| author | wenzelm | 
| Sun, 27 Oct 2024 12:32:40 +0100 | |
| changeset 81275 | 5ed639c16ce7 | 
| parent 78456 | 57f5127d2ff2 | 
| permissions | -rw-r--r-- | 
| 53572 | 1 | (* Author: John Harrison | 
| 2 | Author: Robert Himmelmann, TU Muenchen (translation from HOL light) | |
| 3 | *) | |
| 36432 | 4 | |
| 69722 
b5163b2132c5
minor tagging updates in 13 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69683diff
changeset | 5 | section \<open>Fashoda Meet Theorem\<close> | 
| 36432 | 6 | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 7 | theory Fashoda_Theorem | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 8 | imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space | 
| 36432 | 9 | begin | 
| 10 | ||
| 69683 | 11 | subsection \<open>Bijections between intervals\<close> | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 12 | |
| 70136 | 13 | definition\<^marker>\<open>tag important\<close> interval_bij :: "'a \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a::euclidean_space" | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 14 | where "interval_bij = | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 15 | (\<lambda>(a, b) (u, v) x. (\<Sum>i\<in>Basis. (u\<bullet>i + (x\<bullet>i - a\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (v\<bullet>i - u\<bullet>i)) *\<^sub>R i))" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 16 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 17 | lemma interval_bij_affine: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 18 | "interval_bij (a,b) (u,v) = (\<lambda>x. (\<Sum>i\<in>Basis. ((v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (x\<bullet>i)) *\<^sub>R i) + | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 19 | (\<Sum>i\<in>Basis. (u\<bullet>i - (v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (a\<bullet>i)) *\<^sub>R i))" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 20 | by (simp add: interval_bij_def algebra_simps add_divide_distrib diff_divide_distrib flip: sum.distrib scaleR_add_left) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 21 | |
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 22 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 23 | lemma continuous_interval_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 24 | fixes a b :: "'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 25 | shows "continuous (at x) (interval_bij (a, b) (u, v))" | 
| 64267 | 26 | by (auto simp add: divide_inverse interval_bij_def intro!: continuous_sum continuous_intros) | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 27 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 28 | lemma continuous_on_interval_bij: "continuous_on s (interval_bij (a, b) (u, v))" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 29 | by (metis continuous_at_imp_continuous_on continuous_interval_bij) | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 30 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 31 | lemma in_interval_interval_bij: | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 32 | fixes a b u v x :: "'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 33 | assumes "x \<in> cbox a b" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 34 |     and "cbox u v \<noteq> {}"
 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 35 | shows "interval_bij (a, b) (u, v) x \<in> cbox u v" | 
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 36 | proof - | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 37 | have "\<And>i. i \<in> Basis \<Longrightarrow> u \<bullet> i \<le> u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 38 | by (smt (verit) assms box_ne_empty(1) divide_nonneg_nonneg mem_box(2) mult_nonneg_nonneg) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 39 | moreover | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 40 | have "\<And>i. i \<in> Basis \<Longrightarrow> u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 41 | apply (simp add: divide_simps algebra_simps) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 42 | by (smt (verit, best) assms box_ne_empty(1) left_diff_distrib mem_box(2) mult.commute mult_left_mono) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 43 | ultimately show ?thesis | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 44 | by (force simp only: interval_bij_def split_conv mem_box inner_sum_left_Basis) | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 45 | qed | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 46 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 47 | lemma interval_bij_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 48 | "\<forall>(i::'a::euclidean_space)\<in>Basis. a\<bullet>i < b\<bullet>i \<and> u\<bullet>i < v\<bullet>i \<Longrightarrow> | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 49 | interval_bij (a, b) (u, v) (interval_bij (u, v) (a, b) x) = x" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 50 | by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a]) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 51 | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 52 | lemma interval_bij_bij_cart: fixes x::"real^'n" assumes "\<forall>i. a$i < b$i \<and> u$i < v$i" | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 53 | shows "interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 54 | using assms by (intro interval_bij_bij) (auto simp: Basis_vec_def inner_axis) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 55 | |
| 53572 | 56 | |
| 69683 | 57 | subsection \<open>Fashoda meet theorem\<close> | 
| 36432 | 58 | |
| 53572 | 59 | lemma infnorm_2: | 
