src/HOL/Ring_and_Field.thy
author wenzelm
Tue, 02 Sep 2008 22:20:21 +0200
changeset 28094 5f340fb49b90
parent 27651 16a26996c30e
child 28141 193c3ea0f63b
permissions -rw-r--r--
tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     1
(*  Title:   HOL/Ring_and_Field.thy
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     2
    ID:      $Id$
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
     3
    Author:  Gertrud Bauer, Steven Obua, Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel,
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     4
             with contributions by Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     5
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     6
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
     7
header {* (Ordered) Rings and Fields *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
     9
theory Ring_and_Field
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    10
imports OrderedGroup
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    11
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    12
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    13
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    14
  The theory of partially ordered rings is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    15
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    16
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    17
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    18
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    19
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    20
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    21
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    22
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    23
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    24
*}
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    25
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    26
class semiring = ab_semigroup_add + semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    27
  assumes left_distrib: "(a + b) * c = a * c + b * c"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    28
  assumes right_distrib: "a * (b + c) = a * b + a * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    29
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    30
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    31
text{*For the @{text combine_numerals} simproc*}
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    32
lemma combine_common_factor:
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    33
  "a * e + (b * e + c) = (a + b) * e + c"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    34
  by (simp add: left_distrib add_ac)
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    35
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    36
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    37
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    38
class mult_zero = times + zero +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    39
  assumes mult_zero_left [simp]: "0 * a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    40
  assumes mult_zero_right [simp]: "a * 0 = 0"
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    41
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    42
class semiring_0 = semiring + comm_monoid_add + mult_zero
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    43
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    44
class semiring_0_cancel = semiring + comm_monoid_add + cancel_ab_semigroup_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    45
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    46
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    47
subclass semiring_0
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    48
proof unfold_locales
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    49
  fix a :: 'a
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    50
  have "0 * a + 0 * a = 0 * a + 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    51
    by (simp add: left_distrib [symmetric])
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    52
  thus "0 * a = 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    53
    by (simp only: add_left_cancel)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    54
next
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    55
  fix a :: 'a
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    56
  have "a * 0 + a * 0 = a * 0 + 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    57
    by (simp add: right_distrib [symmetric])
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    58
  thus "a * 0 = 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    59
    by (simp only: add_left_cancel)
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    60
qed
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    61
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    62
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    63
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    64
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    65
  assumes distrib: "(a + b) * c = a * c + b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    66
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    67
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    68
subclass semiring
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    69
proof unfold_locales
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    70
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    71
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    72
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    73
  also have "... = b * a + c * a" by (simp only: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    74
  also have "... = a * b + a * c" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    75
  finally show "a * (b + c) = a * b + a * c" by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    76
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    77
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    78
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    79
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    80
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    81
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    82
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    83
subclass semiring_0 ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    84
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    85
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    86
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    87
class comm_semiring_0_cancel = comm_semiring + comm_monoid_add + cancel_ab_semigroup_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    88
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    89
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    90
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    91
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    92
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    93
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    94
class zero_neq_one = zero + one +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    95
  assumes zero_neq_one [simp]: "0 \<noteq> 1"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    96
begin
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    97
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    98
lemma one_neq_zero [simp]: "1 \<noteq> 0"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    99
  by (rule not_sym) (rule zero_neq_one)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   100
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   101
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   102
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   103
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   104
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   105
text {* Abstract divisibility *}
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   106
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   107
class dvd = times
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   108
begin
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   109
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   110
definition
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   111
  dvd  :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   112
where
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   113
  [code func del]: "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   114
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   115
lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   116
  unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   117
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   118
lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   119
  unfolding dvd_def by blast 
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   120
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   121
end
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   122
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   123
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   124
  (*previously almost_semiring*)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   125
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   126
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   127
subclass semiring_1 ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   128
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   129
lemma dvd_refl: "a dvd a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   130
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   131
  have "a = a * 1" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   132
  then show ?thesis unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   133
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   134
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   135
lemma dvd_trans:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   136
  assumes "a dvd b" and "b dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   137
  shows "a dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   138
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   139
  from assms obtain v where "b = a * v" unfolding dvd_def by auto
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   140
  moreover from assms obtain w where "c = b * w" unfolding dvd_def by auto
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   141
  ultimately have "c = a * (v * w)" by (simp add: mult_assoc)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   142
  then show ?thesis unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   143
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   144
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   145
lemma dvd_0_left_iff [noatp, simp]: "0 dvd a \<longleftrightarrow> a = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   146
  unfolding dvd_def by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   147
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   148
lemma dvd_0 [simp]: "a dvd 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   149
unfolding dvd_def proof
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   150
  show "0 = a * 0" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   151
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   152
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   153
lemma one_dvd [simp]: "1 dvd a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   154
  unfolding dvd_def by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   155
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   156
lemma dvd_mult: "a dvd c \<Longrightarrow> a dvd (b * c)"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   157
  unfolding dvd_def by (blast intro: mult_left_commute)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   158
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   159
lemma dvd_mult2: "a dvd b \<Longrightarrow> a dvd (b * c)"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   160
  apply (subst mult_commute)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   161
  apply (erule dvd_mult)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   162
  done
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   163
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   164
lemma dvd_triv_right [simp]: "a dvd b * a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   165
  by (rule dvd_mult) (rule dvd_refl)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   166
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   167
lemma dvd_triv_left [simp]: "a dvd a * b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   168
  by (rule dvd_mult2) (rule dvd_refl)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   169
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   170
lemma mult_dvd_mono:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   171
  assumes ab: "a dvd b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   172
    and "cd": "c dvd d"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   173
  shows "a * c dvd b * d"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   174
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   175
  from ab obtain b' where "b = a * b'" ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   176
  moreover from "cd" obtain d' where "d = c * d'" ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   177
  ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   178
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   179
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   180
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   181
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   182
  by (simp add: dvd_def mult_assoc, blast)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   183
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   184
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   185
  unfolding mult_ac [of a] by (rule dvd_mult_left)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   186
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   187
lemma dvd_0_right [iff]: "a dvd 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   188
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   189
  have "0 = a * 0" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   190
  then show ?thesis unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   191
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   192
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   193
lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   194
  by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   195
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   196
lemma dvd_add:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   197
  assumes ab: "a dvd b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   198
    and ac: "a dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   199
    shows "a dvd (b + c)"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   200
proof -
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   201
  from ab obtain b' where "b = a * b'" ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   202
  moreover from ac obtain c' where "c = a * c'" ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   203
  ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   204
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   205
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   206
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   207
end
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   208
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   209
class no_zero_divisors = zero + times +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   210
  assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   211
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   212
class semiring_1_cancel = semiring + comm_monoid_add + zero_neq_one
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   213
  + cancel_ab_semigroup_add + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   214
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   215
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   216
subclass semiring_0_cancel ..
