src/HOL/Multivariate_Analysis/Fashoda.thy
changeset 36432 1ad1cfeaec2d
child 36583 68ce5760c585
equal deleted inserted replaced
36431:340755027840 36432:1ad1cfeaec2d
       
     1 (* Author:                     John Harrison
       
     2    Translation from HOL light: Robert Himmelmann, TU Muenchen *)
       
     3 
       
     4 header {* Fashoda meet theorem. *}
       
     5 
       
     6 theory Fashoda
       
     7 imports Brouwer_Fixpoint Vec1
       
     8 begin
       
     9 
       
    10 subsection {*Fashoda meet theorem. *}
       
    11 
       
    12 lemma infnorm_2: "infnorm (x::real^2) = max (abs(x$1)) (abs(x$2))"
       
    13   unfolding infnorm_def UNIV_2 apply(rule Sup_eq) by auto
       
    14 
       
    15 lemma infnorm_eq_1_2: "infnorm (x::real^2) = 1 \<longleftrightarrow>
       
    16         (abs(x$1) \<le> 1 \<and> abs(x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1))"
       
    17   unfolding infnorm_2 by auto
       
    18 
       
    19 lemma infnorm_eq_1_imp: assumes "infnorm (x::real^2) = 1" shows "abs(x$1) \<le> 1" "abs(x$2) \<le> 1"
       
    20   using assms unfolding infnorm_eq_1_2 by auto
       
    21 
       
    22 lemma fashoda_unit: fixes f g::"real \<Rightarrow> real^2"
       
    23   assumes "f ` {- 1..1} \<subseteq> {- 1..1}" "g ` {- 1..1} \<subseteq> {- 1..1}"
       
    24   "continuous_on {- 1..1} f"  "continuous_on {- 1..1} g"
       
    25   "f (- 1)$1 = - 1" "f 1$1 = 1" "g (- 1) $2 = -1" "g 1 $2 = 1"
       
    26   shows "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. f s = g t" proof(rule ccontr)
       
    27   case goal1 note as = this[unfolded bex_simps,rule_format]
       
    28   def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z" 
       
    29   def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2" 
       
    30   have lem1:"\<forall>z::real^2. infnorm(negatex z) = infnorm z"
       
    31     unfolding negatex_def infnorm_2 vector_2 by auto
       
    32   have lem2:"\<forall>z. z\<noteq>0 \<longrightarrow> infnorm(sqprojection z) = 1" unfolding sqprojection_def
       
    33     unfolding infnorm_mul[unfolded smult_conv_scaleR] unfolding abs_inverse real_abs_infnorm
       
    34     unfolding infnorm_eq_0[THEN sym] by auto
       
    35   let ?F = "(\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w)"
       
    36   have *:"\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
       
    37     apply(rule set_ext) unfolding image_iff Bex_def mem_interval apply rule defer 
       
    38     apply(rule_tac x="vec x" in exI) by auto
       
    39   { fix x assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
       
    40     then guess w unfolding image_iff .. note w = this
       
    41     hence "x \<noteq> 0" using as[of "w$1" "w$2"] unfolding mem_interval by auto} note x0=this
       
    42   have 21:"\<And>i::2. i\<noteq>1 \<Longrightarrow> i=2" using UNIV_2 by auto
       
    43   have 1:"{- 1<..<1::real^2} \<noteq> {}" unfolding interval_eq_empty by auto
       
    44   have 2:"continuous_on {- 1..1} (negatex \<circ> sqprojection \<circ> ?F)" apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+
       
    45     prefer 2 apply(rule continuous_on_intros continuous_on_component continuous_on_vec1)+ unfolding *
       
    46     apply(rule assms)+ apply(rule continuous_on_compose,subst sqprojection_def)
       
    47     apply(rule continuous_on_mul ) apply(rule continuous_at_imp_continuous_on,rule) apply(rule continuous_at_inv[unfolded o_def])
       
    48     apply(rule continuous_at_infnorm) unfolding infnorm_eq_0 defer apply(rule continuous_on_id) apply(rule linear_continuous_on) proof-
       
    49     show "bounded_linear negatex" apply(rule bounded_linearI') unfolding Cart_eq proof(rule_tac[!] allI) fix i::2 and x y::"real^2" and c::real
       