| 60 | fixes x :: "real^2" | |
| 61945 | 61 | shows "infnorm x = max \<bar>x$1\<bar> \<bar>x$2\<bar>" | 
| 53572 | 62 | unfolding infnorm_cart UNIV_2 by (rule cSup_eq) auto | 
| 36432 | 63 | |
| 53572 | 64 | lemma infnorm_eq_1_2: | 
| 65 | fixes x :: "real^2" | |
| 66 | shows "infnorm x = 1 \<longleftrightarrow> | |
| 61945 | 67 | \<bar>x$1\<bar> \<le> 1 \<and> \<bar>x$2\<bar> \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1)" | 
| 36432 | 68 | unfolding infnorm_2 by auto | 
| 69 | ||
| 53572 | 70 | lemma infnorm_eq_1_imp: | 
| 71 | fixes x :: "real^2" | |
| 72 | assumes "infnorm x = 1" | |
| 61945 | 73 | shows "\<bar>x$1\<bar> \<le> 1" and "\<bar>x$2\<bar> \<le> 1" | 
| 36432 | 74 | using assms unfolding infnorm_eq_1_2 by auto | 
| 75 | ||
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 76 | proposition fashoda_unit: | 
| 53572 | 77 | fixes f g :: "real \<Rightarrow> real^2" | 
| 56188 | 78 |   assumes "f ` {-1 .. 1} \<subseteq> cbox (-1) 1"
 | 
| 79 |     and "g ` {-1 .. 1} \<subseteq> cbox (-1) 1"
 | |
| 80 |     and "continuous_on {-1 .. 1} f"
 | |
| 81 |     and "continuous_on {-1 .. 1} g"
 | |
| 53572 | 82 | and "f (- 1)$1 = - 1" | 
| 83 | and "f 1$1 = 1" "g (- 1) $2 = -1" | |
| 84 | and "g 1 $2 = 1" | |
| 56188 | 85 |   shows "\<exists>s\<in>{-1 .. 1}. \<exists>t\<in>{-1 .. 1}. f s = g t"
 | 
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 86 | proof (rule ccontr) | 
| 53572 | 87 | assume "\<not> ?thesis" | 
| 88 | note as = this[unfolded bex_simps,rule_format] | |
| 63040 | 89 | define sqprojection | 
| 90 | where [abs_def]: "sqprojection z = (inverse (infnorm z)) *\<^sub>R z" for z :: "real^2" | |
| 91 | define negatex :: "real^2 \<Rightarrow> real^2" | |
| 92 | where "negatex x = (vector [-(x$1), x$2])" for x | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 93 | have inf_nega: "\<And>z::real^2. infnorm (negatex z) = infnorm z" | 
| 36432 | 94 | unfolding negatex_def infnorm_2 vector_2 by auto | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 95 | have inf_eq1: "\<And>z. z \<noteq> 0 \<Longrightarrow> infnorm (sqprojection z) = 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 96 | unfolding sqprojection_def infnorm_mul[unfolded scalar_mult_eq_scaleR] | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 97 | by (simp add: real_abs_infnorm infnorm_eq_0) | 
| 53572 | 98 | let ?F = "\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 99 |   have *: "\<And>i. (\<lambda>x::real^2. x $ i) ` cbox (- 1) 1 = {-1..1}"
 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 100 | proof | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 101 |     show "(\<lambda>x::real^2. x $ i) ` cbox (- 1) 1 \<subseteq> {-1..1}" for i
 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 102 | by (auto simp: mem_box_cart) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 103 |     show "{-1..1} \<subseteq> (\<lambda>x::real^2. x $ i) ` cbox (- 1) 1" for i
 | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
71633diff
changeset | 104 | by (clarsimp simp: image_iff mem_box_cart Bex_def) (metis (no_types, opaque_lifting) vec_component) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 105 | qed | 
| 53572 | 106 |   {
 | 
| 107 | fix x | |
| 56188 | 108 | assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` (cbox (- 1) (1::real^2))" | 
| 55675 | 109 | then obtain w :: "real^2" where w: | 
| 56188 | 110 | "w \<in> cbox (- 1) 1" | 
| 55675 | 111 | "x = (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w" | 
| 112 | unfolding image_iff .. | |
| 53572 | 113 | then have "x \<noteq> 0" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 114 | using as[of "w$1" "w$2"] by (auto simp: mem_box_cart atLeastAtMost_iff) | 
| 53572 | 115 | } note x0 = this | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 116 | let ?CB11 = "cbox (- 1) (1::real^2)" | 
| 55675 | 117 | obtain x :: "real^2" where x: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 118 | "x \<in> cbox (- 1) 1" | 
| 55675 | 119 | "(negatex \<circ> sqprojection \<circ> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w)) x = x" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 120 | proof (rule brouwer_weak[of ?CB11 "negatex \<circ> sqprojection \<circ> ?F"]) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 121 | show "compact ?CB11" "convex ?CB11" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 122 | by (rule compact_cbox convex_box)+ | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 123 |     have "box (- 1) (1::real^2) \<noteq> {}"
 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 124 | unfolding interval_eq_empty_cart by auto | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 125 |     then show "interior ?CB11 \<noteq> {}"
 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 126 | by simp | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 127 | have "negatex (x + y) $ i = (negatex x + negatex y) $ i \<and> negatex (c *\<^sub>R x) $ i = (c *\<^sub>R negatex x) $ i" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 128 | for i x y c | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 129 | using exhaust_2 [of i] by (auto simp: negatex_def) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 130 | then have "bounded_linear negatex" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 131 | by (simp add: bounded_linearI' vec_eq_iff) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 132 | then show "continuous_on ?CB11 (negatex \<circ> sqprojection \<circ> ?F)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 133 | unfolding sqprojection_def | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 134 | apply (intro continuous_intros continuous_on_component | use * assms in presburger)+ | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 135 | apply (simp_all add: infnorm_eq_0 x0 linear_continuous_on) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 136 | done | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 137 | have "(negatex \<circ> sqprojection \<circ> ?F) ` ?CB11 \<subseteq> ?CB11" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 138 | proof clarsimp | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 139 | fix y :: "real^2" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 140 | assume y: "y \<in> ?CB11" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 141 | have "?F y \<noteq> 0" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 142 | by (rule x0) (use y in auto) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 143 | then have *: "infnorm (sqprojection (?F y)) = 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 144 | using inf_eq1 by blast | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 145 | show "negatex (sqprojection (f (y $ 1) - g (y $ 2))) \<in> cbox (-1) 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 146 | unfolding mem_box_cart interval_cbox_cart infnorm_2 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 147 | by (smt (verit, del_insts) "*" component_le_infnorm_cart inf_nega neg_one_index o_apply one_index) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 148 | qed | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 149 | then show "negatex \<circ> sqprojection \<circ> ?F \<in> ?CB11 \<rightarrow> ?CB11" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 150 | by blast | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 151 | qed | 
| 53572 | 152 | have "?F x \<noteq> 0" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 153 | by (rule x0) (use x in auto) | 
| 53572 | 154 | then have *: "infnorm (sqprojection (?F x)) = 1" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 155 | using inf_eq1 by blast | 
| 53572 | 156 | have nx: "infnorm x = 1" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 157 | by (metis (no_types, lifting) "*" inf_nega o_apply x(2)) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 158 | have iff: "0 < sqprojection x$i \<longleftrightarrow> 0 < x$i" "sqprojection x$i < 0 \<longleftrightarrow> x$i < 0" if "x \<noteq> 0" for x i | 
| 53572 | 159 | proof - | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 160 | have *: "inverse (infnorm x) > 0" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 161 | by (simp add: infnorm_pos_lt that) | 
| 53572 | 162 | then show "(0 < sqprojection x $ i) = (0 < x $ i)" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 163 | by (simp add: sqprojection_def zero_less_mult_iff) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 164 | show "(sqprojection x $ i < 0) = (x $ i < 0)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 165 | unfolding sqprojection_def | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 166 | by (metis * pos_less_divideR_eq scaleR_zero_right vector_scaleR_component) | 
| 53572 | 167 | qed | 
| 168 |   have x1: "x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}"
 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 169 | using x(1) unfolding mem_box_cart by auto | 
| 53572 | 170 | then have nz: "f (x $ 1) - g (x $ 2) \<noteq> 0" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 171 | using as by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 172 | consider "x $ 1 = -1" | "x $ 1 = 1" | "x $ 2 = -1" | "x $ 2 = 1" | 
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 173 | using nx unfolding infnorm_eq_1_2 by auto | 
| 53572 | 174 | then show False | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 175 | proof cases | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 176 | case 1 | 
| 53572 | 177 | then have *: "f (x $ 1) $ 1 = - 1" | 
| 178 | using assms(5) by auto | |
| 36432 | 179 | have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 180 | by (smt (verit) "1" negatex_def o_apply vector_2(1) x(2)) | 
| 53572 | 181 | moreover | 
| 56188 | 182 | from x1 have "g (x $ 2) \<in> cbox (-1) 1" | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 183 | using assms(2) by blast | 
| 53572 | 184 | ultimately show False | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 185 | unfolding iff[OF nz] vector_component_simps * mem_box_cart | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 186 | using not_le by auto | 
| 53572 | 187 | next | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 188 | case 2 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 189 | then have *: "f (x $ 1) $ 1 = 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 190 | using assms(6) by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 191 | have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 192 | by (smt (verit) "2" negatex_def o_apply vector_2(1) x(2) zero_less_one) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 193 | moreover have "g (x $ 2) \<in> cbox (-1) 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 194 | using assms(2) x1 by blast | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 195 | ultimately show False | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 196 | unfolding iff[OF nz] vector_component_simps * mem_box_cart | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 197 | using not_le by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 198 | next | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 199 | case 3 