25512
4134f7c782e2 using intro_locales instead of unfold_locales if appropriate
haftmann
parents: 25450
diff changeset
   217
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   218
subclass semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   219
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   220
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   221
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   222
class comm_semiring_1_cancel = comm_semiring + comm_monoid_add + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   223
  + zero_neq_one + cancel_ab_semigroup_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   224
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   225
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   226
subclass semiring_1_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   227
subclass comm_semiring_0_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   228
subclass comm_semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   229
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   230
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   231
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   232
class ring = semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   233
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   234
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   235
subclass semiring_0_cancel ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   236
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   237
text {* Distribution rules *}
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   238
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   239
lemma minus_mult_left: "- (a * b) = - a * b"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   240
  by (rule equals_zero_I) (simp add: left_distrib [symmetric]) 
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   241
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   242
lemma minus_mult_right: "- (a * b) = a * - b"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   243
  by (rule equals_zero_I) (simp add: right_distrib [symmetric]) 
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   244
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   245
lemma minus_mult_minus [simp]: "- a * - b = a * b"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   246
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   247
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   248
lemma minus_mult_commute: "- a * b = a * - b"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   249
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   250
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   251
lemma right_diff_distrib: "a * (b - c) = a * b - a * c"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   252
  by (simp add: right_distrib diff_minus 
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   253
    minus_mult_left [symmetric] minus_mult_right [symmetric]) 
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   254
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   255
lemma left_diff_distrib: "(a - b) * c = a * c - b * c"
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   256
  by (simp add: left_distrib diff_minus 
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   257
    minus_mult_left [symmetric] minus_mult_right [symmetric]) 
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   258
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   259
lemmas ring_distribs =
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   260
  right_distrib left_distrib left_diff_distrib right_diff_distrib
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   261
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   262
lemmas ring_simps =
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   263
  add_ac
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   264
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   265
  diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   266
  ring_distribs
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   267
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   268
lemma eq_add_iff1:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   269
  "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   270
  by (simp add: ring_simps)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   271
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   272
lemma eq_add_iff2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   273
  "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   274
  by (simp add: ring_simps)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   275
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   276
end
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   277
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   278
lemmas ring_distribs =
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   279
  right_distrib left_distrib left_diff_distrib right_diff_distrib
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   280
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   281
class comm_ring = comm_semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   282
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   283
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   284
subclass ring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   285
subclass comm_semiring_0 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   286
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   287
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   288
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   289
class ring_1 = ring + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   290
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   291
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   292
subclass semiring_1_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   293
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   294
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   295
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   296
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   297
  (*previously ring*)
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   298
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   299
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   300
subclass ring_1 ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   301
subclass comm_semiring_1_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   302
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   303
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   304
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   305
class ring_no_zero_divisors = ring + no_zero_divisors
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   306
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   307
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   308
lemma mult_eq_0_iff [simp]:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   309
  shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   310
proof (cases "a = 0 \<or> b = 0")
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   311
  case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   312
    then show ?thesis using no_zero_divisors by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   313
next
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   314
  case True then show ?thesis by auto
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   315
qed
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   316
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   317
text{*Cancellation of equalities with a common factor*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   318
lemma mult_cancel_right [simp, noatp]:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   319
  "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   320
proof -
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   321
  have "(a * c = b * c) = ((a - b) * c = 0)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   322
    by (simp add: ring_distribs right_minus_eq)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   323
  thus ?thesis
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   324
    by (simp add: disj_commute right_minus_eq)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   325
qed
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   326
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   327
lemma mult_cancel_left [simp, noatp]:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   328
  "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   329
proof -
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   330
  have "(c * a = c * b) = (c * (a - b) = 0)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   331
    by (simp add: ring_distribs right_minus_eq)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   332
  thus ?thesis
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   333
    by (simp add: right_minus_eq)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   334
qed
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   335
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   336
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   337
23544
4b4165cb3e0d rename class dom to ring_1_no_zero_divisors
huffman
parents: 23527
diff changeset
   338
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   339
begin
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   340
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   341
lemma mult_cancel_right1 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   342
  "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   343
  by (insert mult_cancel_right [of 1 c b], force)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   344
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   345
lemma mult_cancel_right2 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   346
  "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   347
  by (insert mult_cancel_right [of a c 1], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   348
 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   349
lemma mult_cancel_left1 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   350
  "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   351
  by (insert mult_cancel_left [of c 1 b], force)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   352
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   353
lemma mult_cancel_left2 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   354
  "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   355
  by (insert mult_cancel_left [of c a 1], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   356
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   357
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   358
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   359
class idom = comm_ring_1 + no_zero_divisors
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   360
begin
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   361
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   362
subclass ring_1_no_zero_divisors ..
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   363
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   364
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   365
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   366
class division_ring = ring_1 + inverse +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   367
  assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   368
  assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   369
begin
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   370
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   371
subclass ring_1_no_zero_divisors
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   372
proof unfold_locales
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   373
  fix a b :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   374
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   375
  show "a * b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   376
  proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   377
    assume ab: "a * b = 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   378
    hence "0 = inverse a * (a * b) * inverse b"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   379
      by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   380
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   381
      by (simp only: mult_assoc)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   382
    also have "\<dots> = 1"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   383
      using a b by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   384
    finally show False
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   385
      by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   386
  qed
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   387
qed
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   388
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   389
lemma nonzero_imp_inverse_nonzero:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   390
  "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   391
proof
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   392
  assume ianz: "inverse a = 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   393
  assume "a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   394
  hence "1 = a * inverse a" by simp
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   395
  also have "... = 0" by (simp add: ianz)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   396
  finally have "1 = 0" .
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   397
  thus False by (simp add: eq_commute)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   398
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   399
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   400
lemma inverse_zero_imp_zero:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   401
  "inverse a = 0 \<Longrightarrow> a = 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   402
apply (rule classical)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   403
apply (drule nonzero_imp_inverse_nonzero)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   404
apply auto
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   405
done
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   406
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   407
lemma nonzero_inverse_minus_eq:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   408
  assumes "a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   409
  shows "inverse (- a) = - inverse a"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   410
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   411
  have "- a * inverse (- a) = - a * - inverse a"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   412
    using assms by simp
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   413
  then show ?thesis unfolding mult_cancel_left using assms by simp 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   414
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   415
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   416
lemma nonzero_inverse_inverse_eq:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   417
  assumes "a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   418
  shows "inverse (inverse a) = a"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   419
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   420
  have "(inverse (inverse a) * inverse a) * a = a" 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   421
    using assms by (simp add: nonzero_imp_inverse_nonzero)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   422
  then show ?thesis using assms by (simp add: mult_assoc)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   423
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   424
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   425
lemma nonzero_inverse_eq_imp_eq:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   426
  assumes inveq: "inverse a = inverse b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   427
    and anz:  "a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   428
    and bnz:  "b \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   429
  shows "a = b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   430
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   431
  have "a * inverse b = a * inverse a"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   432
    by (simp add: inveq)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   433
  hence "(a * inverse b) * b = (a * inverse a) * b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   434
    by simp
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   435
  then show "a = b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   436
    by (simp add: mult_assoc anz bnz)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   437
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   438
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   439
lemma inverse_1 [simp]: "inverse 1 = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   440
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   441
  have "inverse 1 * 1 = 1" 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   442
    by (rule left_inverse) (rule one_neq_zero)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   443
  then show ?thesis by simp
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   444
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   445
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   446
lemma inverse_unique: 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   447
  assumes ab: "a * b = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   448
  shows "inverse a = b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   449
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   450
  have "a \<noteq> 0" using ab by (cases "a = 0") simp_all
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   451
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   452
  ultimately show ?thesis by (simp add: mult_assoc [symmetric]) 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   453
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   454
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   455
lemma nonzero_inverse_mult_distrib: 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   456
  assumes anz: "a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   457
    and bnz: "b \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   458
  shows "inverse (a * b) = inverse b * inverse a"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   459
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   460
  have "inverse (a * b) * (a * b) * inverse b = inverse b" 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   461
    by (simp add: anz bnz)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   462
  hence "inverse (a * b) * a = inverse b" 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   463
    by (simp add: mult_assoc bnz)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   464
  hence "inverse (a * b) * a * inverse a = inverse b * inverse a" 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   465
    by simp
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   466
  thus ?thesis
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   467
    by (simp add: mult_assoc anz)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   468
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   469
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   470
lemma division_ring_inverse_add:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   471
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   472
  by (simp add: ring_simps mult_assoc)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   473
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   474
lemma division_ring_inverse_diff:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   475
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   476
  by (simp add: ring_simps mult_assoc)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   477
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   478
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   479
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   480
class field = comm_ring_1 + inverse +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   481
  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   482
  assumes divide_inverse: "a / b = a * inverse b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   483
begin
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   484
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   485
subclass division_ring
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   486
proof unfold_locales
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   487
  fix a :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   488
  assume "a \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   489
  thus "inverse a * a = 1" by (rule field_inverse)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   490
  thus "a * inverse a = 1" by (simp only: mult_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   491
qed
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   492
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   493
subclass idom ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   494
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   495
lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   496
proof
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   497
  assume neq: "b \<noteq> 0"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   498
  {
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   499
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   500
    also assume "a / b = 1"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   501
    finally show "a = b" by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   502
  next
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   503
    assume "a = b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   504
    with neq show "a / b = 1" by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   505
  }
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   506
qed
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   507
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   508
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   509
  by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   510
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   511
lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   512
  by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   513
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   514
lemma divide_zero_left [simp]: "0 / a = 0"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   515
  by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   516
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   517
lemma inverse_eq_divide: "inverse a = 1 / a"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   518
  by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   519
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   520
lemma add_divide_distrib: "(a+b) / c = a/c + b/c"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   521
  by (simp add: divide_inverse ring_distribs) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   522
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   523
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   524
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   525
class division_by_zero = zero + inverse +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   526
  assumes inverse_zero [simp]: "inverse 0 = 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   527
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   528
lemma divide_zero [simp]:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   529
  "a / 0 = (0::'a::{field,division_by_zero})"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   530
  by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   531
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   532
lemma divide_self_if [simp]:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   533
  "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   534
  by (simp add: divide_self)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   535
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   536
class mult_mono = times + zero + ord +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   537
  assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   538
  assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   539
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   540
class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add 
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   541
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   542
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   543
lemma mult_mono:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   544
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   545
     \<Longrightarrow> a * c \<le> b * d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   546
apply (erule mult_right_mono [THEN order_trans], assumption)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   547
apply (erule mult_left_mono, assumption)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   548
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   549
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   550
lemma mult_mono':
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   551
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   552
     \<Longrightarrow> a * c \<le> b * d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   553
apply (rule mult_mono)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   554
apply (fast intro: order_trans)+
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   555
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   556
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   557
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   558
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   559
class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   560
  + semiring + comm_monoid_add + cancel_ab_semigroup_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   561
begin
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   562
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   563
subclass semiring_0_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   564
subclass pordered_semiring ..