    50       show "negatex (x + y) $ i = (negatex x + negatex y) $ i" "negatex (c *s x) $ i = (c *s negatex x) $ i"
       
    51 	apply-apply(case_tac[!] "i\<noteq>1") prefer 3 apply(drule_tac[1-2] 21) 
       
    52 	unfolding negatex_def by(auto simp add:vector_2 ) qed qed(insert x0, auto)
       
    53   have 3:"(negatex \<circ> sqprojection \<circ> ?F) ` {- 1..1} \<subseteq> {- 1..1}" unfolding subset_eq apply rule proof-
       
    54     case goal1 then guess y unfolding image_iff .. note y=this have "?F y \<noteq> 0" apply(rule x0) using y(1) by auto
       
    55     hence *:"infnorm (sqprojection (?F y)) = 1" unfolding y o_def apply- by(rule lem2[rule_format])
       
    56     have "infnorm x = 1" unfolding *[THEN sym] y o_def by(rule lem1[rule_format])
       
    57     thus "x\<in>{- 1..1}" unfolding mem_interval infnorm_2 apply- apply rule
       
    58     proof-case goal1 thus ?case apply(cases "i=1") defer apply(drule 21) by auto qed qed
       
    59   guess x apply(rule brouwer_weak[of "{- 1..1::real^2}" "negatex \<circ> sqprojection \<circ> ?F"])
       
    60     apply(rule compact_interval convex_interval)+ unfolding interior_closed_interval
       
    61     apply(rule 1 2 3)+ . note x=this
       
    62   have "?F x \<noteq> 0" apply(rule x0) using x(1) by auto
       
    63   hence *:"infnorm (sqprojection (?F x)) = 1" unfolding o_def by(rule lem2[rule_format])
       
    64   have nx:"infnorm x = 1" apply(subst x(2)[THEN sym]) unfolding *[THEN sym] o_def by(rule lem1[rule_format])
       
    65   have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)"    "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)"
       
    66     apply- apply(rule_tac[!] allI impI)+ proof- fix x::"real^2" and i::2 assume x:"x\<noteq>0"
       
    67     have "inverse (infnorm x) > 0" using x[unfolded infnorm_pos_lt[THEN sym]] by auto
       
    68     thus "(0 < sqprojection x $ i) = (0 < x $ i)"   "(sqprojection x $ i < 0) = (x $ i < 0)"
       
    69       unfolding sqprojection_def vector_component_simps Cart_nth.scaleR real_scaleR_def
       
    70       unfolding zero_less_mult_iff mult_less_0_iff by(auto simp add:field_simps) qed
       
    71   note lem3 = this[rule_format]
       
    72   have x1:"x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}" using x(1) unfolding mem_interval by auto
       
    73   hence nz:"f (x $ 1) - g (x $ 2) \<noteq> 0" unfolding right_minus_eq apply-apply(rule as) by auto
       
    74   have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" using nx unfolding infnorm_eq_1_2 by auto 
       
    75   thus False proof- fix P Q R S 
       
    76     presume "P \<or> Q \<or> R \<or> S" "P\<Longrightarrow>False" "Q\<Longrightarrow>False" "R\<Longrightarrow>False" "S\<Longrightarrow>False" thus False by auto
       
    77   next assume as:"x$1 = 1"
       
    78     hence *:"f (x $ 1) $ 1 = 1" using assms(6) by auto
       
    79     have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0"
       
    80       using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]]
       
    81       unfolding as negatex_def vector_2 by auto moreover
       
    82     from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
       
    83     ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval 
       
    84       apply(erule_tac x=1 in allE) by auto 
       
    85   next assume as:"x$1 = -1"
       
    86     hence *:"f (x $ 1) $ 1 = - 1" using assms(5) by auto
       
    87     have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0"
       
    88       using x(2)[unfolded o_def Cart_eq,THEN spec[where x=1]]
       
    89       unfolding as negatex_def vector_2 by auto moreover
       
    90     from x1 have "g (x $ 2) \<in> {- 1..1}" apply-apply(rule assms(2)[unfolded subset_eq,rule_format]) by auto
       
    91     ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval 
       
    92       apply(erule_tac x=1 in allE) by auto
       
    93   next assume as:"x$2 = 1"
       
