--- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Mon Apr 26 12:19:57 2010 -0700
+++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Mon Apr 26 15:22:03 2010 -0700
@@ -19,7 +19,7 @@
header {* Results connected with topological dimension. *}
theory Brouwer_Fixpoint
- imports Convex_Euclidean_Space Vec1
+ imports Convex_Euclidean_Space
begin
lemma brouwer_compactness_lemma:
@@ -1430,550 +1430,4 @@
unfolding interval_bij_def split_conv Cart_eq Cart_lambda_beta
apply(rule,insert assms,erule_tac x=i in allE) by auto
-subsection {*Fashoda meet theorem. *}
-
-lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))"
- unfolding infnorm_def UNIV_2 apply(rule Sup_eq) by auto
-
-lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \<longleftrightarrow>
- (abs(x$1) \<le> 1 \<and> abs(x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1))"
- unfolding infnorm_2 by auto
-
-lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \<le> 1" "abs(x$2) \<le> 1"
- using assms unfolding infnorm_eq_1_2 by auto
-
-lemma fashoda_unit: fixes f g::"real \<Rightarrow> real^2"
- assumes "f ` {- 1..1} \<subseteq> {- 1..1}" "g ` {- 1..1} \<subseteq> {- 1..1}"
- "continuous_on {- 1..1} f" "continuous_on {- 1..1} g"
- "f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1"
- shows "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. f s = g t" proof(rule ccontr)
- case goal1 note as = this[unfolded bex_simps,rule_format]
- def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z"
- def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2"
- have lem1:"\<forall>z::real^2. infnorm(negatex z) = infnorm z"
- unfolding negatex_def infnorm_2 vector_2 by auto
- have lem2:"\<forall>z. z\<noteq>0 \<longrightarrow> infnorm(sqprojection z) = 1" unfolding sqprojection_def
- unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm
- unfolding infnorm_eq_0[THEN sym] by auto
- let ?F = "(\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w)"
- have *:"\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
- apply(rule set_ext) unfolding image_iff Bex_def mem_interval apply rule defer
- apply(rule_tac x="vec x" in exI) by auto
- { fix x assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
- then guess w unfolding image_iff .. note w = this
- hence "x \<noteq> 0" using as[of "w$1" "w$2"] unfolding mem_interval by auto} note x0=this
- have 21:"\<And>i::2. i\<noteq>1 \<Longrightarrow> i=2" using UNIV_2 by auto
- have 1:"{- 1<..<1::real^2} \<noteq> {}" unfolding interval_eq_empty by auto
- have 2:"continuous_on {- 1..1} (negatex \<circ> sqprojection \<circ> ?F)" apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+
- prefer 2 apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ unfolding *
- apply(rule assms)+ apply(rule continuous_on_compose,subst sqprojection_def)
- apply(rule continuous_on_mul ) apply(rule continuous_at_imp_continuous_on,rule) apply(rule continuous_at_inv[unfolded o_def])
- apply(rule continuous_at_infnorm) unfolding infnorm_eq_0 defer apply(rule continuous_on_id) apply(rule linear_continuous_on) proof-
- show "bounded_linear negatex" apply(rule bounded_linearI') unfolding Cart_eq proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real
- show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *s x) $ i = (c *s negatex x) $ i"
- apply-apply(case_tac[!] "i\<noteq>1") prefer 3 apply(drule_tac[1-2] 21)
- unfolding negatex_def by(auto simp add:vector_2 ) qed qed(insert x0, auto)
- have 3:"(negatex \<circ> sqprojection \<circ> ?F) ` {- 1..1} \<subseteq> {- 1..1}" unfolding subset_eq apply rule proof-
- case goal1 then guess y unfolding image_iff .. note y=this have "?F y \<noteq> 0" apply(rule x0) using y(1) by auto
- hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format])
- have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format])
- thus "x\<in>{- 1..1}" unfolding mem_interval infnorm_2 apply- apply rule
- proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed
- guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \<circ> sqprojection \<circ> ?F"])
- apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval
- apply(rule 1 2 3)+ . note x=this
- have "?F x \<noteq> 0" apply(rule x0) using x(1) by auto
- hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format])
- have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format])
- have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)" "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)"
- apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\<noteq>0"
- have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto
- thus "(0 < sqprojection x $ i) = (0 < x $ i)" "(sqprojection x $ i < 0) = (x $ i < 0)"
- unfolding sqprojection_def vector_component_simps Cart_nth.scaleR real_scaleR_def
- unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed
- note lem3 = this[rule_format]
- have x1:"x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}" using x(1) unfolding mem_interval by auto
- hence nz:"f (x $ 1) - g (x $ 2) \<noteq> 0" unfolding right_minus_eq apply-apply(rule as) by auto
- have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto
- thus False proof- fix P Q R S
- presume "P \<or> Q \<or> R \<or> S" "P\<Longrightarrow>False" "Q\<Longrightarrow>False" "R\<Longrightarrow>False" "S\<Longrightarrow>False" thus False by auto
- next assume as:"x$1 = 1"
- hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto
- have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0"
- using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]]
- unfolding as negatex_def vector_2 by auto moreover
- from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
- ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
- apply(erule_tac x=1 in allE) by auto
- next assume as:"x$1 = -1"
- hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto
- have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0"
- using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]]
- unfolding as negatex_def vector_2 by auto moreover
- from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
- ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
- apply(erule_tac x=1 in allE) by auto
- next assume as:"x$2 = 1"
- hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto
- have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0"
- using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]]
- unfolding as negatex_def vector_2 by auto moreover
- from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
- ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
- apply(erule_tac x=2 in allE) by auto
- next assume as:"x$2 = -1"
- hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto
- have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0"
- using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]]
- unfolding as negatex_def vector_2 by auto moreover
- from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
- ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
- apply(erule_tac x=2 in allE) by auto qed(auto) qed
-
-lemma fashoda_unit_path: fixes f ::"real \<Rightarrow> real^2" and g ::"real \<Rightarrow> real^2"
- assumes "path f" "path g" "path_image f \<subseteq> {- 1..1}" "path_image g \<subseteq> {- 1..1}"
- "(pathstart f)$1 = -1" "(pathfinish f)$1 = 1" "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1"
- obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-
- note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def]
- def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)"
- have isc:"iscale ` {- 1..1} \<subseteq> {0..1}" unfolding iscale_def by(auto)
- have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t" proof(rule fashoda_unit)
- show "(f \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}" "(g \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}"
- using isc and assms(3-4) unfolding image_compose by auto
- have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+
- show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
- apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc])
- by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding Cart_eq by auto
- show "(f \<circ> iscale) (- 1) $ 1 = - 1" "(f \<circ> iscale) 1 $ 1 = 1" "(g \<circ> iscale) (- 1) $ 2 = -1" "(g \<circ> iscale) 1 $ 2 = 1"
- unfolding o_def iscale_def using assms by(auto simp add:*) qed
- then guess s .. from this(2) guess t .. note st=this
- show thesis apply(rule_tac z="f (iscale s)" in that)
- using st `s\<in>{- 1..1}` unfolding o_def path_image_def image_iff apply-
- apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI)
- using isc[unfolded subset_eq, rule_format] by auto qed
-
-lemma fashoda: fixes b::"real^2"