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
   565
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   566
lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   567
  by (drule mult_left_mono [of zero b], auto)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   568
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   569
lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   570
  by (drule mult_left_mono [of b zero], auto)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   571
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   572
lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   573
  by (drule mult_right_mono [of b zero], auto)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   574
26234
1f6e28a88785 clarified proposition
haftmann
parents: 26193
diff changeset
   575
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" 
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   576
  by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   577
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   578
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   579
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   580
class ordered_semiring = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + mult_mono
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   581
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   582
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   583
subclass pordered_cancel_semiring ..
25512
4134f7c782e2 using intro_locales instead of unfold_locales if appropriate
haftmann
parents: 25450
diff changeset
   584
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   585
subclass pordered_comm_monoid_add ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   586
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   587
lemma mult_left_less_imp_less:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   588
  "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   589
  by (force simp add: mult_left_mono not_le [symmetric])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   590
 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   591
lemma mult_right_less_imp_less:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   592
  "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   593
  by (force simp add: mult_right_mono not_le [symmetric])
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
   594
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   595
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   596
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   597
class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   598
  assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   599
  assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   600
begin
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   601
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   602
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   603
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   604
subclass ordered_semiring
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   605
proof unfold_locales
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   606
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   607
  assume A: "a \<le> b" "0 \<le> c"
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   608
  from A show "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   609
    unfolding le_less
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   610
    using mult_strict_left_mono by (cases "c = 0") auto
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   611
  from A show "a * c \<le> b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   612
    unfolding le_less
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   613
    using mult_strict_right_mono by (cases "c = 0") auto
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   614
qed
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   615
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   616
lemma mult_left_le_imp_le:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   617
  "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   618
  by (force simp add: mult_strict_left_mono _not_less [symmetric])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   619
 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   620
lemma mult_right_le_imp_le:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   621
  "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   622
  by (force simp add: mult_strict_right_mono not_less [symmetric])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   623
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   624
lemma mult_pos_pos:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   625
  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   626
  by (drule mult_strict_left_mono [of zero b], auto)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   627
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   628
lemma mult_pos_neg:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   629
  "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   630
  by (drule mult_strict_left_mono [of b zero], auto)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   631
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   632
lemma mult_pos_neg2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   633
  "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   634
  by (drule mult_strict_right_mono [of b zero], auto)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   635
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   636
lemma zero_less_mult_pos:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   637
  "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   638
apply (cases "b\<le>0") 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   639
 apply (auto simp add: le_less not_less)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   640
apply (drule_tac mult_pos_neg [of a b]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   641
 apply (auto dest: less_not_sym)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   642
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   643
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   644
lemma zero_less_mult_pos2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   645
  "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   646
apply (cases "b\<le>0") 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   647
 apply (auto simp add: le_less not_less)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   648
apply (drule_tac mult_pos_neg2 [of a b]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   649
 apply (auto dest: less_not_sym)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   650
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   651
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   652
text{*Strict monotonicity in both arguments*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   653
lemma mult_strict_mono:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   654
  assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   655
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   656
  using assms apply (cases "c=0")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   657
  apply (simp add: mult_pos_pos) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   658
  apply (erule mult_strict_right_mono [THEN less_trans])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   659
  apply (force simp add: le_less) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   660
  apply (erule mult_strict_left_mono, assumption)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   661
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   662
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   663
text{*This weaker variant has more natural premises*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   664
lemma mult_strict_mono':
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   665
  assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   666
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   667
  by (rule mult_strict_mono) (insert assms, auto)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   668
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   669
lemma mult_less_le_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   670
  assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   671
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   672
  using assms apply (subgoal_tac "a * c < b * c")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   673
  apply (erule less_le_trans)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   674
  apply (erule mult_left_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   675
  apply simp
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   676
  apply (erule mult_strict_right_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   677
  apply assumption
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   678
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   679
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   680
lemma mult_le_less_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   681
  assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   682
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   683
  using assms apply (subgoal_tac "a * c \<le> b * c")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   684
  apply (erule le_less_trans)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   685
  apply (erule mult_strict_left_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   686
  apply simp
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   687
  apply (erule mult_right_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   688
  apply simp
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   689
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   690
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   691
lemma mult_less_imp_less_left:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   692
  assumes less: "c * a < c * b" and nonneg: "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   693
  shows "a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   694
proof (rule ccontr)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   695
  assume "\<not>  a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   696
  hence "b \<le> a" by (simp add: linorder_not_less)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   697
  hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   698
  with this and less show False 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   699
    by (simp add: not_less [symmetric])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   700
qed
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   701
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   702
lemma mult_less_imp_less_right:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   703
  assumes less: "a * c < b * c" and nonneg: "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   704
  shows "a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   705
proof (rule ccontr)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   706
  assume "\<not> a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   707
  hence "b \<le> a" by (simp add: linorder_not_less)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   708
  hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   709
  with this and less show False 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   710
    by (simp add: not_less [symmetric])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   711
qed  
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   712
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   713
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   714
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   715
class mult_mono1 = times + zero + ord +
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   716
  assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   717
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   718
class pordered_comm_semiring = comm_semiring_0
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   719
  + pordered_ab_semigroup_add + mult_mono1
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   720
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   721
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   722
subclass pordered_semiring
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   723
proof unfold_locales
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   724
  fix a b c :: 'a
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   725
  assume "a \<le> b" "0 \<le> c"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   726
  thus "c * a \<le> c * b" by (rule mult_mono1)
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   727
  thus "a * c \<le> b * c" by (simp only: mult_commute)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   728
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   729
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   730
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   731
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   732
class pordered_cancel_comm_semiring = comm_semiring_0_cancel
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   733
  + pordered_ab_semigroup_add + mult_mono1
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   734
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   735
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   736
subclass pordered_comm_semiring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   737
subclass pordered_cancel_semiring ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   738
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   739
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   740
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   741
class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   742
  assumes mult_strict_left_mono_comm: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   743
begin
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   744
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   745
subclass ordered_semiring_strict
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   746
proof unfold_locales
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   747
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   748
  assume "a < b" "0 < c"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   749
  thus "c * a < c * b" by (rule mult_strict_left_mono_comm)
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   750
  thus "a * c < b * c" by (simp only: mult_commute)
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   751
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   752
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   753
subclass pordered_cancel_comm_semiring
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   754
proof unfold_locales
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   755
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   756
  assume "a \<le> b" "0 \<le> c"
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   757
  thus "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   758
    unfolding le_less
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   759
    using mult_strict_left_mono by (cases "c = 0") auto
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   760
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   761
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   762
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   763
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   764
class pordered_ring = ring + pordered_cancel_semiring 
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   765
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   766
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   767
subclass pordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   768
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   769
lemmas ring_simps = ring_simps group_simps
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   770
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   771
lemma less_add_iff1:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   772
  "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   773
  by (simp add: ring_simps)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   774
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   775
lemma less_add_iff2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   776
  "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   777
  by (simp add: ring_simps)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   778
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   779
lemma le_add_iff1:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   780
  "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   781
  by (simp add: ring_simps)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   782
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   783
lemma le_add_iff2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   784
  "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   785
  by (simp add: ring_simps)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   786
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   787
lemma mult_left_mono_neg:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   788
  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   789
  apply (drule mult_left_mono [of _ _ "uminus c"])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   790
  apply (simp_all add: minus_mult_left [symmetric]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   791
  done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   792
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   793
lemma mult_right_mono_neg:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   794
  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   795
  apply (drule mult_right_mono [of _ _ "uminus c"])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   796
  apply (simp_all add: minus_mult_right [symmetric]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   797
  done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   798
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   799
lemma mult_nonpos_nonpos:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   800
  "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   801
  by (drule mult_right_mono_neg [of a zero b]) auto
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   802
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   803
lemma split_mult_pos_le:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   804
  "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   805
  by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   806
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   807
end
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   808
25762
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   809
class abs_if = minus + uminus + ord + zero + abs +
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   810
  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   811
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   812
class sgn_if = minus + uminus + zero + one + ord + sgn +
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   813
  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 24491
diff changeset
   814
25564
4ca31a3706a4 R&F: added sgn lemma
nipkow
parents: 25512
diff changeset
   815
lemma (in sgn_if) sgn0[simp]: "sgn 0 = 0"
4ca31a3706a4 R&F: added sgn lemma
nipkow
parents: 25512
diff changeset
   816
by(simp add:sgn_if)
4ca31a3706a4 R&F: added sgn lemma
nipkow
parents: 25512
diff changeset
   817
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   818
class ordered_ring = ring + ordered_semiring
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   819
  + ordered_ab_group_add + abs_if
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   820
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   821
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   822
subclass pordered_ring ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   823
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   824
subclass pordered_ab_group_add_abs
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   825
proof unfold_locales
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   826
  fix a b
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   827
  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   828
  by (auto simp add: abs_if not_less neg_less_eq_nonneg less_eq_neg_nonpos)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   829
   (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric]
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   830
     neg_less_eq_nonneg less_eq_neg_nonpos, auto intro: add_nonneg_nonneg,
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   831
      auto intro!: less_imp_le add_neg_neg)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   832
qed (auto simp add: abs_if less_eq_neg_nonpos neg_equal_zero)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   833
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   834
end
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
   835
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   836
(* The "strict" suffix can be seen as describing the combination of ordered_ring and no_zero_divisors.