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 200 | then have *: "g (x $ 2) $ 2 = - 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 201 | using assms(7) by auto | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 202 | moreover have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 203 | by (smt (verit, ccfv_SIG) "3" negatex_def o_apply vector_2(2) x(2)) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 204 | moreover from x1 have "f (x $ 1) \<in> cbox (-1) 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 205 | using assms(1) by blast | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 206 | ultimately show False | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 207 | by (smt (verit, del_insts) iff(2) mem_box_cart(2) neg_one_index nz vector_minus_component) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 208 | next | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 209 | case 4 | 
| 53572 | 210 | then have *: "g (x $ 2) $ 2 = 1" | 
| 211 | using assms(8) by auto | |
| 36432 | 212 | have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 213 | by (smt (verit, best) "4" negatex_def o_apply vector_2(2) x(2)) | 
| 53572 | 214 | moreover | 
| 56188 | 215 | from x1 have "f (x $ 1) \<in> cbox (-1) 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 216 | using assms(1) by blast | 
| 53572 | 217 | ultimately show False | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 218 | by (smt (verit) "*" iff(1) mem_box_cart(2) nz one_index vector_minus_component) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 219 | qed | 
| 53572 | 220 | qed | 
| 36432 | 221 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 222 | proposition fashoda_unit_path: | 
| 53572 | 223 | fixes f g :: "real \<Rightarrow> real^2" | 
| 224 | assumes "path f" | |
| 225 | and "path g" | |
| 56188 | 226 | and "path_image f \<subseteq> cbox (-1) 1" | 
| 227 | and "path_image g \<subseteq> cbox (-1) 1" | |
| 53572 | 228 | and "(pathstart f)$1 = -1" | 
| 229 | and "(pathfinish f)$1 = 1" | |
| 230 | and "(pathstart g)$2 = -1" | |
| 231 | and "(pathfinish g)$2 = 1" | |
| 232 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 233 | proof - | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 234 | note assms = assms[unfolded path_def pathstart_def pathfinish_def path_image_def] | 
| 63040 | 235 | define iscale where [abs_def]: "iscale z = inverse 2 *\<^sub>R (z + 1)" for z :: real | 
| 53572 | 236 |   have isc: "iscale ` {- 1..1} \<subseteq> {0..1}"
 | 
| 237 | unfolding iscale_def by auto | |
| 238 |   have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t"
 | |
| 239 | proof (rule fashoda_unit) | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 240 |     show "(f \<circ> iscale) ` {- 1..1} \<subseteq> cbox (- 1) 1" "(g \<circ> iscale) ` {- 1..1} \<subseteq> cbox (- 1) 1"
 | 
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55675diff
changeset | 241 | using isc and assms(3-4) by (auto simp add: image_comp [symmetric]) | 
| 53572 | 242 |     have *: "continuous_on {- 1..1} iscale"
 | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56273diff
changeset | 243 | unfolding iscale_def by (rule continuous_intros)+ | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 244 |     show "continuous_on {- 1..1} (f \<circ> iscale)"
 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 245 | using "*" assms(1) continuous_on_compose continuous_on_subset isc by blast | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 246 |     show "continuous_on {- 1..1} (g \<circ> iscale)"
 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 247 | by (meson "*" assms(2) continuous_on_compose continuous_on_subset isc) | 
| 53572 | 248 | have *: "(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" | 
| 249 | unfolding vec_eq_iff by auto | |
| 250 | show "(f \<circ> iscale) (- 1) $ 1 = - 1" | |
| 251 | and "(f \<circ> iscale) 1 $ 1 = 1" | |
| 252 | and "(g \<circ> iscale) (- 1) $ 2 = -1" | |
| 253 | and "(g \<circ> iscale) 1 $ 2 = 1" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 254 | unfolding o_def iscale_def using assms by (auto simp add: *) | 
| 53572 | 255 | qed | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 256 |   then obtain s t where st: "s \<in> {- 1..1}" "t \<in> {- 1..1}" "(f \<circ> iscale) s = (g \<circ> iscale) t"
 | 
| 56188 | 257 | by auto | 
| 53572 | 258 | show thesis | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 259 | proof | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 260 | show "f (iscale s) \<in> path_image f" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 261 | by (metis image_eqI image_subset_iff isc path_image_def st(1)) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 262 | show "f (iscale s) \<in> path_image g" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 263 | by (metis comp_def image_eqI image_subset_iff isc path_image_def st(2) st(3)) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 264 | qed | 
| 53572 | 265 | qed | 
| 36432 | 266 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 267 | theorem fashoda: | 
| 53627 | 268 | fixes b :: "real^2" | 
| 269 | assumes "path f" | |
| 270 | and "path g" | |
| 56188 | 271 | and "path_image f \<subseteq> cbox a b" | 
| 272 | and "path_image g \<subseteq> cbox a b" | |
| 53627 | 273 | and "(pathstart f)$1 = a$1" | 
| 274 | and "(pathfinish f)$1 = b$1" | |
| 275 | and "(pathstart g)$2 = a$2" | |
| 276 | and "(pathfinish g)$2 = b$2" | |
| 277 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 278 | proof - | 
| 53627 | 279 | fix P Q S | 