    94     hence *:"g (x $ 2) $ 2 = 1" using assms(8) by auto
       
    95     have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0"
       
    96       using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]]
       
    97       unfolding as negatex_def vector_2 by auto moreover
       
    98     from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
       
    99     ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval 
       
   100      apply(erule_tac x=2 in allE) by auto
       
   101  next assume as:"x$2 = -1"
       
   102     hence *:"g (x $ 2) $ 2 = - 1" using assms(7) by auto
       
   103     have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0"
       
   104       using x(2)[unfolded o_def Cart_eq,THEN spec[where x=2]]
       
   105       unfolding as negatex_def vector_2 by auto moreover
       
   106     from x1 have "f (x $ 1) \<in> {- 1..1}" apply-apply(rule assms(1)[unfolded subset_eq,rule_format]) by auto
       
   107     ultimately show False unfolding lem3[OF nz] vector_component_simps * mem_interval 
       
   108       apply(erule_tac x=2 in allE) by auto qed(auto) qed
       
   109 
       
   110 lemma fashoda_unit_path: fixes f ::"real \<Rightarrow> real^2" and g ::"real \<Rightarrow> real^2"
       
   111   assumes "path f" "path g" "path_image f \<subseteq> {- 1..1}" "path_image g \<subseteq> {- 1..1}"
       
   112   "(pathstart f)$1 = -1" "(pathfinish f)$1 = 1"  "(pathstart g)$2 = -1" "(pathfinish g)$2 = 1"
       
   113   obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-
       
   114   note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def]
       
   115   def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)"
       
   116   have isc:"iscale ` {- 1..1} \<subseteq> {0..1}" unfolding iscale_def by(auto)
       
   117   have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t" proof(rule fashoda_unit) 
       
   118     show "(f \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}" "(g \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}"
       
   119       using isc and assms(3-4) unfolding image_compose by auto
       
   120     have *:"continuous_on {- 1..1} iscale" unfolding iscale_def by(rule continuous_on_intros)+
       
   121     show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
       
   122       apply-apply(rule_tac[!] continuous_on_compose[OF *]) apply(rule_tac[!] continuous_on_subset[OF _ isc])
       
   123       by(rule assms)+ have *:"(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" unfolding Cart_eq by auto
       
   124     show "(f \<circ> iscale) (- 1) $ 1 = - 1" "(f \<circ> iscale) 1 $ 1 = 1" "(g \<circ> iscale) (- 1) $ 2 = -1" "(g \<circ> iscale) 1 $ 2 = 1"
       
   125       unfolding o_def iscale_def using assms by(auto simp add:*) qed
       
   126   then guess s .. from this(2) guess t .. note st=this
       
   127   show thesis apply(rule_tac z="f (iscale s)" in that)
       
   128     using st `s\<in>{- 1..1}` unfolding o_def path_image_def image_iff apply-
       
   129     apply(rule_tac x="iscale s" in bexI) prefer 3 apply(rule_tac x="iscale t" in bexI)
       
   130     using isc[unfolded subset_eq, rule_format] by auto qed
       
   131 
       
   132 lemma fashoda: fixes b::"real^2"
       
   133   assumes "path f" "path g" "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
       
   134   "(pathstart f)$1 = a$1" "(pathfinish f)$1 = b$1"
       
   135   "(pathstart g)$2 = a$2" "(pathfinish g)$2 = b$2"
       
   136   obtains z where "z \<in> path_image f" "z \<in> path_image g" proof-
       
   137   fix P Q S presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" "Q \<Longrightarrow> thesis" "S \<Longrightarrow> thesis" thus thesis by auto
       
   138 next have "{a..b} \<noteq> {}" using assms(3) using path_image_nonempty by auto
       
   139   hence "a \<le> b" unfolding interval_eq_empty vector_le_def by(auto simp add: not_less)
       
   140   thus "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" unfolding vector_le_def forall_2 by auto
       
   141 next assume as:"a$1 = b$1" have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" apply(rule connected_ivt_component)
       
   142     apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)
       
   143     unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"]
       
   144     unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this
       
   145   have "z \<in> {a..b}" using z(1) assms(4) unfolding path_image_def by blast 
       
