLGOALS (asm_full_simp_tac ((simpset_of "Arith") addsimps [pow_0,pow_Suc,mult_assoc])));
|
|
88 |
|
|
89 |
by (subgoal_tac "b~=0" 1);
|
|
90 |
by (res_inst_tac [("n","b")] natE 1);
|
|
91 |
by (res_inst_tac [("Q","b mod 2 ~= 0")] not_imp_swap 3);
|
1465
|
92 |
by (assume_tac 4);
|
1335
|
93 |
|
|
94 |
by (ALLGOALS (asm_full_simp_tac ((simpset_of "Arith") addsimps [pow_0,pow_Suc,mult_assoc])));
|
1465
|
95 |
by (rtac mod_less 1);
|
1335
|
96 |
by (Simp_tac 1);
|
|
97 |
|
|
98 |
qed "power_by_mult";
|
|
99 |
|
|
100 |
(*** factorial ***)
|
|
101 |
|
|
102 |
goal thy
|
|
103 |
" {a=A} \
|
|
104 |
\ b:=1; \
|
|
105 |
\ WHILE a~=0 \
|
|
106 |
\ DO {fac A = b*fac a} \
|
|
107 |
\ b:=b*a; \
|
|
108 |
\ a:=a-1 \
|
|
109 |
\ END \
|
|
110 |
\ {b = fac A}";
|
|
111 |
|
|
112 |
by (hoare_tac 1);
|
|
113 |
|
|
114 |
by (safe_tac HOL_cs);
|
|
115 |
|
|
116 |
by (res_inst_tac [("n","a")] natE 1);
|
|
117 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [mult_assoc])));
|
|
118 |
by (fast_tac HOL_cs 1);
|
|
119 |
|
|
120 |
qed"factorial";
|