| 280 | presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" and "Q \<Longrightarrow> thesis" and "S \<Longrightarrow> thesis" | |
| 281 | then show thesis | |
| 282 | by auto | |
| 283 | next | |
| 56188 | 284 |   have "cbox a b \<noteq> {}"
 | 
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 285 | using assms(3) using path_image_nonempty[of f] by auto | 
| 53627 | 286 | then have "a \<le> b" | 
| 287 | unfolding interval_eq_empty_cart less_eq_vec_def by (auto simp add: not_less) | |
| 288 | then show "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" | |
| 289 | unfolding less_eq_vec_def forall_2 by auto | |
| 290 | next | |
| 291 | assume as: "a$1 = b$1" | |
| 292 | have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 293 | proof (rule connected_ivt_component_cart) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 294 | show "pathstart g $ 2 \<le> pathstart f $ 2" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 295 | by (metis assms(3) assms(7) mem_box_cart(2) pathstart_in_path_image subset_iff) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 296 | show "pathstart f $ 2 \<le> pathfinish g $ 2" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 297 | by (metis assms(3) assms(8) in_mono mem_box_cart(2) pathstart_in_path_image) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 298 | show "connected (path_image g)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 299 | using assms(2) by blast | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 300 | qed (auto simp: path_defs) | 
| 55675 | 301 | then obtain z :: "real^2" where z: "z \<in> path_image g" "z $ 2 = pathstart f $ 2" .. | 
| 56188 | 302 | have "z \<in> cbox a b" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 303 | using assms(4) z(1) by blast | 
| 53627 | 304 | then have "z = f 0" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 305 | by (smt (verit) as assms(5) exhaust_2 mem_box_cart(2) nle_le pathstart_def vec_eq_iff z(2)) | 
| 53627 | 306 | then show thesis | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 307 | by (metis path_defs(2) pathstart_in_path_image that z(1)) | 
| 53627 | 308 | next | 
| 309 | assume as: "a$2 = b$2" | |
| 310 | have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 311 | proof (rule connected_ivt_component_cart) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 312 | show "pathstart f $ 1 \<le> pathstart g $ 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 313 | using assms(4) assms(5) mem_box_cart(2) by fastforce | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 314 | show "pathstart g $ 1 \<le> pathfinish f $ 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 315 | using assms(4) assms(6) mem_box_cart(2) pathstart_in_path_image by fastforce | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 316 | show "connected (path_image f)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 317 | by (simp add: assms(1) connected_path_image) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 318 | qed (auto simp: path_defs) | 
| 55675 | 319 | then obtain z where z: "z \<in> path_image f" "z $ 1 = pathstart g $ 1" .. | 
| 56188 | 320 | have "z \<in> cbox a b" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 321 | using assms(3) z(1) by auto | 
| 53627 | 322 | then have "z = g 0" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 323 | by (smt (verit) as assms(7) exhaust_2 mem_box_cart(2) pathstart_def vec_eq_iff z(2)) | 
| 53627 | 324 | then show thesis | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 325 | by (metis path_defs(2) pathstart_in_path_image that z(1)) | 
| 53627 | 326 | next | 
| 327 | assume as: "a $ 1 < b $ 1 \<and> a $ 2 < b $ 2" | |
| 56188 | 328 |   have int_nem: "cbox (-1) (1::real^2) \<noteq> {}"
 | 
| 53627 | 329 | unfolding interval_eq_empty_cart by auto | 
| 55675 | 330 | obtain z :: "real^2" where z: | 
| 331 |       "z \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 332 |       "z \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 333 | proof (rule fashoda_unit_path) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 334 | show "path (interval_bij (a, b) (- 1, 1) \<circ> f)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 335 | by (meson assms(1) continuous_on_interval_bij path_continuous_image) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 336 | show "path (interval_bij (a, b) (- 1, 1) \<circ> g)" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 337 | by (meson assms(2) continuous_on_interval_bij path_continuous_image) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 338 | show "path_image (interval_bij (a, b) (- 1, 1) \<circ> f) \<subseteq> cbox (- 1) 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 339 | using assms(3) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 340 | by (simp add: path_image_def in_interval_interval_bij int_nem subset_eq) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 341 | show "path_image (interval_bij (a, b) (- 1, 1) \<circ> g) \<subseteq> cbox (- 1) 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 342 | using assms(4) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 343 | by (simp add: path_image_def in_interval_interval_bij int_nem subset_eq) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 344 | show "pathstart (interval_bij (a, b) (- 1, 1) \<circ> f) $ 1 = - 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 345 | "pathfinish (interval_bij (a, b) (- 1, 1) \<circ> f) $ 1 = 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 346 | "pathstart (interval_bij (a, b) (- 1, 1) \<circ> g) $ 2 = - 1" | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 347 | "pathfinish (interval_bij (a, b) (- 1, 1) \<circ> g) $ 2 = 1" | 