   146   hence "z = f 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def
       
   147     using assms(3)[unfolded path_image_def subset_eq mem_interval,rule_format,of "f 0" 1]
       
   148     unfolding mem_interval apply(erule_tac x=1 in allE) using as by auto
       
   149   thus thesis apply-apply(rule that[OF _ z(1)]) unfolding path_image_def by auto
       
   150 next assume as:"a$2 = b$2" have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" apply(rule connected_ivt_component)
       
   151     apply(rule connected_path_image assms)+apply(rule pathstart_in_path_image,rule pathfinish_in_path_image)
       
   152     unfolding assms using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"]
       
   153     unfolding pathstart_def by(auto simp add: vector_le_def) then guess z .. note z=this
       
   154   have "z \<in> {a..b}" using z(1) assms(3) unfolding path_image_def by blast 
       
   155   hence "z = g 0" unfolding Cart_eq forall_2 unfolding z(2) pathstart_def
       
   156     using assms(4)[unfolded path_image_def subset_eq mem_interval,rule_format,of "g 0" 2]
       
   157     unfolding mem_interval apply(erule_tac x=2 in allE) using as by auto
       
   158   thus thesis apply-apply(rule that[OF z(1)]) unfolding path_image_def by auto
       
   159 next assume as:"a $ 1 < b $ 1 \<and> a $ 2 < b $ 2"
       
   160   have int_nem:"{- 1..1::real^2} \<noteq> {}" unfolding interval_eq_empty by auto
       
   161   guess z apply(rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"]) 
       
   162     unfolding path_def path_image_def pathstart_def pathfinish_def
       
   163     apply(rule_tac[1-2] continuous_on_compose) apply(rule assms[unfolded path_def] continuous_on_interval_bij)+
       
   164     unfolding subset_eq apply(rule_tac[1-2] ballI)
       
   165   proof- fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
       
   166     then guess y unfolding image_iff .. note y=this
       
   167     show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
       
   168       using y(1) using assms(3)[unfolded path_image_def subset_eq] int_nem by auto
       
   169   next fix x assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
       
   170     then guess y unfolding image_iff .. note y=this
       
   171     show "x \<in> {- 1..1}" unfolding y o_def apply(rule in_interval_interval_bij)
       
   172       using y(1) using assms(4)[unfolded path_image_def subset_eq] int_nem by auto
       
   173   next show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1"
       
   174       "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1"
       
   175       "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1"
       
   176       "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" unfolding interval_bij_def Cart_lambda_beta vector_component_simps o_def split_conv
       
   177       unfolding assms[unfolded pathstart_def pathfinish_def] using as by auto qed note z=this
       
   178   from z(1) guess zf unfolding image_iff .. note zf=this
       
   179   from z(2) guess zg unfolding image_iff .. note zg=this
       
   180   have *:"\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" unfolding forall_2 using as by auto
       
   181   show thesis apply(rule_tac z="interval_bij (- 1,1) (a,b) z" in that)
       
   182     apply(subst zf) defer apply(subst zg) unfolding o_def interval_bij_bij[OF *] path_image_def
       
   183     using zf(1) zg(1) by auto qed
       
   184 
       
   185 subsection {*Some slightly ad hoc lemmas I use below*}
       
   186 
       
   187 lemma segment_vertical: fixes a::"real^2" assumes "a$1 = b$1"
       
   188   shows "x \<in> closed_segment a b \<longleftrightarrow> (x$1 = a$1 \<and> x$1 = b$1 \<and>
       
   189            (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2))" (is "_ = ?R")
       
   190 proof- 
       
   191   let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"
       
   192   { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
       
   193       unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }
       
   194   { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
       
   195     { fix b a assume "b + u * a > a + u * b"
       
   196       hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)
       
   197       hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto
       
   198       hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) 
       
   199         using u(3-4) by(auto simp add:field_simps) } note * = this
       
   200     { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
       
   201         apply(drule mult_less_imp_less_left) using u by auto
       
   202       hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this
       
   203     thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }
       
   204   { assume ?R thus ?L proof(cases "x$2 = b$2")
       
   205       case True thus ?L apply(rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) unfolding assms True
       
   206         using `?R` by(auto simp add:field_simps)
       
   207     next case False thus ?L apply(rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) unfolding assms using `?R`
       
   208         by(auto simp add:field_simps)
       