- assumes "path f" "path g" "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
- "(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1"
- "(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2"
- obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-
- fix P Q S presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" "Q \<Longrightarrow> thesis" "S \<Longrightarrow> thesis" thus thesis by auto
-next have "{a..b} \<noteq> {}" using assms(3) using path_image_nonempty by auto
- hence "a \<le> b" unfolding interval_eq_empty vector_le_def by(auto simp add: not_less)
- thus "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" unfolding vector_le_def forall_2 by auto
-next assume as:"a$1 = b$1" have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component)
- apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)
- unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"]
- unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this
- have "z \<in> {a..b}" using z(1) assms(4) unfolding path_image_def by blast
- hence "z = f 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def
- using assms(3)[unfolded path_image_def subset_eq mem_interval,rule_format,of "f 0" 1]
- unfolding mem_interval apply(erule_tac x=1 in allE) using as by auto
- thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto
-next assume as:"a$2 = b$2" have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component)
- apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)
- unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"]
- unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this
- have "z \<in> {a..b}" using z(1) assms(3) unfolding path_image_def by blast
- hence "z = g 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def
- using assms(4)[unfolded path_image_def subset_eq mem_interval,rule_format,of "g 0" 2]
- unfolding mem_interval apply(erule_tac x=2 in allE) using as by auto
- thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto
-next assume as:"a $ 1 < b $ 1 \<and> a $ 2 < b $ 2"
- have int_nem:"{- 1..1::real^2} \<noteq> {}" unfolding interval_eq_empty by auto
- guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"])
- unfolding path_def path_image_def pathstart_def pathfinish_def
- apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+
- unfolding subset_eq apply(rule_tac[1-2] ballI)
- proof- fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
- then guess y unfolding image_iff .. note y=this
- show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
- using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto
- next fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
- then guess y unfolding image_iff .. note y=this
- show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
- using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto
- next show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1"
- "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1"
- "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1"
- "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" unfolding interval_bij_def Cart_lambda_beta vector_component_simps o_def split_conv
- unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this
- from z(1) guess zf unfolding image_iff .. note zf=this
- from z(2) guess zg unfolding image_iff .. note zg=this
- have *:"\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" unfolding forall_2 using as by auto
- show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that)
- apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij[OF *] path_image_def
- using zf(1) zg(1) by auto qed
-
-subsection {*Some slightly ad hoc lemmas I use below*}
-
-lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1"
- shows "x \<in> closed_segment a b \<longleftrightarrow> (x$1 = a$1 \<and> x$1 = b$1 \<and>
- (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2))" (is "_ = ?R")
-proof-
- let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"
- { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
- unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }
- { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
- { fix b a assume "b + u * a > a + u * b"
- hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)
- hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto
- hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)])
- using u(3-4) by(auto simp add:field_simps) } note * = this
- { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
- apply(drule mult_less_imp_less_left) using u by auto
- hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this
- thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }
- { assume ?R thus ?L proof(cases "x$2 = b$2")
- case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True
- using `?R` by(auto simp add:field_simps)
- next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R`
- by(auto simp add:field_simps)
- qed } qed
-
-lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2"
- shows "x \<in> closed_segment a b \<longleftrightarrow> (x$2 = a$2 \<and> x$2 = b$2 \<and>
- (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1))" (is "_ = ?R")
-proof-
- let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"
- { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
- unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }
- { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
- { fix b a assume "b + u * a > a + u * b"
- hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)
- hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto
- hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)])
- using u(3-4) by(auto simp add:field_simps) } note * = this
- { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
- apply(drule mult_less_imp_less_left) using u by auto
- hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this
- thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }
- { assume ?R thus ?L proof(cases "x$1 = b$1")
- case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True
- using `?R` by(auto simp add:field_simps)
- next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R`
- by(auto simp add:field_simps)
- qed } qed
-
-subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *}
-
-lemma fashoda_interlace: fixes a::"real^2"
- assumes "path f" "path g"
- "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
- "(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2"
- "(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2"
- "(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1"
- "(pathfinish f)$1 < (pathfinish g)$1"
- obtains z where "z \<in> path_image f" "z \<in> path_image g"
-proof-
- have "{a..b} \<noteq> {}" using path_image_nonempty using assms(3) by auto
- note ab=this[unfolded interval_eq_empty not_ex forall_2 not_less]
- have "pathstart f \<in> {a..b}" "pathfinish f \<in> {a..b}" "pathstart g \<in> {a..b}" "pathfinish g \<in> {a..b}"
- using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto
- note startfin = this[unfolded mem_interval forall_2]
- let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++
- linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++
- linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++
- linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])"
- let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++
- linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++
- linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++
- linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])"
- let ?a = "vector[a$1 - 2, a$2 - 3]"
- let ?b = "vector[b$1 + 2, b$2 + 3]"
- have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union>
- path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union>
- path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union>
- path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))"
- "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union>
- path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union>
- path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union>
- path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2)
- by(auto simp add: path_image_join path_linepath)
- have abab: "{a..b} \<subseteq> {?a..?b}" by(auto simp add:vector_le_def forall_2 vector_2)
- guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b])
- unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof-
- show "path ?P1" "path ?P2" using assms by auto
- have "path_image ?P1 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3
- apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])
- unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(3)
- using assms(9-) unfolding assms by(auto simp add:field_simps)
- thus "path_image ?P1 \<subseteq> {?a .. ?b}" .