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   837
   Basically, ordered_ring + no_zero_divisors = ordered_ring_strict.
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   838
 *)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   839
class ordered_ring_strict = ring + ordered_semiring_strict
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   840
  + ordered_ab_group_add + abs_if
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   841
begin
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   842
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   843
subclass ordered_ring ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   844
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   845
lemma mult_strict_left_mono_neg:
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   846
  "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   847
  apply (drule mult_strict_left_mono [of _ _ "uminus c"])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   848
  apply (simp_all add: minus_mult_left [symmetric]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   849
  done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   850
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   851
lemma mult_strict_right_mono_neg:
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   852
  "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   853
  apply (drule mult_strict_right_mono [of _ _ "uminus c"])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   854
  apply (simp_all add: minus_mult_right [symmetric]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   855
  done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   856
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   857
lemma mult_neg_neg:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   858
  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   859
  by (drule mult_strict_right_mono_neg, auto)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   860
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   861
subclass ring_no_zero_divisors
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   862
proof unfold_locales
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   863
  fix a b
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   864
  assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   865
  assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   866
  have "a * b < 0 \<or> 0 < a * b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   867
  proof (cases "a < 0")
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   868
    case True note A' = this
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   869
    show ?thesis proof (cases "b < 0")
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   870
      case True with A'
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   871
      show ?thesis by (auto dest: mult_neg_neg)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   872
    next
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   873
      case False with B have "0 < b" by auto
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   874
      with A' show ?thesis by (auto dest: mult_strict_right_mono)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   875
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   876
  next
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   877
    case False with A have A': "0 < a" by auto
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   878
    show ?thesis proof (cases "b < 0")
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   879
      case True with A'
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   880
      show ?thesis by (auto dest: mult_strict_right_mono_neg)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   881
    next
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   882
      case False with B have "0 < b" by auto
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   883
      with A' show ?thesis by (auto dest: mult_pos_pos)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   884
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   885
  qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   886
  then show "a * b \<noteq> 0" by (simp add: neq_iff)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   887
qed
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   888
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   889
lemma zero_less_mult_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   890
  "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   891
  apply (auto simp add: mult_pos_pos mult_neg_neg)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   892
  apply (simp_all add: not_less le_less)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   893
  apply (erule disjE) apply assumption defer
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   894
  apply (erule disjE) defer apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   895
  apply (erule disjE) defer apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   896
  apply (erule disjE) apply assumption apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   897
  apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   898
  apply (blast dest: zero_less_mult_pos)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   899
  apply (blast dest: zero_less_mult_pos2)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   900
  done
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   901
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   902
lemma zero_le_mult_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   903
  "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   904
  by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   905
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   906
lemma mult_less_0_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   907
  "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   908
  apply (insert zero_less_mult_iff [of "-a" b]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   909
  apply (force simp add: minus_mult_left[symmetric]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   910
  done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   911
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   912
lemma mult_le_0_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   913
  "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   914
  apply (insert zero_le_mult_iff [of "-a" b]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   915
  apply (force simp add: minus_mult_left[symmetric]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   916
  done
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   918
lemma zero_le_square [simp]: "0 \<le> a * a"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   919
  by (simp add: zero_le_mult_iff linear)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   920
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   921
lemma not_square_less_zero [simp]: "\<not> (a * a < 0)"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   922
  by (simp add: not_less)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   923
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   924
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   925
   also with the relations @{text "\<le>"} and equality.*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   926
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   927
text{*These ``disjunction'' versions produce two cases when the comparison is
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   928
 an assumption, but effectively four when the comparison is a goal.*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   929
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   930
lemma mult_less_cancel_right_disj:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   931
  "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   932
  apply (cases "c = 0")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   933
  apply (auto simp add: neq_iff mult_strict_right_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   934
                      mult_strict_right_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   935
  apply (auto simp add: not_less 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   936
                      not_le [symmetric, of "a*c"]
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   937
                      not_le [symmetric, of a])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   938
  apply (erule_tac [!] notE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   939
  apply (auto simp add: less_imp_le mult_right_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   940
                      mult_right_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   941
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   942
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   943
lemma mult_less_cancel_left_disj:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   944
  "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   945
  apply (cases "c = 0")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   946
  apply (auto simp add: neq_iff mult_strict_left_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   947
                      mult_strict_left_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   948
  apply (auto simp add: not_less 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   949
                      not_le [symmetric, of "c*a"]
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   950
                      not_le [symmetric, of a])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   951
  apply (erule_tac [!] notE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   952
  apply (auto simp add: less_imp_le mult_left_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   953
                      mult_left_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   954
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   955
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   956
text{*The ``conjunction of implication'' lemmas produce two cases when the
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   957
comparison is a goal, but give four when the comparison is an assumption.*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   958
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   959
lemma mult_less_cancel_right:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   960
  "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   961
  using mult_less_cancel_right_disj [of a c b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   962
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   963
lemma mult_less_cancel_left:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   964
  "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   965
  using mult_less_cancel_left_disj [of c a b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   966
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   967
lemma mult_le_cancel_right:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   968
   "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   969
  by (simp add: not_less [symmetric] mult_less_cancel_right_disj)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   970
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   971
lemma mult_le_cancel_left:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   972
  "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   973
  by (simp add: not_less [symmetric] mult_less_cancel_left_disj)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   974
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
   975
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   976
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   977
text{*This list of rewrites simplifies ring terms by multiplying
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   978
everything out and bringing sums and products into a canonical form
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   979
(by ordered rewriting). As a result it decides ring equalities but
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   980
also helps with inequalities. *}
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   981
lemmas ring_simps = group_simps ring_distribs
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   982
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   983
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   984
class pordered_comm_ring = comm_ring + pordered_comm_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   985
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   986
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   987
subclass pordered_ring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   988
subclass pordered_cancel_comm_semiring ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   989
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   990
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   991
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   992
class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict +
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   993
  (*previously ordered_semiring*)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   994
  assumes zero_less_one [simp]: "0 < 1"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   995
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   996
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   997
lemma pos_add_strict:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   998
  shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   999
  using add_strict_mono [of zero a b c] by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1000
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1001
lemma zero_le_one [simp]: "0 \<le> 1"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1002
  by (rule zero_less_one [THEN less_imp_le]) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1003
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1004
lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1005
  by (simp add: not_le) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1006
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1007
lemma not_one_less_zero [simp]: "\<not> 1 < 0"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1008
  by (simp add: not_less) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1009
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1010
lemma less_1_mult:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1011
  assumes "1 < m" and "1 < n"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1012
  shows "1 < m * n"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1013
  using assms mult_strict_mono [of 1 m 1 n]
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1014
    by (simp add:  less_trans [OF zero_less_one]) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1015
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1016
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1017
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1018
class ordered_idom = comm_ring_1 +
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1019
  ordered_comm_semiring_strict + ordered_ab_group_add +
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1020
  abs_if + sgn_if
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1021
  (*previously ordered_ring*)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1022
begin
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1023
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1024
subclass ordered_ring_strict ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1025
subclass pordered_comm_ring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1026
subclass idom ..