   209     qed } qed
       
   210 
       
   211 lemma segment_horizontal: fixes a::"real^2" assumes "a$2 = b$2"
       
   212   shows "x \<in> closed_segment a b \<longleftrightarrow> (x$2 = a$2 \<and> x$2 = b$2 \<and>
       
   213            (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1))" (is "_ = ?R")
       
   214 proof- 
       
   215   let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1"
       
   216   { presume "?L \<Longrightarrow> ?R" "?R \<Longrightarrow> ?L" thus ?thesis unfolding closed_segment_def mem_Collect_eq
       
   217       unfolding Cart_eq forall_2 smult_conv_scaleR[THEN sym] vector_component_simps by blast }
       
   218   { assume ?L then guess u apply-apply(erule exE)apply(erule conjE)+ . note u=this
       
   219     { fix b a assume "b + u * a > a + u * b"
       
   220       hence "(1 - u) * b > (1 - u) * a" by(auto simp add:field_simps)
       
   221       hence "b \<ge> a" apply(drule_tac mult_less_imp_less_left) using u by auto
       
   222       hence "u * a \<le> u * b" apply-apply(rule mult_left_mono[OF _ u(3)]) 
       
   223         using u(3-4) by(auto simp add:field_simps) } note * = this
       
   224     { fix a b assume "u * b > u * a" hence "(1 - u) * a \<le> (1 - u) * b" apply-apply(rule mult_left_mono)
       
   225         apply(drule mult_less_imp_less_left) using u by auto
       
   226       hence "a + u * b \<le> b + u * a" by(auto simp add:field_simps) } note ** = this
       
   227     thus ?R unfolding u assms using u by(auto simp add:field_simps not_le intro:* **) }
       
   228   { assume ?R thus ?L proof(cases "x$1 = b$1")
       
   229       case True thus ?L apply(rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) unfolding assms True
       
   230         using `?R` by(auto simp add:field_simps)
       
   231     next case False thus ?L apply(rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) unfolding assms using `?R`
       
   232         by(auto simp add:field_simps)
       
   233     qed } qed
       
   234 
       
   235 subsection {*useful Fashoda corollary pointed out to me by Tom Hales. *}
       
   236 
       
   237 lemma fashoda_interlace: fixes a::"real^2"
       
   238   assumes "path f" "path g"
       
   239   "path_image f \<subseteq> {a..b}" "path_image g \<subseteq> {a..b}"
       
   240   "(pathstart f)$2 = a$2" "(pathfinish f)$2 = a$2"
       
   241   "(pathstart g)$2 = a$2" "(pathfinish g)$2 = a$2"
       
   242   "(pathstart f)$1 < (pathstart g)$1" "(pathstart g)$1 < (pathfinish f)$1"
       
   243   "(pathfinish f)$1 < (pathfinish g)$1"
       
   244   obtains z where "z \<in> path_image f" "z \<in> path_image g"
       
   245 proof-
       
   246   have "{a..b} \<noteq> {}" using path_image_nonempty using assms(3) by auto
       
   247   note ab=this[unfolded interval_eq_empty not_ex forall_2 not_less]
       
   248   have "pathstart f \<in> {a..b}" "pathfinish f \<in> {a..b}" "pathstart g \<in> {a..b}" "pathfinish g \<in> {a..b}"
       
   249     using pathstart_in_path_image pathfinish_in_path_image using assms(3-4) by auto
       
   250   note startfin = this[unfolded mem_interval forall_2]
       
   251   let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++
       
   252      linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++
       
   253      linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++
       
   254      linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" 
       
   255   let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++
       
   256      linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++
       
   257      linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++
       
   258      linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])"
       
   259   let ?a = "vector[a$1 - 2, a$2 - 3]"
       
   260   let ?b = "vector[b$1 + 2, b$2 + 3]"
       
   261   have P1P2:"path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union>
       
   262       path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union>
       
   263       path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union>
       
   264       path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))"
       
   265     "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union>
       
   266       path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union>
       
   267       path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union>
       
   268       path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2)
       
   269       by(auto simp add: path_image_join path_linepath)
       
   270   have abab: "{a..b} \<subseteq> {?a..?b}" by(auto simp add:vector_le_def forall_2 vector_2)
       
   271   guess z apply(rule fashoda[of ?P1 ?P2 ?a ?b])
       
   272     unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 proof-
       
   273     show "path ?P1" "path ?P2" using assms by auto
       
   274     have "path_image ?P1 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 3
       
   275       apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])
       
   276       unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(3)
       
   277       using assms(9-) unfolding assms by(auto simp add:field_simps)
       
   278     thus "path_image ?P1  \<subseteq> {?a .. ?b}" .
       