- have "path_image ?P2 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2
- apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])
- unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(4)
- using assms(9-) unfolding assms by(auto simp add:field_simps)
- thus "path_image ?P2 \<subseteq> {?a .. ?b}" .
- show "a $ 1 - 2 = a $ 1 - 2" "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3" "b $ 2 + 3 = b $ 2 + 3"
- by(auto simp add: assms)
- qed note z=this[unfolded P1P2 path_image_linepath]
- show thesis apply(rule that[of z]) proof-
- have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or>
- z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or>
- z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or>
- z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow>
- (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or>
- z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or>
- z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or>
- z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False"
- apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this
- have "pathfinish f \<in> {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto
- hence "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" unfolding mem_interval forall_2 by auto
- hence "z$1 \<noteq> pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps)
- moreover have "pathstart f \<in> {a..b}" using assms(3) pathstart_in_path_image[of f] by auto
- hence "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" unfolding mem_interval forall_2 by auto
- hence "z$1 \<noteq> pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps)
- ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto
- have "z$1 \<noteq> pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *)
- moreover have "pathstart g \<in> {a..b}" using assms(4) pathstart_in_path_image[of g] by auto
- note this[unfolded mem_interval forall_2]
- hence "z$1 \<noteq> pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *)
- ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1"
- using as(2) unfolding * assms by(auto simp add:field_simps)
- thus False unfolding * using ab by auto
- qed hence "z \<in> path_image f \<or> z \<in> path_image g" using z unfolding Un_iff by blast
- hence z':"z\<in>{a..b}" using assms(3-4) by auto
- have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> (z = pathstart f \<or> z = pathfinish f)"
- unfolding Cart_eq forall_2 assms by auto
- with z' show "z\<in>path_image f" using z(1) unfolding Un_iff mem_interval forall_2 apply-
- apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto
- have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> (z = pathstart g \<or> z = pathfinish g)"
- unfolding Cart_eq forall_2 assms by auto
- with z' show "z\<in>path_image g" using z(2) unfolding Un_iff mem_interval forall_2 apply-
- apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto
- qed qed
-
-(** The Following still needs to be translated. Maybe I will do that later.
-
-(* ------------------------------------------------------------------------- *)
-(* Complement in dimension N >= 2 of set homeomorphic to any interval in *)
-(* any dimension is (path-)connected. This naively generalizes the argument *)
-(* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *)
-(* fixed point theorem", American Mathematical Monthly 1984. *)
-(* ------------------------------------------------------------------------- *)
-
-let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove
- (`!p:real^M->real^N a b.
- ~(interval[a,b] = {}) /\
- p continuous_on interval[a,b] /\
- (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y)
- ==> ?f. f continuous_on (:real^N) /\
- IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\
- (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`,
- REPEAT STRIP_TAC THEN
- FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
- DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN
- SUBGOAL_THEN `(q:real^N->real^M) continuous_on
- (IMAGE p (interval[a:real^M,b]))`
- ASSUME_TAC THENL
- [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL];
- ALL_TAC] THEN
- MP_TAC(ISPECL [`q:real^N->real^M`;
- `IMAGE (p:real^M->real^N)
- (interval[a,b])`;
- `a:real^M`; `b:real^M`]
- TIETZE_CLOSED_INTERVAL) THEN
- ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE;
- COMPACT_IMP_CLOSED] THEN
- ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
- DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN
- EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN
- REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN
- CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
- MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
- FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
- CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
-
-let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove
- (`!s:real^N->bool a b:real^M.