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1027
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1028
subclass ordered_semidom
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1029
proof unfold_locales
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1030
  have "0 \<le> 1 * 1" by (rule zero_le_square)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1031
  thus "0 < 1" by (simp add: le_less)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1032
qed 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1033
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1034
lemma linorder_neqE_ordered_idom:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1035
  assumes "x \<noteq> y" obtains "x < y" | "y < x"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1036
  using assms by (rule neqE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1037
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1038
text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1039
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1040
lemma mult_le_cancel_right1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1041
  "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1042
  by (insert mult_le_cancel_right [of 1 c b], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1043
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1044
lemma mult_le_cancel_right2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1045
  "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1046
  by (insert mult_le_cancel_right [of a c 1], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1047
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1048
lemma mult_le_cancel_left1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1049
  "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1050
  by (insert mult_le_cancel_left [of c 1 b], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1051
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1052
lemma mult_le_cancel_left2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1053
  "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1054
  by (insert mult_le_cancel_left [of c a 1], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1055
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1056
lemma mult_less_cancel_right1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1057
  "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1058
  by (insert mult_less_cancel_right [of 1 c b], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1059
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1060
lemma mult_less_cancel_right2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1061
  "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1062
  by (insert mult_less_cancel_right [of a c 1], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1063
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1064
lemma mult_less_cancel_left1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1065
  "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1066
  by (insert mult_less_cancel_left [of c 1 b], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1067
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1068
lemma mult_less_cancel_left2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1069
  "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1070
  by (insert mult_less_cancel_left [of c a 1], simp)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1071
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1072
lemma sgn_sgn [simp]:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1073
  "sgn (sgn a) = sgn a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1074
  unfolding sgn_if by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1075
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1076
lemma sgn_0_0:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1077
  "sgn a = 0 \<longleftrightarrow> a = 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1078
  unfolding sgn_if by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1079
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1080
lemma sgn_1_pos:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1081
  "sgn a = 1 \<longleftrightarrow> a > 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1082
  unfolding sgn_if by (simp add: neg_equal_zero)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1083
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1084
lemma sgn_1_neg:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1085
  "sgn a = - 1 \<longleftrightarrow> a < 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1086
  unfolding sgn_if by (auto simp add: equal_neg_zero)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1087
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1088
lemma sgn_times:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1089
  "sgn (a * b) = sgn a * sgn b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1090
  by (auto simp add: sgn_if zero_less_mult_iff)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1091
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1092
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1093
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1094
class ordered_field = field + ordered_idom
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1095
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1096
text {* Simprules for comparisons where common factors can be cancelled. *}
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1097
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1098
lemmas mult_compare_simps =
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1099
    mult_le_cancel_right mult_le_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1100
    mult_le_cancel_right1 mult_le_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1101
    mult_le_cancel_left1 mult_le_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1102
    mult_less_cancel_right mult_less_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1103
    mult_less_cancel_right1 mult_less_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1104
    mult_less_cancel_left1 mult_less_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1105
    mult_cancel_right mult_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1106
    mult_cancel_right1 mult_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1107
    mult_cancel_left1 mult_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1108
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1109
-- {* FIXME continue localization here *}
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1110
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1111
lemma inverse_nonzero_iff_nonzero [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1112
   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1113
by (force dest: inverse_zero_imp_zero) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1114
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1115
lemma inverse_minus_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1116
   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1117
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1118
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1119
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1120
  assume "a\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1121
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1122
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1123
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1124
lemma inverse_eq_imp_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1125
  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1126
apply (cases "a=0 | b=0") 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1127
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1128
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1129
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1130
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1131
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1132
lemma inverse_eq_iff_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1133
  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1134
by (force dest!: inverse_eq_imp_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1135
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1136
lemma inverse_inverse_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1137
     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1138
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1139
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1140
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1141
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1142
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1143
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1144
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1145
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1146
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1147
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1148
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1149
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1150
    assume "a \<noteq> 0 & b \<noteq> 0" 
22993
haftmann
parents: 22990
diff changeset
  1151
    thus ?thesis
haftmann
parents: 22990
diff changeset
  1152
      by (simp add: nonzero_inverse_mult_distrib mult_commute)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1153
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1154
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
22993
haftmann
parents: 22990
diff changeset
  1155
    thus ?thesis
haftmann
parents: 22990
diff changeset
  1156
      by force
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1157
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1158
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1159
text{*There is no slick version using division by zero.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1160
lemma inverse_add:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1161
  "[|a \<noteq> 0;  b \<noteq> 0|]
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1162
   ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1163
by (simp add: division_ring_inverse_add mult_ac)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1164
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1165
lemma inverse_divide [simp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1166
  "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1167
by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1168
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1169
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1170
subsection {* Calculations with fractions *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1171
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1172
text{* There is a whole bunch of simp-rules just for class @{text
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1173
field} but none for class @{text field} and @{text nonzero_divides}
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1174
because the latter are covered by a simproc. *}
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1175
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1176
lemma nonzero_mult_divide_mult_cancel_left[simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1177
assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/(b::'a::field)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1178
proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1179
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1180
    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1181
  also have "... =  a * inverse b * (inverse c * c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1182
    by (simp only: mult_ac)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1183
  also have "... =  a * inverse b"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1184
    by simp
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1185
    finally show ?thesis 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1186
    by (simp add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1187
qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1188
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1189
lemma mult_divide_mult_cancel_left:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1190
  "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1191
apply (cases "b = 0")
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1192
apply (simp_all add: nonzero_mult_divide_mult_cancel_left)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1193
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1194
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1195
lemma nonzero_mult_divide_mult_cancel_right [noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1196
  "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1197
by (simp add: mult_commute [of _ c] nonzero_mult_divide_mult_cancel_left) 
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1198
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1199
lemma mult_divide_mult_cancel_right:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1200
  "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1201
apply (cases "b = 0")
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1202
apply (simp_all add: nonzero_mult_divide_mult_cancel_right)
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1203
done
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1204
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
  1205
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1206
by (simp add: divide_inverse)
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
  1207
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1208
lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1209
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1210
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1211
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1212
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1213
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1214
lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1215
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1216
lemma divide_divide_eq_right [simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1217
  "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1218
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1219
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1220
lemma divide_divide_eq_left [simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1221
  "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1222
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1223
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1224
lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1225
    x / y + w / z = (x * z + w * y) / (y * z)"
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1226
apply (subgoal_tac "x / y = (x * z) / (y * z)")
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1227
apply (erule ssubst)
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1228
apply (subgoal_tac "w / z = (w * y) / (y * z)")
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1229
apply (erule ssubst)
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1230
apply (rule add_divide_distrib [THEN sym])
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1231
apply (subst mult_commute)
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1232
apply (erule nonzero_mult_divide_mult_cancel_left [THEN sym])
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1233
apply assumption
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1234
apply (erule nonzero_mult_divide_mult_cancel_right [THEN sym])
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1235
apply assumption
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1236
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1237
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1238
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1239
subsubsection{*Special Cancellation Simprules for Division*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1240
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1241
lemma mult_divide_mult_cancel_left_if[simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1242
fixes c :: "'a :: {field,division_by_zero}"
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1243
shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1244
by (simp add: mult_divide_mult_cancel_left)
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1245
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1246
lemma nonzero_mult_divide_cancel_right[simp,noatp]:
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1247
  "b \<noteq> 0 \<Longrightarrow> a * b / b = (a::'a::field)"
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1248
using nonzero_mult_divide_mult_cancel_right[of 1 b a] by simp
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1249
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1250
lemma nonzero_mult_divide_cancel_left[simp,noatp]:
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1251
  "a \<noteq> 0 \<Longrightarrow> a * b / a = (b::'a::field)"
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1252
using nonzero_mult_divide_mult_cancel_left[of 1 a b] by simp
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1253
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1254
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1255
lemma nonzero_divide_mult_cancel_right[simp,noatp]:
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1256
  "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> b / (a * b) = 1/(a::'a::field)"
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1257
using nonzero_mult_divide_mult_cancel_right[of a b 1] by simp
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1258
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1259
lemma nonzero_divide_mult_cancel_left[simp,noatp]:
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1260
  "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> a / (a * b) = 1/(b::'a::field)"
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1261
using nonzero_mult_divide_mult_cancel_left[of b a 1] by simp
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1262
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1263
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1264
lemma nonzero_mult_divide_mult_cancel_left2[simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1265
  "[|b\<noteq>0; c\<noteq>0|] ==> (c*a) / (b*c) = a/(b::'a::field)"
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1266
using nonzero_mult_divide_mult_cancel_left[of b c a] by(simp add:mult_ac)
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1267
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1268
lemma nonzero_mult_divide_mult_cancel_right2[simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1269
  "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (c*b) = a/(b::'a::field)"
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1270
using nonzero_mult_divide_mult_cancel_right[of b c a] by(simp add:mult_ac)
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1271
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1272
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1273
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1274
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1275
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1276
by (simp add: divide_inverse minus_mult_left)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1277
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1278
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1279
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1280
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1281
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1282
by (simp add: divide_inverse nonzero_inverse_minus_eq)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1283
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1284
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1285
by (simp add: divide_inverse minus_mult_left [symmetric])
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1286
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1287
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1288
by (simp add: divide_inverse minus_mult_right [symmetric])
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1289
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1290
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1291
text{*The effect is to extract signs from divisions*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1292
lemmas divide_minus_left = minus_divide_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1293
lemmas divide_minus_right = minus_divide_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1294
declare divide_minus_left [simp]   divide_minus_right [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1295
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1296
text{*Also, extract signs from products*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1297
lemmas mult_minus_left = minus_mult_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1298
lemmas mult_minus_right = minus_mult_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1299
declare mult_minus_left [simp]   mult_minus_right [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1300
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1301
lemma minus_divide_divide [simp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1302
  "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1303
apply (cases "b=0", simp) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1304
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1305
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1306
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1307
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1308
by (simp add: diff_minus add_divide_distrib) 
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1309
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1310
lemma add_divide_eq_iff:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1311
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x + y/z = (z*x + y)/z"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1312
by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1313
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1314
lemma divide_add_eq_iff:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1315
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z + y = (x + z*y)/z"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1316
by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1317
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1318
lemma diff_divide_eq_iff:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1319
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x - y/z = (z*x - y)/z"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1320
by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1321
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1322
lemma divide_diff_eq_iff:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1323
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z - y = (x - z*y)/z"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1324
by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1325
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1326
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1327
proof -
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1328
  assume [simp]: "c\<noteq>0"
23496
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1329
  have "(a = b/c) = (a*c = (b/c)*c)" by simp
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1330
  also have "... = (a*c = b)" by (simp add: divide_inverse mult_assoc)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1331
  finally show ?thesis .