   279     have "path_image ?P2 \<subseteq> {?a .. ?b}" unfolding P1P2 path_image_linepath apply(rule Un_least)+ defer 2
       
   280       apply(rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format])
       
   281       unfolding mem_interval forall_2 vector_2 using ab startfin abab assms(4)
       
   282       using assms(9-) unfolding assms  by(auto simp add:field_simps)
       
   283     thus "path_image ?P2  \<subseteq> {?a .. ?b}" . 
       
   284     show "a $ 1 - 2 = a $ 1 - 2"  "b $ 1 + 2 = b $ 1 + 2" "pathstart g $ 2 - 3 = a $ 2 - 3"  "b $ 2 + 3 = b $ 2 + 3"
       
   285       by(auto simp add: assms)
       
   286   qed note z=this[unfolded P1P2 path_image_linepath]
       
   287   show thesis apply(rule that[of z]) proof-
       
   288     have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or>
       
   289      z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or>
       
   290    z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or>
       
   291   z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow>
       
   292   (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or>
       
   293     z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or>
       
   294    z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or>
       
   295   z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False"
       
   296       apply(simp only: segment_vertical segment_horizontal vector_2) proof- case goal1 note as=this
       
   297       have "pathfinish f \<in> {a..b}" using assms(3) pathfinish_in_path_image[of f] by auto 
       
   298       hence "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" unfolding mem_interval forall_2 by auto
       
   299       hence "z$1 \<noteq> pathfinish f$1" using as(2) using assms ab by(auto simp add:field_simps)
       
   300       moreover have "pathstart f \<in> {a..b}" using assms(3) pathstart_in_path_image[of f] by auto 
       
   301       hence "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" unfolding mem_interval forall_2 by auto
       
   302       hence "z$1 \<noteq> pathstart f$1" using as(2) using assms ab by(auto simp add:field_simps)
       
   303       ultimately have *:"z$2 = a$2 - 2" using goal1(1) by auto
       
   304       have "z$1 \<noteq> pathfinish g$1" using as(2) using assms ab by(auto simp add:field_simps *)
       
   305       moreover have "pathstart g \<in> {a..b}" using assms(4) pathstart_in_path_image[of g] by auto 
       
   306       note this[unfolded mem_interval forall_2]
       
   307       hence "z$1 \<noteq> pathstart g$1" using as(1) using assms ab by(auto simp add:field_simps *)
       
   308       ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1"
       
   309         using as(2) unfolding * assms by(auto simp add:field_simps)
       
   310       thus False unfolding * using ab by auto
       
   311     qed hence "z \<in> path_image f \<or> z \<in> path_image g" using z unfolding Un_iff by blast
       
   312     hence z':"z\<in>{a..b}" using assms(3-4) by auto
       
   313     have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> (z = pathstart f \<or> z = pathfinish f)"
       
   314       unfolding Cart_eq forall_2 assms by auto
       
   315     with z' show "z\<in>path_image f" using z(1) unfolding Un_iff mem_interval forall_2 apply-
       
   316       apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto
       
   317     have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> (z = pathstart g \<or> z = pathfinish g)"
       
   318       unfolding Cart_eq forall_2 assms by auto
       
   319     with z' show "z\<in>path_image g" using z(2) unfolding Un_iff mem_interval forall_2 apply-
       
   320       apply(simp only: segment_vertical segment_horizontal vector_2) unfolding assms by auto
       
   321   qed qed
       
   322 
       
   323 (** The Following still needs to be translated. Maybe I will do that later.
       
   324 
       
   325 (* ------------------------------------------------------------------------- *)
       
   326 (* Complement in dimension N >= 2 of set homeomorphic to any interval in     *)
       
   327 (* any dimension is (path-)connected. This naively generalizes the argument  *)
       
   328 (* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer        *)
       
   329 (* fixed point theorem", American Mathematical Monthly 1984.                 *)
       
   330 (* ------------------------------------------------------------------------- *)
       
   331 
       
   332 let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove
       
   333  (`!p:real^M->real^N a b.
       