- s homeomorphic (interval[a,b])
- ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`,
- REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN
- REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
- MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN
- DISCH_TAC THEN
- SUBGOAL_THEN
- `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\
- (p:real^M->real^N) x = p y ==> x = y`
- ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
- FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN
- DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN
- ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
- ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV;
- NOT_BOUNDED_UNIV] THEN
- ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN
- X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN
- SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
- SUBGOAL_THEN `bounded((path_component s c) UNION
- (IMAGE (p:real^M->real^N) (interval[a,b])))`
- MP_TAC THENL
- [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED;
- COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
- ALL_TAC] THEN
- DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN
- REWRITE_TAC[UNION_SUBSET] THEN
- DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
- MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`]
- RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN
- ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN
- DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN
- DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
- (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
- REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN
- ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN
- SUBGOAL_THEN
- `(q:real^N->real^N) continuous_on
- (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))`
- MP_TAC THENL
- [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN
- REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN
- REPEAT CONJ_TAC THENL
- [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN
- ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;
- COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
- ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV];
- ALL_TAC] THEN
- X_GEN_TAC `z:real^N` THEN
- REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN
- STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
- MP_TAC(ISPECL
- [`path_component s (z:real^N)`; `path_component s (c:real^N)`]
- OPEN_INTER_CLOSURE_EQ_EMPTY) THEN
- ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL
- [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN
- ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;
- COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
- REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN
- DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN
- GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN
- REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]];
- ALL_TAC] THEN
- SUBGOAL_THEN
- `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) =
- (:real^N)`
- SUBST1_TAC THENL
- [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN
- REWRITE_TAC[CLOSURE_SUBSET];
- DISCH_TAC] THEN
- MP_TAC(ISPECL
- [`(\x. &2 % c - x) o
- (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`;
- `cball(c:real^N,B)`]
- BROUWER) THEN
- REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN
- ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN
- SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL
- [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN
- REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN
- ASM SET_TAC[PATH_COMPONENT_REFL_EQ];
- ALL_TAC] THEN
- REPEAT CONJ_TAC THENL
- [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
- SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN
- MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL
- [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN
- MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN
- MATCH_MP_TAC CONTINUOUS_ON_MUL THEN
- SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN
- REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN
- MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN
- MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN
- ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN
- SUBGOAL_THEN
- `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)`
- SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN
- MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
- ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST;
- CONTINUOUS_ON_LIFT_NORM];
- REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN
- X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
- REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN
- REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
- ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN
- ASM_REAL_ARITH_TAC;
- REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN
- REWRITE_TAC[IN_CBALL; o_THM; dist] THEN
- X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
- REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN
- ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL
- [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN
- REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
- ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN
- ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN
- UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN
- REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB];
- EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN
- REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN
- ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN
- SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL
- [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN
- ASM_REWRITE_TAC[] THEN
- MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN
- ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);;
-
-let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove
- (`!s:real^N->bool a b:real^M.
- 2 <= dimindex(:N) /\ s homeomorphic interval[a,b]
- ==> path_connected((:real^N) DIFF s)`,
- REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN
- FIRST_ASSUM(MP_TAC o MATCH_MP
- UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN
- ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN
- ABBREV_TAC `t = (:real^N) DIFF s` THEN
- DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN
- STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN
- REWRITE_TAC[COMPACT_INTERVAL] THEN
- DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
- REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN
- X_GEN_TAC `B:real` THEN STRIP_TAC THEN
- SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\
- (?v:real^N. v IN path_component t y /\ B < norm(v))`
- STRIP_ASSUME_TAC THENL
- [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN
- MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN
- CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
- MATCH_MP_TAC PATH_COMPONENT_SYM THEN
- MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN
- CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
- MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN
- EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL
- [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE
- `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN
- ASM_REWRITE_TAC[SUBSET; IN_CBALL_0];
- MP_TAC(ISPEC `cball(vec 0:real^N,B)`
- PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN
- ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN
- REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN
- DISCH_THEN MATCH_MP_TAC THEN
- ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);;
-
-(* ------------------------------------------------------------------------- *)
-(* In particular, apply all these to the special case of an arc. *)
-(* ------------------------------------------------------------------------- *)
-
-let RETRACTION_ARC = prove
- (`!p. arc p
- ==> ?f. f continuous_on (:real^N) /\
- IMAGE f (:real^N) SUBSET path_image p /\
- (!x. x IN path_image p ==> f x = x)`,
- REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN
- MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN
- ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);;
-
-let PATH_CONNECTED_ARC_COMPLEMENT = prove
- (`!p. 2 <= dimindex(:N) /\ arc p
- ==> path_connected((:real^N) DIFF path_image p)`,
- REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN
- MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`]
- PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN
- ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN
- ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN
- MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN
- EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);;