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1332
qed
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1333
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1334
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1335
proof -
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1336
  assume [simp]: "c\<noteq>0"
23496
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1337
  have "(b/c = a) = ((b/c)*c = a*c)"  by simp
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1338
  also have "... = (b = a*c)"  by (simp add: divide_inverse mult_assoc) 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1339
  finally show ?thesis .
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1340
qed
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1341
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1342
lemma eq_divide_eq:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1343
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1344
by (simp add: nonzero_eq_divide_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1345
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1346
lemma divide_eq_eq:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1347
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1348
by (force simp add: nonzero_divide_eq_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1349
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1350
lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1351
    b = a * c ==> b / c = a"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1352
  by (subst divide_eq_eq, simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1353
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1354
lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1355
    a * c = b ==> a = b / c"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1356
  by (subst eq_divide_eq, simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1357
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1358
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1359
lemmas field_eq_simps = ring_simps
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1360
  (* pull / out*)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1361
  add_divide_eq_iff divide_add_eq_iff
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1362
  diff_divide_eq_iff divide_diff_eq_iff
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1363
  (* multiply eqn *)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1364
  nonzero_eq_divide_eq nonzero_divide_eq_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1365
(* is added later:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1366
  times_divide_eq_left times_divide_eq_right
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1367
*)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1368
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1369
text{*An example:*}
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1370
lemma fixes a b c d e f :: "'a::field"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1371
shows "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f \<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1372
apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0")
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1373
 apply(simp add:field_eq_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1374
apply(simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1375
done
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1376
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1377
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1378
lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1379
    x / y - w / z = (x * z - w * y) / (y * z)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1380
by (simp add:field_eq_simps times_divide_eq)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1381
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1382
lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1383
    (x / y = w / z) = (x * z = w * y)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1384
by (simp add:field_eq_simps times_divide_eq)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1385
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1386
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1387
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1388
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1389
lemma positive_imp_inverse_positive: 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1390
assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1391
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1392
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1393
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1394
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1395
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1396
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1397
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1398
lemma negative_imp_inverse_negative:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1399
  "a < 0 ==> inverse a < (0::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1400
by (insert positive_imp_inverse_positive [of "-a"], 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1401
    simp add: nonzero_inverse_minus_eq order_less_imp_not_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1402
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1403
lemma inverse_le_imp_le:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1404
assumes invle: "inverse a \<le> inverse b" and apos:  "0 < a"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1405
shows "b \<le> (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1406
proof (rule classical)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1407
  assume "~ b \<le> a"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1408
  hence "a < b"  by (simp add: linorder_not_le)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1409
  hence bpos: "0 < b"  by (blast intro: apos order_less_trans)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1410
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1411
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1412
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1413
    by (simp add: bpos order_less_imp_le mult_right_mono)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1414
  thus "b \<le> a"  by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1415
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1416
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1417
lemma inverse_positive_imp_positive:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1418
assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1419
shows "0 < (a::'a::ordered_field)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1420
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1421
  have "0 < inverse (inverse a)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1422
    using inv_gt_0 by (rule positive_imp_inverse_positive)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1423
  thus "0 < a"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1424
    using nz by (simp add: nonzero_inverse_inverse_eq)
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1425
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1426
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1427
lemma inverse_positive_iff_positive [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1428
  "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1429
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1430
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1431
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1432
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1433
lemma inverse_negative_imp_negative:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1434
assumes inv_less_0: "inverse a < 0" and nz:  "a \<noteq> 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1435
shows "a < (0::'a::ordered_field)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1436
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1437
  have "inverse (inverse a) < 0"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1438
    using inv_less_0 by (rule negative_imp_inverse_negative)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1439
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1440
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1441
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1442
lemma inverse_negative_iff_negative [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1443
  "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1444
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1445
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1446
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1447
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1448
lemma inverse_nonnegative_iff_nonnegative [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1449
  "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1450
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1451
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1452
lemma inverse_nonpositive_iff_nonpositive [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1453
  "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1454
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1455
23406
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1456
lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1457
proof
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1458
  fix x::'a
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1459
  have m1: "- (1::'a) < 0" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1460
  from add_strict_right_mono[OF m1, where c=x] 
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1461
  have "(- 1) + x < x" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1462
  thus "\<exists>y. y < x" by blast
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1463
qed
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1464
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1465
lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1466
proof
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1467
  fix x::'a
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1468
  have m1: " (1::'a) > 0" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1469
  from add_strict_right_mono[OF m1, where c=x] 
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1470
  have "1 + x > x" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1471
  thus "\<exists>y. y > x" by blast
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1472
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1473
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1474
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1475
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1476
lemma less_imp_inverse_less:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1477
assumes less: "a < b" and apos:  "0 < a"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1478
shows "inverse b < inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1479
proof (rule ccontr)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1480
  assume "~ inverse b < inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1481
  hence "inverse a \<le> inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1482
    by (simp add: linorder_not_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1483
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1484
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1485
  thus False
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1486
    by (rule notE [OF _ less])
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1487
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1488
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1489
lemma inverse_less_imp_less:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1490
  "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1491
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1492
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1493
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1494
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1495
text{*Both premises are essential. Consider -1 and 1.*}
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1496
lemma inverse_less_iff_less [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1497
  "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1498
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1499
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1500
lemma le_imp_inverse_le:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1501
  "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1502
by (force simp add: order_le_less less_imp_inverse_less)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1503
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1504
lemma inverse_le_iff_le [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1505
 "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1506
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1507
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1508
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1509
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1510
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1511
lemma inverse_le_imp_le_neg:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1512
  "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1513
apply (rule classical) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1514
apply (subgoal_tac "a < 0") 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1515
 prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1516
apply (insert inverse_le_imp_le [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1517
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1518
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1519
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1520
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1521
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1522
apply (subgoal_tac "a < 0") 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1523
 prefer 2 apply (blast intro: order_less_trans) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1524
apply (insert less_imp_inverse_less [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1525
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1526
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1527
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1528
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1529
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1530
apply (rule classical) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1531
apply (subgoal_tac "a < 0") 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1532
 prefer 2
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1533
 apply (force simp add: linorder_not_less intro: order_le_less_trans) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1534
apply (insert inverse_less_imp_less [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1535
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1536
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1537
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1538
lemma inverse_less_iff_less_neg [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1539
  "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1540
apply (insert inverse_less_iff_less [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1541
apply (simp del: inverse_less_iff_less 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1542
            add: order_less_imp_not_eq nonzero_inverse_minus_eq)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1543
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1544
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1545
lemma le_imp_inverse_le_neg:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1546
  "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1547
by (force simp add: order_le_less less_imp_inverse_less_neg)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1548
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1549
lemma inverse_le_iff_le_neg [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1550
 "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1551
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1552
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1553
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1554
subsection{*Inverses and the Number One*}
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1555
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1556
lemma one_less_inverse_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1557
  "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1558
proof cases
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1559
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1560
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1561
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1562
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1563
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1564
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1565
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1566
    assume "1 < inverse x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1567
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1568
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1569
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1570
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1571
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1572
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1573
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1574
lemma inverse_eq_1_iff [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1575
  "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1576
by (insert inverse_eq_iff_eq [of x 1], simp) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1577
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1578
lemma one_le_inverse_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1579
  "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1580
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1581
                    eq_commute [of 1]) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1582
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1583
lemma inverse_less_1_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1584
  "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1585
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1586
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1587
lemma inverse_le_1_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1588
  "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1589
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1590
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1591
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1592
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1593
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1594
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1595
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1596
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1597
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1598
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1599
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1600
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1601
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1602
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1603
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1604
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1605
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1606
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1607
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1608
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1609
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1610
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1611
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1612
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1613
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1614
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1615
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1616
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1617
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1618
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1619
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1620
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1621
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1622
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1623
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1624
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1625
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1626
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1627
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1628
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1629
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1630
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1631
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1632
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1633
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1634
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1635
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1636
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1637
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1638
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1639
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1640
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1641
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1642
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1643
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1644
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1645
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1646
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1647
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1648
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1649
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1650
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1651
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1652
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1653
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1654
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1655
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1656
  hence "(a < b/c) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1657
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1658
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1659
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1660
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1661
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1662
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1663
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1664
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1665
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1666
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1667
  hence "(a < b/c) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1668
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1669
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1670
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1671
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1672
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1673
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1674
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1675
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1676
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1677
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1678
             else  a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1679
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1680
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1681
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1682
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1683
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1684
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1685
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1686
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1687
  hence "(b/c < a) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1688
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1689
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1690
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1691
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1692
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1693
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1694
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1695
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1696
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1697
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1698
  hence "(b/c < a) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1699
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1700
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1701
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1702
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1703
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1704
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1705
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1706