   334         ~(interval[a,b] = {}) /\
       
   335         p continuous_on interval[a,b] /\
       
   336         (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y)
       
   337         ==> ?f. f continuous_on (:real^N) /\
       
   338                 IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\
       
   339                 (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`,
       
   340   REPEAT STRIP_TAC THEN
       
   341   FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
       
   342   DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN
       
   343   SUBGOAL_THEN `(q:real^N->real^M) continuous_on
       
   344                 (IMAGE p (interval[a:real^M,b]))`
       
   345   ASSUME_TAC THENL
       
   346    [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL];
       
   347     ALL_TAC] THEN
       
   348   MP_TAC(ISPECL [`q:real^N->real^M`;
       
   349                  `IMAGE (p:real^M->real^N)
       
   350                  (interval[a,b])`;
       
   351                  `a:real^M`; `b:real^M`]
       
   352         TIETZE_CLOSED_INTERVAL) THEN
       
   353   ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE;
       
   354                COMPACT_IMP_CLOSED] THEN
       
   355   ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
       
   356   DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN
       
   357   EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN
       
   358   REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN
       
   359   CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
       
   360   MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
       
   361   FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
       
   362         CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
       
   363 
       
   364 let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove
       
   365  (`!s:real^N->bool a b:real^M.
       
   366         s homeomorphic (interval[a,b])
       
   367         ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`,
       
   368   REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN
       
   369   REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
       
   370   MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN
       
   371   DISCH_TAC THEN
       
   372   SUBGOAL_THEN
       
   373    `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\
       
   374           (p:real^M->real^N) x = p y ==> x = y`
       
   375   ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
       
   376   FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN
       
   377   DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN
       
   378   ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
       
   379   ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV;
       
   380                   NOT_BOUNDED_UNIV] THEN
       
   381   ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN
       
   382   X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN
       
   383   SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
       
   384   SUBGOAL_THEN `bounded((path_component s c) UNION
       
   385                         (IMAGE (p:real^M->real^N) (interval[a,b])))`
       
   386   MP_TAC THENL
       
   387    [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED;
       
   388                  COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
       
   389     ALL_TAC] THEN
       
   390   DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN
       
   391   REWRITE_TAC[UNION_SUBSET] THEN
       
   392   DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
       
   393   MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`]
       
   394     RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN
       
   395   ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN
       
   396   DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN
       
   397   DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
       
   398    (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
       
   399   REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN
       
   400   ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN
       
   401   SUBGOAL_THEN
       
   402     `(q:real^N->real^N) continuous_on
       
   403      (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))`
       
   404   MP_TAC THENL
       
   405    [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN
       
   406     REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN
       
   407     REPEAT CONJ_TAC THENL
       
   408      [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN
       
   409       ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;
       
   410                    COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
       
   411       ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV];
       
   412       ALL_TAC] THEN
       
   413     X_GEN_TAC `z:real^N` THEN
       
   414     REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN
       
   415     STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
       
   416     MP_TAC(ISPECL
       
   417      [`path_component s (z:real^N)`; `path_component s (c:real^N)`]
       
   418      OPEN_INTER_CLOSURE_EQ_EMPTY) THEN
       
   419     ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL
       
   420      [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN
       
   421       ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED;
       
   422                    COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL];
       
   423       REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN
       
   424       DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN
       
   425       GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN
       
   426       REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]];
       
   427     ALL_TAC] THEN
       
   428   SUBGOAL_THEN
       
   429    `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) =
       
   430     (:real^N)`
       
   431   SUBST1_TAC THENL
       
   432    [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN
       
   433     REWRITE_TAC[CLOSURE_SUBSET];
       
   434     DISCH_TAC] THEN
       
   435   MP_TAC(ISPECL
       
   436    [`(\x. &2 % c - x) o
       
   437      (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`;
       
   438     `cball(c:real^N,B)`]
       