-
-let CONNECTED_ARC_COMPLEMENT = prove
- (`!p. 2 <= dimindex(:N) /\ arc p
- ==> connected((:real^N) DIFF path_image p)`,
- SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *)
-
end
--- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Apr 26 12:19:57 2010 -0700
+++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Apr 26 15:22:03 2010 -0700
@@ -6,7 +6,7 @@
header {* Multivariate calculus in Euclidean space. *}
theory Derivative
-imports Brouwer_Fixpoint RealVector
+imports Brouwer_Fixpoint Vec1 RealVector
begin
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Multivariate_Analysis/Fashoda.thy Mon Apr 26 15:22:03 2010 -0700
@@ -0,0 +1,556 @@
+(* Author: John Harrison
+ Translation from HOL light: Robert Himmelmann, TU Muenchen *)
+
+header {* Fashoda meet theorem. *}
+
+theory Fashoda
+imports Brouwer_Fixpoint Vec1
+begin
+
+subsection {*Fashoda meet theorem. *}
+
+lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))"
+ unfolding infnorm_def UNIV_2 apply(rule Sup_eq) by auto
+
+lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \<longleftrightarrow>
+ (abs(x$1) \<le> 1 \<and> abs(x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1))"
+ unfolding infnorm_2 by auto
+
+lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \<le> 1" "abs(x$2) \<le> 1"
+ using assms unfolding infnorm_eq_1_2 by auto
+
+lemma fashoda_unit: fixes f g::"real \<Rightarrow> real^2"
+ assumes "f ` {- 1..1} \<subseteq> {- 1..1}" "g ` {- 1..1} \<subseteq> {- 1..1}"
+ "continuous_on {- 1..1} f" "continuous_on {- 1..1} g"
+ "f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1"
+ shows "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. f s = g t" proof(rule ccontr)
+ case goal1 note as = this[unfolded bex_simps,rule_format]
+ def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z"
+ def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2"
+ have lem1:"\<forall>z::real^2. infnorm(negatex z) = infnorm z"
+ unfolding negatex_def infnorm_2 vector_2 by auto
+ have lem2:"\<forall>z. z\<noteq>0 \<longrightarrow> infnorm(sqprojection z) = 1" unfolding sqprojection_def
+ unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm
+ unfolding infnorm_eq_0[THEN sym] by auto
+ let ?F = "(\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w)"
+ have *:"\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
+ apply(rule set_ext) unfolding image_iff Bex_def mem_interval apply rule defer
+ apply(rule_tac x="vec x" in exI) by auto
+ { fix x assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
+ then guess w unfolding image_iff .. note w = this
+ hence "x \<noteq> 0" using as[of "w$1" "w$2"] unfolding mem_interval by auto} note x0=this
+ have 21:"\<And>i::2. i\<noteq>1 \<Longrightarrow> i=2" using UNIV_2 by auto
+ have 1:"{- 1<..<1::real^2} \<noteq> {}" unfolding interval_eq_empty by auto
+ have 2:"continuous_on {- 1..1} (negatex \<circ> sqprojection \<circ> ?F)" apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+
+ prefer 2 apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ unfolding *
+ apply(rule assms)+ apply(rule continuous_on_compose,subst sqprojection_def)
+ apply(rule continuous_on_mul ) apply(rule continuous_at_imp_continuous_on,rule) apply(rule continuous_at_inv[unfolded o_def])
+ apply(rule continuous_at_infnorm) unfolding infnorm_eq_0 defer apply(rule continuous_on_id) apply(rule linear_continuous_on) proof-
+ show "bounded_linear negatex" apply(rule bounded_linearI') unfolding Cart_eq proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real
+ show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *s x) $ i = (c *s negatex x) $ i"
+ apply-apply(case_tac[!] "i\<noteq>1") prefer 3 apply(drule_tac[1-2] 21)
+ unfolding negatex_def by(auto simp add:vector_2 ) qed qed(insert x0, auto)
+ have 3:"(negatex \<circ> sqprojection \<circ> ?F) ` {- 1..1} \<subseteq> {- 1..1}" unfolding subset_eq apply rule proof-
+ case goal1 then guess y unfolding image_iff .. note y=this have "?F y \<noteq> 0" apply(rule x0) using y(1) by auto
+ hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format])
+ have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format])
+ thus "x\<in>{- 1..1}" unfolding mem_interval infnorm_2 apply- apply rule
+ proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed
+ guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \<circ> sqprojection \<circ> ?F"])
+ apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval
+ apply(rule 1 2 3)+ . note x=this
+ have "?F x \<noteq> 0" apply(rule x0) using x(1) by auto
+ hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format])
+ have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format])
+ have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)" "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)"
+ apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\<noteq>0"
+ have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto
+ thus "(0 < sqprojection x $ i) = (0 < x $ i)" "(sqprojection x $ i < 0) = (x $ i < 0)"
+ unfolding sqprojection_def vector_component_simps Cart_nth.scaleR real_scaleR_def
+ unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed
+ note lem3 = this[rule_format]
+ have x1:"x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}" using x(1) unfolding mem_interval by auto
+ hence nz:"f (x $ 1) - g (x $ 2) \<noteq> 0" unfolding right_minus_eq apply-apply(rule as) by auto
+ have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto
+ thus False proof- fix P Q R S
+ presume "P \<or> Q \<or> R \<or> S" "P\<Longrightarrow>False" "Q\<Longrightarrow>False" "R\<Longrightarrow>False" "S\<Longrightarrow>False" thus False by auto
+ next assume as:"x$1 = 1"
+ hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto
+ have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0"
+ using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]]
+ unfolding as negatex_def vector_2 by auto moreover
+ from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
+ ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
+ apply(erule_tac x=1 in allE) by auto
+ next assume as:"x$1 = -1"
+ hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto
+ have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0"
+ using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]]
+ unfolding as negatex_def vector_2 by auto moreover
+ from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
+ ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
+ apply(erule_tac x=1 in allE) by auto
+ next assume as:"x$2 = 1"
+ hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto
+ have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0"
+ using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]]
+ unfolding as negatex_def vector_2 by auto moreover
+ from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
+ ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
+ apply(erule_tac x=2 in allE) by auto
+ next assume as:"x$2 = -1"
+ hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto
+ have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0"
+ using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]]
+ unfolding as negatex_def vector_2 by auto moreover
+ from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
+ ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval
+ apply(erule_tac x=2 in allE) by auto qed(auto) qed
+
+lemma fashoda_unit_path: fixes f ::"real \<Rightarrow> real^2" and g ::"real \<Rightarrow> real^2"
+ assumes "path f" "path g" "path_image f \<subseteq> {- 1..1}" "path_image g \<subseteq> {- 1..1}"
+ "(pathstart f)$1 = -1" "(pathfinish f)$1 = 1" "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1"
+ obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-
+ note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def]
+ def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)"
+ have isc:"iscale ` {- 1..1} \<subseteq> {0..1}" unfolding iscale_def by(auto)
+ have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t" proof(rule fashoda_unit)
+ show "(f \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}" "(g \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}"
+ using isc and assms(3-4) unfolding image_compose by auto
+ have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+
+ show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
+ apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc])
+ by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding Cart_eq by auto
+ show "(f \<circ> iscale) (- 1) $ 1 = - 1" "(f \<circ> iscale) 1 $ 1 = 1" "(g \<circ> iscale) (- 1) $ 2 = -1" "(g \<circ> iscale) 1 $ 2 = 1"
+ unfolding o_def iscale_def using assms by(auto simp add:*) qed
+ then guess s .. from this(2) guess t .. note st=this
+ show thesis apply(rule_tac z="f (iscale s)" in that)
+ using st `s\<in>{- 1..1}` unfolding o_def path_image_def image_iff apply-
+ apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI)
+ using isc[unfolded subset_eq, rule_format] by auto qed
+
+lemma fashoda: fixes b::"real^2"
+ assumes "path f" "path g" "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
+ "(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1"
+ "(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2"
+ obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-
+ fix P Q S presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" "Q \<Longrightarrow> thesis" "S \<Longrightarrow> thesis" thus thesis by auto
+next have "{a..b} \<noteq> {}" using assms(3) using path_image_nonempty by auto
+ hence "a \<le> b" unfolding interval_eq_empty vector_le_def by(auto simp add: not_less)
+ thus "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" unfolding vector_le_def forall_2 by auto
+next assume as:"a$1 = b$1" have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component)
+ apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)
+ unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"]
+ unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this
+ have "z \<in> {a..b}" using z(1) assms(4) unfolding path_image_def by blast
+ hence "z = f 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def
+ using assms(3)[unfolded path_image_def subset_eq mem_interval,rule_format,of "f 0" 1]
+ unfolding mem_interval apply(erule_tac x=1 in allE) using as by auto
+ thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto
+next assume as:"a$2 = b$2" have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component)
+ apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)
+ unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"]
+ unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this
+ have "z \<in> {a..b}" using z(1) assms(3) unfolding path_image_def by blast
+ hence "z = g 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def
+ using assms(4)[unfolded path_image_def subset_eq mem_interval,rule_format,of "g 0" 2]
+ unfolding mem_interval apply(erule_tac x=2 in allE) using as by auto
+ thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto
+next assume as:"a $ 1 < b $ 1 \<and> a $ 2 < b $ 2"
+ have int_nem:"{- 1..1::real^2} \<noteq> {}" unfolding interval_eq_empty by auto
+ guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"])
+ unfolding path_def path_image_def pathstart_def pathfinish_def
+ apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+
+ unfolding subset_eq apply(rule_tac[1-2] ballI)
+ proof- fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
+ then guess y unfolding image_iff .. note y=this
+ show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
+ using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto
+ next fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
+ then guess y unfolding image_iff .. note y=this
+ show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
+ using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto
+ next show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1"
+ "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1"
+ "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1"
+ "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" unfolding interval_bij_def Cart_lambda_beta vector_component_simps o_def split_conv
+ unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this
+ from z(1) guess zf unfolding image_iff .. note zf=this
+ from z(2) guess zg unfolding image_iff .. note zg=this
+ have *:"\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" unfolding forall_2 using as by auto
+ show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that)
+ apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij[OF *] path_image_def
+ using zf(1) zg(1) by auto qed
+
+subsection {*Some slightly ad hoc lemmas I use below*}
+
+lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1"
+ shows "x \<in> closed_segment a b \<longleftrightarrow> (x$1 = a$1 \<and> x$1 = b$1 \<and>
+ (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2))" (is "_ = ?R")
+proof-
+ let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"
+ { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
+ unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }
+ { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
+ { fix b a assume "b + u * a > a + u * b"
+ hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)
+ hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto
+ hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)])
+ using u(3-4) by(auto simp add:field_simps) } note * = this
+ { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
+ apply(drule mult_less_imp_less_left) using u by auto
+ hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this
+ thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }
+ { assume ?R thus ?L proof(cases "x$2 = b$2")
+ case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True
+ using `?R` by(auto simp add:field_simps)
+ next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R`
+ by(auto simp add:field_simps)
+ qed } qed
+
+lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2"
+ shows "x \<in> closed_segment a b \<longleftrightarrow> (x$2 = a$2 \<and> x$2 = b$2 \<and>
+ (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1))" (is "_ = ?R")
+proof-
+ let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"
+ { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
+ unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }
+ { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
+ { fix b a assume "b + u * a > a + u * b"
+ hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)
+ hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto
+ hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)])
+ using u(3-4) by(auto simp add:field_simps) } note * = this
+ { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
+ apply(drule mult_less_imp_less_left) using u by auto
+ hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this
+ thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }
+ { assume ?R thus ?L proof(cases "x$1 = b$1")
+ case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True
+ using `?R` by(auto simp add:field_simps)
+ next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R`
+ by(auto simp add:field_simps)
+ qed } qed
+
+subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *}
+
+lemma fashoda_interlace: fixes a::"real^2"
+ assumes "path f" "path g"
+ "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
+ "(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2"
+ "(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2"
+ "(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1"
+ "(pathfinish f)$1 < (pathfinish g)$1"
+ obtains z where "z \<in> path_image f" "z \<in> path_image g"
+proof-
+ have "{a..b} \<noteq> {}" using path_image_nonempty using assms(3) by auto
+ note ab=this[unfolded interval_eq_empty not_ex forall_2 not_less]
+ have "pathstart f \<in> {a..b}" "pathfinish f \<in> {a..b}" "pathstart g \<in> {a..b}" "pathfinish g \<in> {a..b}"
+ using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto
+ note startfin = this[unfolded mem_interval forall_2]
+ let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++
+ linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++
+ linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++
+ linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])"
+ let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++
+ linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++
+ linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++
+ linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])"
+ let ?a = "vector[a$1 - 2, a$2 - 3]"
+ let ?b = "vector[b$1 + 2, b$2 + 3]"
+ have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union>
+ path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union>
+ path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union>
+ path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))"
+ "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union>
+ path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union>
+ path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union>
+ path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2)
+ by(auto simp add: path_image_join path_linepath)
+ have abab: "{a..b} \<subseteq> {?a..?b}" by(auto simp add:vector_le_def forall_2 vector_2)
+ guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b])
+ unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof-
+ show "path ?P1" "path ?P2" using assms by auto
+ have "path_image ?P1 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3
+ apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])
+ unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(3)
+ using assms(9-) unfolding assms by(auto simp add:field_simps)
+ thus "path_image ?P1 \<subseteq> {?a .. ?b}" .