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1707
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1708
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1709
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1710
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1711
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1712
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1713
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1714
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1715
subsection{*Field simplification*}
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1716
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1717
text{* Lemmas @{text field_simps} multiply with denominators in
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1718
in(equations) if they can be proved to be non-zero (for equations) or
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1719
positive/negative (for inequations). *}
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1720
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1721
lemmas field_simps = field_eq_simps
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1722
  (* multiply ineqn *)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1723
  pos_divide_less_eq neg_divide_less_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1724
  pos_less_divide_eq neg_less_divide_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1725
  pos_divide_le_eq neg_divide_le_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1726
  pos_le_divide_eq neg_le_divide_eq
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1727
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1728
text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
23483
a9356b40fbd3 tex problem fixed
nipkow
parents: 23482
diff changeset
  1729
of positivity/negativity needed for @{text field_simps}. Have not added @{text
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1730
sign_simps} to @{text field_simps} because the former can lead to case
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1731
explosions. *}
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1732
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1733
lemmas sign_simps = group_simps
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1734
  zero_less_mult_iff  mult_less_0_iff
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1735
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1736
(* Only works once linear arithmetic is installed:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1737
text{*An example:*}
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1738
lemma fixes a b c d e f :: "'a::ordered_field"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1739
shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1740
 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1741
 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1742
apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1743
 prefer 2 apply(simp add:sign_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1744
apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1745
 prefer 2 apply(simp add:sign_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1746
apply(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1747
done
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1748
*)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1749
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1750
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1751
subsection{*Division and Signs*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1752
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1753
lemma zero_less_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1754
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1755
by (simp add: divide_inverse zero_less_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1756
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1757
lemma divide_less_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1758
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1759
      (0 < a & b < 0 | a < 0 & 0 < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1760
by (simp add: divide_inverse mult_less_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1761
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1762
lemma zero_le_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1763
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1764
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1765
by (simp add: divide_inverse zero_le_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1766
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1767
lemma divide_le_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1768
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1769
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1770
by (simp add: divide_inverse mult_le_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1771
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1772
lemma divide_eq_0_iff [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1773
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1774
by (simp add: divide_inverse)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1775
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1776
lemma divide_pos_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1777
  "0 < (x::'a::ordered_field) ==> 0 < y ==> 0 < x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1778
by(simp add:field_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1779
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1780
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1781
lemma divide_nonneg_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1782
  "0 <= (x::'a::ordered_field) ==> 0 < y ==> 0 <= x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1783
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1784
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1785
lemma divide_neg_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1786
  "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1787
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1788
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1789
lemma divide_nonpos_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1790
  "(x::'a::ordered_field) <= 0 ==> 0 < y ==> x / y <= 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1791
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1792
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1793
lemma divide_pos_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1794
  "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1795
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1796
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1797
lemma divide_nonneg_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1798
  "0 <= (x::'a::ordered_field) ==> y < 0 ==> x / y <= 0" 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1799
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1800
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1801
lemma divide_neg_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1802
  "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1803
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1804
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1805
lemma divide_nonpos_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1806
  "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 0 <= x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1807
by(simp add:field_simps)
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1808
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1809
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1810
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1811
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1812
lemma divide_cancel_right [simp,noatp]:
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1813
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1814
apply (cases "c=0", simp)
23496
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1815
apply (simp add: divide_inverse)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1816
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1817
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1818
lemma divide_cancel_left [simp,noatp]:
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1819
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1820
apply (cases "c=0", simp)
23496
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1821
apply (simp add: divide_inverse)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1822
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1823
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1824
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1825
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1826
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1827
text{*Simplify expressions equated with 1*}
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1828
lemma divide_eq_1_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1829
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1830
apply (cases "b=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1831
apply (simp add: right_inverse_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1832
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1833
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1834
lemma one_eq_divide_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1835
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1836
by (simp add: eq_commute [of 1])
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1837
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1838
lemma zero_eq_1_divide_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1839
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1840
apply (cases "a=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1841
apply (auto simp add: nonzero_eq_divide_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1842
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1843
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1844
lemma one_divide_eq_0_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1845
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1846
apply (cases "a=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1847
apply (insert zero_neq_one [THEN not_sym])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1848
apply (auto simp add: nonzero_divide_eq_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1849
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1850
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1851
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
18623
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1852
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1853
lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1854
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1855
lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1856
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1857
declare zero_less_divide_1_iff [simp]
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1858
declare divide_less_0_1_iff [simp,noatp]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1859
declare zero_le_divide_1_iff [simp]
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1860
declare divide_le_0_1_iff [simp,noatp]
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1861
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1862
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1863
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1864
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1865
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1866
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1867
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1868
              positive_imp_inverse_positive)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1869
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1870
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1871
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1872
by (force simp add: divide_strict_right_mono order_le_less)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1873
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1874
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1875
    ==> c <= 0 ==> b / c <= a / c"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1876
apply (drule divide_right_mono [of _ _ "- c"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1877
apply auto
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1878
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1879
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1880
lemma divide_strict_right_mono_neg:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1881
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1882
apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1883
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1884
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1885
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1886
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1887
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1888
lemma divide_strict_left_mono:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1889
  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1890
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1891
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1892
lemma divide_left_mono:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1893
  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1894
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1895
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1896
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1897
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1898
  apply (drule divide_left_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1899
  apply (auto simp add: mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1900
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1901
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1902
lemma divide_strict_left_mono_neg:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1903
  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1904
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1905
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1906
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1907
text{*Simplify quotients that are compared with the value 1.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1908
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1909
lemma le_divide_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1910
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1911
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1912
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1913
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1914
lemma divide_le_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1915
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1916
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1917
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1918
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1919
lemma less_divide_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1920
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1921
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1922
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1923
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1924
lemma divide_less_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1925
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1926
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1927
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1928
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1929
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1930
subsection{*Conditional Simplification Rules: No Case Splits*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1931
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1932
lemma le_divide_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1933
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1934
  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1935
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1936
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1937
lemma le_divide_eq_1_neg [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1938
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1939
  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1940
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1941
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1942
lemma divide_le_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1943
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1944
  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1945
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1946
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1947
lemma divide_le_eq_1_neg [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1948
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1949
  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1950
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1951
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1952
lemma less_divide_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1953
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1954
  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1955
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1956
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1957
lemma less_divide_eq_1_neg [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1958
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1959
  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1960
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1961
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1962
lemma divide_less_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1963
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1964
  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1965
by (auto simp add: divide_less_eq)
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1966
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1967
lemma divide_less_eq_1_neg [simp,noatp]:
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1968
  fixes a :: "'a :: {ordered_field,division_by_zero}"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1969
  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1970
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1971
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1972
lemma eq_divide_eq_1 [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1973
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1974
  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1975
by (auto simp add: eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1976
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1977
lemma divide_eq_eq_1 [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1978
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1979
  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1980
by (auto simp add: divide_eq_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1981
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1982
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1983
subsection {* Reasoning about inequalities with division *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1984
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1985
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1986
    ==> x * y <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1987
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1988
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1989
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1990
    ==> y * x <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1991
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1992
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1993
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1994
    x / y <= z";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1995
  by (subst pos_divide_le_eq, assumption+);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1996
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1997
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1998
    z <= x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1999
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2000
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2001
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2002
    x / y < z"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2003
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2004
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2005
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2006
    z < x / y"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2007
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2008
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2009
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2010
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2011
  apply (rule mult_imp_div_pos_le)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2012
  apply simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2013
  apply (subst times_divide_eq_left)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2014
  apply (rule mult_imp_le_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2015
  apply (rule mult_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2016
  apply simp_all
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2017
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2018
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2019
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2020
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2021
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2022
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2023
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2024
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2025
  apply (erule mult_less_le_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2026
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2027
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2028
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2029
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2030
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2031
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2032
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2033
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2034
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2035
  apply (erule mult_le_less_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2036
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2037
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2038
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2039
text{*It's not obvious whether these should be simprules or not. 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2040
  Their effect is to gather terms into one big fraction, like
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2041
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2042
  seem to need them.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2043
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2044
declare times_divide_eq [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2045
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2046
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2047
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2048
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2049
context ordered_semidom
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2050
begin
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2051
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2052
lemma less_add_one: "a < a + 1"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2053
proof -
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2054
  have "a + 0 < a + 1"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2055
    by (blast intro: zero_less_one add_strict_left_mono)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2056
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2057
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2058
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2059
lemma zero_less_two: "0 < 1 + 1"
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2060
  by (blast intro: less_trans zero_less_one less_add_one)
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2061
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2062
end
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  2063
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2064
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2065
by (simp add: field_simps zero_less_two)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2066
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2067
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2068
by (simp add: field_simps zero_less_two)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2069
24422
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2070
instance ordered_field < dense_linear_order
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2071
proof
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2072
  fix x y :: 'a
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2073
  have "x < x + 1" by simp
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2074
  then show "\<exists>y. x < y" .. 