| 56188 | 348 | using assms as | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 349 | by (simp_all add: cart_eq_inner_axis pathstart_def pathfinish_def interval_bij_def) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 350 | (simp_all add: inner_axis) | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 351 | qed (auto simp: path_defs) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 352 |   then obtain zf zg where zf: "zf \<in> {0..1}" "z = (interval_bij (a, b) (- 1, 1) \<circ> f) zf" 
 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 353 |                     and zg: "zg \<in> {0..1}" "z = (interval_bij (a, b) (- 1, 1) \<circ> g) zg"
 | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 354 | by blast | 
| 53627 | 355 | have *: "\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 356 | unfolding forall_2 using as by auto | 
| 53627 | 357 | show thesis | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 358 | proof (rule_tac z="interval_bij (- 1,1) (a,b) z" in that) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 359 | show "interval_bij (- 1, 1) (a, b) z \<in> path_image f" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 360 | using zf by (simp add: interval_bij_bij_cart[OF *] path_image_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 361 | show "interval_bij (- 1, 1) (a, b) z \<in> path_image g" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 362 | using zg by (simp add: interval_bij_bij_cart[OF *] path_image_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 363 | qed | 
| 53627 | 364 | qed | 
| 36432 | 365 | |
| 53627 | 366 | |
| 70136 | 367 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Some slightly ad hoc lemmas I use below\<close> | 
| 36432 | 368 | |
| 53627 | 369 | lemma segment_vertical: | 
| 370 | fixes a :: "real^2" | |
| 371 | assumes "a$1 = b$1" | |
| 372 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 373 | x$1 = a$1 \<and> x$1 = b$1 \<and> (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2)" | |
| 374 | (is "_ = ?R") | |
| 375 | proof - | |
| 36432 | 376 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 377 |   {
 | 
| 378 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 379 | then show ?thesis | |
| 380 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 381 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 382 | by blast | 
| 383 | } | |
| 384 |   {
 | |
| 385 | assume ?L | |
| 55675 | 386 | then obtain u where u: | 
| 387 | "x $ 1 = (1 - u) * a $ 1 + u * b $ 1" | |
| 388 | "x $ 2 = (1 - u) * a $ 2 + u * b $ 2" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 389 | "0 \<le> u" "u \<le> 1" | 
| 55675 | 390 | by blast | 
| 53627 | 391 |     { fix b a
 | 
| 392 | assume "b + u * a > a + u * b" | |
| 393 | then have "(1 - u) * b > (1 - u) * a" | |
| 394 | by (auto simp add:field_simps) | |
| 395 | then have "b \<ge> a" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 396 | using not_less_iff_gr_or_eq u(4) by fastforce | 
| 53627 | 397 | then have "u * a \<le> u * b" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 398 | by (simp add: mult_left_mono u(3)) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 399 | } | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 400 | moreover | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 401 |     { fix a b
 | 
| 53627 | 402 | assume "u * b > u * a" | 
| 403 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 404 | using less_eq_real_def u(3) u(4) by force | 
| 53627 | 405 | then have "a + u * b \<le> b + u * a" | 
| 406 | by (auto simp add: field_simps) | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 407 | } ultimately show ?R | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 408 | by (force simp add: u assms field_simps not_le) | 
| 53627 | 409 | } | 
| 410 |   {
 | |
| 411 | assume ?R | |
| 412 | then show ?L | |
| 413 | proof (cases "x$2 = b$2") | |
| 414 | case True | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 415 | with \<open>?R\<close> show ?L | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 416 | by (rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) (auto simp add: field_simps) | 
| 53627 | 417 | next | 
| 418 | case False | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 419 | with \<open>?R\<close> show ?L | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 420 | by (rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) (auto simp add: field_simps) | 
| 53627 | 421 | qed | 
| 422 | } | |
| 423 | qed | |
| 36432 | 424 | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 425 | text \<open>Essentially duplicate proof that could be done by swapping co-ordinates\<close> | 
| 53627 | 426 | lemma segment_horizontal: | 
| 427 | fixes a :: "real^2" | |
| 428 | assumes "a$2 = b$2" | |
| 429 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 430 | x$2 = a$2 \<and> x$2 = b$2 \<and> (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1)" | |
| 431 | (is "_ = ?R") | |
| 432 | proof - | |
| 36432 | 433 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 434 |   {
 | 
| 435 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 436 | then show ?thesis | |
| 437 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 438 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 439 | by blast | 
| 440 | } | |
| 441 |   {
 | |
| 442 | assume ?L | |
| 55675 | 443 | then obtain u where u: | 
| 444 | "x $ 1 = (1 - u) * a $ 1 + u * b $ 1" | |
| 445 | "x $ 2 = (1 - u) * a $ 2 + u * b $ 2" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 446 | "0 \<le> u" "u \<le> 1" | 