+ have "path_image ?P2 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2
+ apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])
+ unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(4)
+ using assms(9-) unfolding assms by(auto simp add:field_simps)
+ thus "path_image ?P2 \<subseteq> {?a .. ?b}" .
+ show "a $ 1 - 2 = a $ 1 - 2" "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3" "b $ 2 + 3 = b $ 2 + 3"
+ by(auto simp add: assms)
+ qed note z=this[unfolded P1P2 path_image_linepath]
+ show thesis apply(rule that[of z]) proof-
+ have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or>
+ z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or>
+ z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or>
+ z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow>
+ (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or>
+ z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or>
+ z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or>
+ z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False"
+ apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this
+ have "pathfinish f \<in> {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto
+ hence "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" unfolding mem_interval forall_2 by auto
+ hence "z$1 \<noteq> pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps)
+ moreover have "pathstart f \<in> {a..b}" using assms(3) pathstart_in_path_image[of f] by auto
+ hence "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" unfolding mem_interval forall_2 by auto
+ hence "z$1 \<noteq> pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps)
+ ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto
+ have "z$1 \<noteq> pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *)
+ moreover have "pathstart g \<in> {a..b}" using assms(4) pathstart_in_path_image[of g] by auto
+ note this[unfolded mem_interval forall_2]
+ hence "z$1 \<noteq> pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *)
+ ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1"
+ using as(2) unfolding * assms by(auto simp add:field_simps)
+ thus False unfolding * using ab by auto
+ qed hence "z \<in> path_image f \<or> z \<in> path_image g" using z unfolding Un_iff by blast
+ hence z':"z\<in>{a..b}" using assms(3-4) by auto
+ have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> (z = pathstart f \<or> z = pathfinish f)"
+ unfolding Cart_eq forall_2 assms by auto
+ with z' show "z\<in>path_image f" using z(1) unfolding Un_iff mem_interval forall_2 apply-
+ apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto
+ have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> (z = pathstart g \<or> z = pathfinish g)"
+ unfolding Cart_eq forall_2 assms by auto
+ with z' show "z\<in>path_image g" using z(2) unfolding Un_iff mem_interval forall_2 apply-
+ apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto
+ qed qed
+
+(** The Following still needs to be translated. Maybe I will do that later.
+
+(* ------------------------------------------------------------------------- *)
+(* Complement in dimension N >= 2 of set homeomorphic to any interval in *)
+(* any dimension is (path-)connected. This naively generalizes the argument *)
+(* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *)
+(* fixed point theorem", American Mathematical Monthly 1984. *)
+(* ------------------------------------------------------------------------- *)
+
+let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove
+ (`!p:real^M->real^N a b.
+ ~(interval[a,b] = {}) /\
+ p continuous_on interval[a,b] /\
+ (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y)
+ ==> ?f. f continuous_on (:real^N) /\
+ IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\
+ (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`,
+ REPEAT STRIP_TAC THEN
+ FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
+ DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN
+ SUBGOAL_THEN `(q:real^N->real^M) continuous_on
+ (IMAGE p (interval[a:real^M,b]))`
+ ASSUME_TAC THENL
+ [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL];
+ ALL_TAC] THEN
+ MP_TAC(ISPECL [`q:real^N->real^M`;
+ `IMAGE (p:real^M->real^N)
+ (interval[a,b])`;
+ `a:real^M`; `b:real^M`]
+ TIETZE_CLOSED_INTERVAL) THEN
+ ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE;
+ COMPACT_IMP_CLOSED] THEN
+ ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
+ DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN
+ EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN
+ REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN
+ CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
+ MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
+ FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
+ CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
+
+let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove
+ (`!s:real^N->bool a b:real^M.