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2075
  have "x - 1 < x" by simp
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2076
  then show "\<exists>y. y < x" ..
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2077
  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2078
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2079
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2080
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2081
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2082
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2083
context ordered_idom
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2084
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2085
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2086
lemma mult_sgn_abs: "sgn x * abs x = x"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2087
  unfolding abs_if sgn_if by auto
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2088
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2089
end
24491
8d194c9198ae added constant sgn
nipkow
parents: 24427
diff changeset
  2090
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2091
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2092
  by (simp add: abs_if zero_less_one [THEN order_less_not_sym])
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2093
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2094
class pordered_ring_abs = pordered_ring + pordered_ab_group_add_abs +
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2095
  assumes abs_eq_mult:
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2096
    "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2097
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2098
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2099
class lordered_ring = pordered_ring + lordered_ab_group_add_abs
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2100
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2101
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  2102
subclass lordered_ab_group_add_meet ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  2103
subclass lordered_ab_group_add_join ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2104
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2105
end
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2106
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2107
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2108
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2109
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2110
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2111
  have a: "(abs a) * (abs b) = ?x"
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  2112
    by (simp only: abs_prts[of a] abs_prts[of b] ring_simps)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2113
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2114
    fix u v :: 'a
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  2115
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  2116
              u * v = pprt a * pprt b + pprt a * nprt b + 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  2117
                      nprt a * pprt b + nprt a * nprt b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2118
      apply (subst prts[of u], subst prts[of v])
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  2119
      apply (simp add: ring_simps) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2120
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2121
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2122
  note b = this[OF refl[of a] refl[of b]]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2123
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2124
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2125
  have xy: "- ?x <= ?y"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2126
    apply (simp)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2127
    apply (rule_tac y="0::'a" in order_trans)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  2128
    apply (rule addm2)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2129
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  2130
    apply (rule addm)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2131
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2132
    done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2133
  have yx: "?y <= ?x"
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  2134
    apply (simp add:diff_def)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2135
    apply (rule_tac y=0 in order_trans)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2136
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2137
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2138
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2139
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2140
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2141
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2142
    apply (rule abs_leI)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2143
    apply (simp add: i1)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2144
    apply (simp add: i2[simplified minus_le_iff])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2145
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2146
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2147
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2148
instance lordered_ring \<subseteq> pordered_ring_abs
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2149
proof
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2150
  fix a b :: "'a\<Colon> lordered_ring"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2151
  assume "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2152
  show "abs (a*b) = abs a * abs b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2153
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2154
  have s: "(0 <= a*b) | (a*b <= 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2155
    apply (auto)    
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2156
    apply (rule_tac split_mult_pos_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2157
    apply (rule_tac contrapos_np[of "a*b <= 0"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2158
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2159
    apply (rule_tac split_mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2160
    apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2161
    apply (blast)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2162
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2163
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2164
    by (simp add: prts[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2165
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2166
  proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2167
    assume "0 <= a * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2168
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2169
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2170
      apply (insert prems)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2171
      apply (auto simp add: 
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  2172
	ring_simps 
25078
a1ddc5206cb1 moved lemmas to OrderedGroup.thy
haftmann
parents: 25062
diff changeset
  2173
	iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt]
a1ddc5206cb1 moved lemmas to OrderedGroup.thy
haftmann
parents: 25062
diff changeset
  2174
	iffD1[OF le_zero_iff_pprt_id] iffD1[OF zero_le_iff_nprt_id])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2175
	apply(drule (1) mult_nonneg_nonpos[of a b], simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2176
	apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2177
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2178
  next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2179
    assume "~(0 <= a*b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2180
    with s have "a*b <= 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2181
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2182
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2183
      apply (insert prems)
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  2184
      apply (auto simp add: ring_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2185
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2186
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2187
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2188
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2189
qed
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2190
qed
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2191
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2192
instance ordered_idom \<subseteq> pordered_ring_abs
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2193
by default (auto simp add: abs_if not_less
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2194
  equal_neg_zero neg_equal_zero mult_less_0_iff)
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2195
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2196
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2197
  by (simp add: abs_eq_mult linorder_linear)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2198
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2199
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2200
  by (simp add: abs_if) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2201
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2202
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2203
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2204
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2205
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2206
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2207
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2208
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2209
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2210
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2211
      inverse (abs a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  2212
apply (cases "a=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2213
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2214
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2215
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2216
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2217
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2218
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2219
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2220
lemma abs_divide [simp]:
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2221
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  2222
apply (cases "b=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2223
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2224
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2225
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2226
lemma abs_mult_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2227
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2228
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2229
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2230
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2231
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2232
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2233
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2234
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2235
lemmas eq_minus_self_iff = equal_neg_zero
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2236
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2237
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2238
  unfolding order_less_le less_eq_neg_nonpos equal_neg_zero ..
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2239
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2240
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2241
apply (simp add: order_less_le abs_le_iff)  
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2242
apply (auto simp add: abs_if neg_less_eq_nonneg less_eq_neg_nonpos)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2243
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2244
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2245
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2246
    (abs y) * x = abs (y * x)"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2247
  apply (subst abs_mult)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2248
  apply simp
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2249
done
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2250
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2251
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2252
    abs x / y = abs (x / y)"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2253
  apply (subst abs_divide)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2254
  apply (simp add: order_less_imp_le)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2255
done
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2256
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2257
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2258
subsection {* Bounds of products via negative and positive Part *}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2259
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2260
lemma mult_le_prts:
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2261
  assumes
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2262
  "a1 <= (a::'a::lordered_ring)"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2263
  "a <= a2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2264
  "b1 <= b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2265
  "b <= b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2266
  shows
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2267
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2268
proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2269
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2270
    apply (subst prts[symmetric])+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2271
    apply simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2272
    done
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2273
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  2274
    by (simp add: ring_simps)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2275
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2276
    by (simp_all add: prems mult_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2277
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2278
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2279
    have "pprt a * nprt b <= pprt a * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2280
      by (simp add: mult_left_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2281
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2282
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2283
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2284
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2285
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2286
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2287
  proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2288
    have "nprt a * pprt b <= nprt a2 * pprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2289
      by (simp add: mult_right_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2290
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2291
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2292
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2293
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2294
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2295
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2296
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2297
    have "nprt a * nprt b <= nprt a * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2298
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2299
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2300
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2301
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2302
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2303
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2304
  ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2305
    by - (rule add_mono | simp)+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2306
qed
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2307
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2308
lemma mult_ge_prts:
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2309
  assumes
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2310
  "a1 <= (a::'a::lordered_ring)"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2311
  "a <= a2"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2312
  "b1 <= b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2313
  "b <= b2"
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2314
  shows
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2315
  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2316
proof - 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2317
  from prems have a1:"- a2 <= -a" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2318
  from prems have a2: "-a <= -a1" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2319
  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2320
  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2321
  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2322
    by (simp only: minus_le_iff)
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2323
  then show ?thesis by simp
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2324
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2325
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2326
end