| 55675 | 447 | by blast | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 448 |     { fix b a
 | 
| 53627 | 449 | assume "b + u * a > a + u * b" | 
| 450 | then have "(1 - u) * b > (1 - u) * a" | |
| 53628 | 451 | by (auto simp add: field_simps) | 
| 53627 | 452 | then have "b \<ge> a" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 453 | by (smt (verit, best) mult_left_mono u(4)) | 
| 53627 | 454 | then have "u * a \<le> u * b" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 455 | by (simp add: mult_left_mono u(3)) | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 456 | } | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 457 | moreover | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 458 |     { fix a b
 | 
| 53627 | 459 | assume "u * b > u * a" | 
| 460 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 461 | using less_eq_real_def u(3) u(4) by force | 
| 53627 | 462 | then have "a + u * b \<le> b + u * a" | 
| 463 | by (auto simp add: field_simps) | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 464 | } | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 465 | ultimately show ?R | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 466 | by (force simp add: u assms field_simps not_le intro: ) | 
| 53627 | 467 | } | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 468 |   { assume ?R
 | 
| 53627 | 469 | then show ?L | 
| 470 | proof (cases "x$1 = b$1") | |
| 471 | case True | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 472 | with \<open>?R\<close> show ?L | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 473 | by (rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) (auto simp add: field_simps) | 
| 53627 | 474 | next | 
| 475 | case False | |
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 476 | with \<open>?R\<close> show ?L | 
| 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 477 | by (rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) (auto simp add: field_simps) | 
| 53627 | 478 | qed | 
| 479 | } | |
| 480 | qed | |
| 36432 | 481 | |
| 53627 | 482 | |
| 69683 | 483 | subsection \<open>Useful Fashoda corollary pointed out to me by Tom Hales\<close>(*FIXME change title? *) | 
| 36432 | 484 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 485 | corollary fashoda_interlace: | 
| 53627 | 486 | fixes a :: "real^2" | 
| 487 | assumes "path f" | |
| 488 | and "path g" | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 489 | and paf: "path_image f \<subseteq> cbox a b" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 490 | and pag: "path_image g \<subseteq> cbox a b" | 
| 53627 | 491 | and "(pathstart f)$2 = a$2" | 
| 492 | and "(pathfinish f)$2 = a$2" | |
| 493 | and "(pathstart g)$2 = a$2" | |
| 494 | and "(pathfinish g)$2 = a$2" | |
| 495 | and "(pathstart f)$1 < (pathstart g)$1" | |
| 496 | and "(pathstart g)$1 < (pathfinish f)$1" | |
| 497 | and "(pathfinish f)$1 < (pathfinish g)$1" | |
| 498 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 499 | proof - | 
| 56188 | 500 |   have "cbox a b \<noteq> {}"
 | 
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 501 | using path_image_nonempty[of f] using assms(3) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 502 | note ab=this[unfolded interval_eq_empty_cart not_ex forall_2 not_less] | 
| 56188 | 503 | have "pathstart f \<in> cbox a b" | 
| 504 | and "pathfinish f \<in> cbox a b" | |
| 505 | and "pathstart g \<in> cbox a b" | |
| 506 | and "pathfinish g \<in> cbox a b" | |
| 53628 | 507 | using pathstart_in_path_image pathfinish_in_path_image | 
| 508 | using assms(3-4) | |
| 509 | by auto | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 510 | note startfin = this[unfolded mem_box_cart forall_2] | 
| 36432 | 511 | let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ | 
| 512 | linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ | |
| 513 | linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 514 | linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" | 
| 36432 | 515 | let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ | 
| 516 | linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ | |
| 517 | linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ | |
| 518 | linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" | |
| 519 | let ?a = "vector[a$1 - 2, a$2 - 3]" | |
| 520 | let ?b = "vector[b$1 + 2, b$2 + 3]" | |
| 53627 | 521 | have P1P2: "path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union> | 
| 36432 | 522 | path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union> | 
| 523 | path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union> | |
| 524 | path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" | |
| 525 | "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union> | |
| 526 | path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union> | |
| 527 | path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union> | |
| 528 | path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) | |
| 71633 | 529 | by(auto simp add: path_image_join) | 
| 56188 | 530 | have abab: "cbox a b \<subseteq> cbox ?a ?b" | 
| 531 | unfolding interval_cbox_cart[symmetric] | |
| 71633 | 532 | by (auto simp add:less_eq_vec_def forall_2) | 
| 55675 | 533 | obtain z where | 
| 534 | "z \<in> path_image | |
| 535 | (linepath (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) +++ | |
| 536 | linepath (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f) +++ | |
| 537 | f +++ | |
| 538 | linepath (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) +++ | |
| 539 | linepath (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]))" | |