+ s homeomorphic (interval[a,b])
+ ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`,
+ REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN
+ REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
+ MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN
+ DISCH_TAC THEN
+ SUBGOAL_THEN
+ `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\
+ (p:real^M->real^N) x = p y ==> x = y`
+ ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
+ FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN
+ DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN
+ ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
+ ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV;
+ NOT_BOUNDED_UNIV] THEN
+ ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN
+ X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN
+ SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
+ SUBGOAL_THEN `bounded((path_component s c) UNION
+ (IMAGE (p:real^M->real^N) (interval[a,b])))`
+ MP_TAC THENL
+ [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED;
+ COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
+ ALL_TAC] THEN
+ DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN
+ REWRITE_TAC[UNION_SUBSET] THEN
+ DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
+ MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`]
+ RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN
+ ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN
+ DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN
+ DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
+ (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
+ REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN
+ ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN
+ SUBGOAL_THEN
+ `(q:real^N->real^N) continuous_on
+ (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))`
+ MP_TAC THENL
+ [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN
+ REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN
+ REPEAT CONJ_TAC THENL
+ [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN
+ ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;
+ COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
+ ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV];
+ ALL_TAC] THEN
+ X_GEN_TAC `z:real^N` THEN
+ REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN
+ STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
+ MP_TAC(ISPECL
+ [`path_component s (z:real^N)`; `path_component s (c:real^N)`]
+ OPEN_INTER_CLOSURE_EQ_EMPTY) THEN
+ ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL
+ [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN
+ ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;
+ COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
+ REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN
+ DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN
+ GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN
+ REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]];
+ ALL_TAC] THEN
+ SUBGOAL_THEN
+ `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) =
+ (:real^N)`
+ SUBST1_TAC THENL
+ [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN
+ REWRITE_TAC[CLOSURE_SUBSET];
+ DISCH_TAC] THEN
+ MP_TAC(ISPECL
+ [`(\x. &2 % c - x) o
+ (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`;
+ `cball(c:real^N,B)`]
+ BROUWER) THEN
+ REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN
+ ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN
+ SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL
+ [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN
+ REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN
+ ASM SET_TAC[PATH_COMPONENT_REFL_EQ];
+ ALL_TAC] THEN
+ REPEAT CONJ_TAC THENL
+ [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
+ SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN
+ MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL
+ [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN
+ MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN
+ MATCH_MP_TAC CONTINUOUS_ON_MUL THEN
+ SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN
+ REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN
+ MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN
+ MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN
+ ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN
+ SUBGOAL_THEN
+ `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)`
+ SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN
+ MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
+ ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST;
+ CONTINUOUS_ON_LIFT_NORM];
+ REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN
+ X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
+ REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN
+ REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
+ ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN
+ ASM_REAL_ARITH_TAC;
+ REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN
+ REWRITE_TAC[IN_CBALL; o_THM; dist] THEN
+ X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
+ REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN
+ ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL
+ [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN
+ REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
+ ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN
+ ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN
+ UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN
+ REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB];
+ EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN
+ REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN
+ ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN
+ SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL
+ [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN
+ ASM_REWRITE_TAC[] THEN
+ MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN
+ ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);;
+
+let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove
+ (`!s:real^N->bool a b:real^M.
+ 2 <= dimindex(:N) /\ s homeomorphic interval[a,b]
+ ==> path_connected((:real^N) DIFF s)`,
+ REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN
+ FIRST_ASSUM(MP_TAC o MATCH_MP
+ UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN
+ ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN
+ ABBREV_TAC `t = (:real^N) DIFF s` THEN
+ DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN
+ STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN
+ REWRITE_TAC[COMPACT_INTERVAL] THEN
+ DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
+ REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN
+ X_GEN_TAC `B:real` THEN STRIP_TAC THEN
+ SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\
+ (?v:real^N. v IN path_component t y /\ B < norm(v))`
+ STRIP_ASSUME_TAC THENL
+ [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN
+ MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN
+ CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
+ MATCH_MP_TAC PATH_COMPONENT_SYM THEN
+ MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN
+ CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
+ MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN
+ EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL
+ [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE
+ `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN
+ ASM_REWRITE_TAC[SUBSET; IN_CBALL_0];
+ MP_TAC(ISPEC `cball(vec 0:real^N,B)`
+ PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN
+ ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN
+ REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN
+ DISCH_THEN MATCH_MP_TAC THEN
+ ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);;
+
+(* ------------------------------------------------------------------------- *)
+(* In particular, apply all these to the special case of an arc. *)
+(* ------------------------------------------------------------------------- *)
+
+let RETRACTION_ARC = prove
+ (`!p. arc p
+ ==> ?f. f continuous_on (:real^N) /\
+ IMAGE f (:real^N) SUBSET path_image p /\
+ (!x. x IN path_image p ==> f x = x)`,
+ REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN
+ MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN
+ ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);;
+
+let PATH_CONNECTED_ARC_COMPLEMENT = prove
+ (`!p. 2 <= dimindex(:N) /\ arc p
+ ==> path_connected((:real^N) DIFF path_image p)`,
+ REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN
+ MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`]
+ PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN
+ ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN
+ ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN
+ MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN
+ EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);;
+
+let CONNECTED_ARC_COMPLEMENT = prove
+ (`!p. 2 <= dimindex(:N) /\ arc p
+ ==> connected((:real^N) DIFF path_image p)`,
+ SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *)
+
+end
--- a/src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy Mon Apr 26 12:19:57 2010 -0700
+++ b/src/HOL/Multivariate_Analysis/Multivariate_Analysis.thy Mon Apr 26 15:22:03 2010 -0700
@@ -1,5 +1,5 @@
theory Multivariate_Analysis
-imports Determinants Integration Real_Integration
+imports Determinants Integration Real_Integration Fashoda
begin
end