   439     BROUWER) THEN
       
   440   REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN
       
   441   ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN
       
   442   SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL
       
   443    [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN
       
   444     REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN
       
   445     ASM SET_TAC[PATH_COMPONENT_REFL_EQ];
       
   446     ALL_TAC] THEN
       
   447   REPEAT CONJ_TAC THENL
       
   448    [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
       
   449     SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN
       
   450     MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL
       
   451      [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN
       
   452     MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN
       
   453     MATCH_MP_TAC CONTINUOUS_ON_MUL THEN
       
   454     SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN
       
   455     REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN
       
   456     MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN
       
   457     MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN
       
   458     ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN
       
   459     SUBGOAL_THEN
       
   460      `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)`
       
   461     SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN
       
   462     MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
       
   463     ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST;
       
   464                  CONTINUOUS_ON_LIFT_NORM];
       
   465     REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN
       
   466     X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
       
   467     REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN
       
   468     REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
       
   469     ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN
       
   470     ASM_REAL_ARITH_TAC;
       
   471     REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN
       
   472     REWRITE_TAC[IN_CBALL; o_THM; dist] THEN
       
   473     X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
       
   474     REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN
       
   475     ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL
       
   476      [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN
       
   477       REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN
       
   478       ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN
       
   479       ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN
       
   480       UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN
       
   481       REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB];
       
   482       EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN
       
   483       REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN
       
   484       ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN
       
   485       SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL
       
   486        [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN
       
   487       ASM_REWRITE_TAC[] THEN
       
   488       MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN
       
   489       ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);;
       
   490 
       
   491 let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove
       
   492  (`!s:real^N->bool a b:real^M.
       
   493         2 <= dimindex(:N) /\ s homeomorphic interval[a,b]
       
   494         ==> path_connected((:real^N) DIFF s)`,
       
   495   REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN
       
   496   FIRST_ASSUM(MP_TAC o MATCH_MP
       
   497     UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN
       
   498   ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN
       
   499   ABBREV_TAC `t = (:real^N) DIFF s` THEN
       
   500   DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN
       
   501   STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN
       
   502   REWRITE_TAC[COMPACT_INTERVAL] THEN
       
   503   DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
       
   504   REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN
       
   505   X_GEN_TAC `B:real` THEN STRIP_TAC THEN
       
   506   SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\
       
   507                 (?v:real^N. v IN path_component t y /\ B < norm(v))`
       
   508   STRIP_ASSUME_TAC THENL
       
   509    [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN
       
   510   MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN
       
   511   CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
       
   512   MATCH_MP_TAC PATH_COMPONENT_SYM THEN
       
   513   MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN
       
   514   CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
       
   515   MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN
       
   516   EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL
       
   517    [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE
       
   518      `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN
       
   519     ASM_REWRITE_TAC[SUBSET; IN_CBALL_0];
       
   520     MP_TAC(ISPEC `cball(vec 0:real^N,B)`
       
   521        PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN
       
   522     ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN
       
   523     REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN
       
   524     DISCH_THEN MATCH_MP_TAC THEN
       
   525     ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);;
       
   526 
       
   527 (* ------------------------------------------------------------------------- *)
       
   528 (* In particular, apply all these to the special case of an arc.             *)
       
   529 (* ------------------------------------------------------------------------- *)
       
   530 
       
   531 let RETRACTION_ARC = prove
       
   532  (`!p. arc p
       
   533        ==> ?f. f continuous_on (:real^N) /\
       
   534                IMAGE f (:real^N) SUBSET path_image p /\
       
   535                (!x. x IN path_image p ==> f x = x)`,
       
   536   REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN
       
   537   MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN
       
   538   ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);;
       
   539 
       
   540 let PATH_CONNECTED_ARC_COMPLEMENT = prove
       
   541  (`!p. 2 <= dimindex(:N) /\ arc p
       
   542        ==> path_connected((:real^N) DIFF path_image p)`,
       
   543   REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN
       
   544   MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`]
       
   545     PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN
       
   546   ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN
       
   547   ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN
       
   548   MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN
       
   549   EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);;
       
   550 
       
   551 let CONNECTED_ARC_COMPLEMENT = prove
       
   552  (`!p. 2 <= dimindex(:N) /\ arc p
       
   553        ==> connected((:real^N) DIFF path_image p)`,
       
   554   SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *)
       
   555 
       
   556 end