| 540 | "z \<in> path_image | |
| 541 | (linepath (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g) +++ | |
| 542 | g +++ | |
| 543 | linepath (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1]) +++ | |
| 544 | linepath (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1]) +++ | |
| 545 | linepath (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]))" | |
| 53627 | 546 | apply (rule fashoda[of ?P1 ?P2 ?a ?b]) | 
| 547 | unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 | |
| 548 | proof - | |
| 53628 | 549 | show "path ?P1" and "path ?P2" | 
| 53627 | 550 | using assms by auto | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 551 | show "path_image ?P1 \<subseteq> cbox ?a ?b" "path_image ?P2 \<subseteq> cbox ?a ?b" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 552 | unfolding P1P2 path_image_linepath using startfin paf pag | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 553 | by (auto simp: mem_box_cart segment_horizontal segment_vertical forall_2) | 
| 53627 | 554 | show "a $ 1 - 2 = a $ 1 - 2" | 
| 555 | and "b $ 1 + 2 = b $ 1 + 2" | |
| 556 | and "pathstart g $ 2 - 3 = a $ 2 - 3" | |
| 557 | and "b $ 2 + 3 = b $ 2 + 3" | |
| 558 | by (auto simp add: assms) | |
| 53628 | 559 | qed | 
| 560 | note z=this[unfolded P1P2 path_image_linepath] | |
| 53627 | 561 | show thesis | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 562 | proof (rule that[of z]) | 
| 36432 | 563 | have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or> | 
| 53627 | 564 | z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or> | 
| 565 | z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or> | |
| 566 | z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow> | |
| 567 | (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or> | |
| 568 | z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or> | |
| 569 | z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or> | |
| 570 | z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False" | |
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61165diff
changeset | 571 | proof (simp only: segment_vertical segment_horizontal vector_2, goal_cases) | 
| 61167 | 572 | case prems: 1 | 
| 56188 | 573 | have "pathfinish f \<in> cbox a b" | 
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 574 | using assms(3) pathfinish_in_path_image[of f] by auto | 
| 53628 | 575 | then have "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 576 | unfolding mem_box_cart forall_2 by auto | 
| 53627 | 577 | then have "z$1 \<noteq> pathfinish f$1" | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 578 | using assms(10) assms(11) prems(2) by auto | 
| 56188 | 579 | moreover have "pathstart f \<in> cbox a b" | 
| 53628 | 580 | using assms(3) pathstart_in_path_image[of f] | 
| 581 | by auto | |
| 53627 | 582 | then have "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 583 | unfolding mem_box_cart forall_2 | 
| 53628 | 584 | by auto | 
| 53627 | 585 | then have "z$1 \<noteq> pathstart f$1" | 
| 61167 | 586 | using prems(2) using assms ab | 
| 53628 | 587 | by (auto simp add: field_simps) | 
| 53627 | 588 | ultimately have *: "z$2 = a$2 - 2" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 589 | using prems(1) by auto | 
| 53627 | 590 | have "z$1 \<noteq> pathfinish g$1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 591 | using prems(2) assms ab | 
| 53628 | 592 | by (auto simp add: field_simps *) | 
| 56188 | 593 | moreover have "pathstart g \<in> cbox a b" | 
| 53628 | 594 | using assms(4) pathstart_in_path_image[of g] | 
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 595 | by auto | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 596 | note this[unfolded mem_box_cart forall_2] | 
| 53627 | 597 | then have "z$1 \<noteq> pathstart g$1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 598 | using prems(1) assms ab | 
| 53628 | 599 | by (auto simp add: field_simps *) | 
| 36432 | 600 | ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 601 | using prems(2) unfolding * assms by (auto simp add: field_simps) | 
| 53627 | 602 | then show False | 
| 603 | unfolding * using ab by auto | |
| 604 | qed | |
| 605 | then have "z \<in> path_image f \<or> z \<in> path_image g" | |
| 606 | using z unfolding Un_iff by blast | |
| 56188 | 607 | then have z': "z \<in> cbox a b" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 608 | using assms(3-4) by auto | 
| 53627 | 609 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> | 
| 610 | z = pathstart f \<or> z = pathfinish f" | |
| 53628 | 611 | unfolding vec_eq_iff forall_2 assms | 
| 612 | by auto | |
| 53627 | 613 | with z' show "z \<in> path_image f" | 
| 614 | using z(1) | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 615 | unfolding Un_iff mem_box_cart forall_2 | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 616 | using assms(5) assms(6) segment_horizontal segment_vertical by auto | 
| 53627 | 617 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> | 
| 618 | z = pathstart g \<or> z = pathfinish g" | |
| 53628 | 619 | unfolding vec_eq_iff forall_2 assms | 
| 620 | by auto | |
| 53627 | 621 | with z' show "z \<in> path_image g" | 
| 622 | using z(2) | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 623 | unfolding Un_iff mem_box_cart forall_2 | 
| 78456 
57f5127d2ff2
partly tidied some truly horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
78248diff
changeset | 624 | using assms(7) assms(8) segment_horizontal segment_vertical by auto | 
| 53627 | 625 | qed | 
| 626 | qed | |
| 36432 | 627 | |
| 628 | end |