| 75411 |      1 | (*  Title:      HOL/Library/Complemented_Lattices.thy
 | 
|  |      2 |     Authors:    Jose Manuel Rodriguez Caballero, Dominique Unruh
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | section \<open>Complemented Lattices\<close>
 | 
|  |      6 | 
 | 
|  |      7 | theory Complemented_Lattices
 | 
|  |      8 |   imports Main
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | text \<open>The following class \<open>complemented_lattice\<close> describes complemented lattices (with
 | 
|  |     12 |   \<^const>\<open>uminus\<close> for the complement). The definition follows
 | 
|  |     13 |   \<^url>\<open>https://en.wikipedia.org/wiki/Complemented_lattice#Definition_and_basic_properties\<close>.
 | 
|  |     14 |   Additionally, it adopts the convention from \<^class>\<open>boolean_algebra\<close> of defining
 | 
|  |     15 |   \<^const>\<open>minus\<close> in terms of the complement.\<close>
 | 
|  |     16 | 
 | 
|  |     17 | class complemented_lattice = bounded_lattice + uminus + minus
 | 
|  |     18 |   opening lattice_syntax +
 | 
|  |     19 |   assumes inf_compl_bot [simp]: \<open>x \<sqinter> - x = \<bottom>\<close>
 | 
|  |     20 |     and sup_compl_top [simp]: \<open>x \<squnion> - x = \<top>\<close>
 | 
|  |     21 |     and diff_eq: \<open>x - y = x \<sqinter> - y\<close>
 | 
|  |     22 | begin
 | 
|  |     23 | 
 | 
|  |     24 | lemma dual_complemented_lattice:
 | 
|  |     25 |   "class.complemented_lattice (\<lambda>x y. x \<squnion> (- y)) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
 | 
|  |     26 | proof (rule class.complemented_lattice.intro)
 | 
|  |     27 |   show "class.bounded_lattice (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
 | 
|  |     28 |     by (rule dual_bounded_lattice)
 | 
|  |     29 |   show "class.complemented_lattice_axioms (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<sqinter>) \<top> \<bottom>"
 | 
|  |     30 |     by (unfold_locales, auto simp add: diff_eq)
 | 
|  |     31 | qed
 | 
|  |     32 | 
 | 
|  |     33 | lemma compl_inf_bot [simp]: \<open>- x \<sqinter> x = \<bottom>\<close>
 | 
|  |     34 |   by (simp add: inf_commute)
 | 
|  |     35 | 
 | 
|  |     36 | lemma compl_sup_top [simp]: \<open>- x \<squnion> x = \<top>\<close>
 | 
|  |     37 |   by (simp add: sup_commute)
 | 
|  |     38 | 
 | 
|  |     39 | end
 | 
|  |     40 | 
 | 
|  |     41 | class complete_complemented_lattice = complemented_lattice + complete_lattice
 | 
|  |     42 | 
 | 
|  |     43 | text \<open>The following class \<open>complemented_lattice\<close> describes orthocomplemented lattices,
 | 
|  |     44 |   following   \<^url>\<open>https://en.wikipedia.org/wiki/Complemented_lattice#Orthocomplementation\<close>.\<close>
 | 
|  |     45 | class orthocomplemented_lattice = complemented_lattice
 | 
|  |     46 |   opening lattice_syntax +
 | 
|  |     47 |   assumes ortho_involution [simp]: "- (- x) = x"
 | 
|  |     48 |     and ortho_antimono: "x \<le> y \<Longrightarrow> - x \<ge> - y" begin
 | 
|  |     49 | 
 | 
|  |     50 | lemma dual_orthocomplemented_lattice:
 | 
|  |     51 |   "class.orthocomplemented_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
 | 
|  |     52 | proof (rule class.orthocomplemented_lattice.intro)
 | 
|  |     53 |   show "class.complemented_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
 | 
|  |     54 |     by (rule dual_complemented_lattice)
 | 
|  |     55 |   show "class.orthocomplemented_lattice_axioms uminus (\<lambda>x y. y \<le> x)"
 | 
|  |     56 |     by (unfold_locales, auto simp add: diff_eq intro: ortho_antimono)
 | 
|  |     57 | qed
 | 
|  |     58 | 
 | 
|  |     59 | lemma compl_eq_compl_iff [simp]: \<open>- x = - y \<longleftrightarrow> x = y\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
 | 
|  |     60 | proof
 | 
|  |     61 |   assume ?P
 | 
|  |     62 |   then have \<open>- (- x) = - (- y)\<close>
 | 
|  |     63 |     by simp
 | 
|  |     64 |   then show ?Q
 | 
|  |     65 |     by simp
 | 
|  |     66 | next
 | 
|  |     67 |   assume ?Q
 | 
|  |     68 |   then show ?P
 | 
|  |     69 |     by simp
 | 
|  |     70 | qed
 | 
|  |     71 | 
 | 
|  |     72 | lemma compl_bot_eq [simp]: \<open>- \<bottom> = \<top>\<close>
 | 
|  |     73 | proof -
 | 
|  |     74 |   have \<open>- \<bottom> = - (\<top> \<sqinter> - \<top>)\<close>
 | 
|  |     75 |     by simp
 | 
|  |     76 |   also have \<open>\<dots> = \<top>\<close>
 | 
|  |     77 |     by (simp only: inf_top_left) simp
 | 
|  |     78 |   finally show ?thesis .
 | 
|  |     79 | qed
 | 
|  |     80 | 
 | 
|  |     81 | lemma compl_top_eq [simp]: "- \<top> = \<bottom>"
 | 
|  |     82 |   using compl_bot_eq ortho_involution by blast
 | 
|  |     83 | 
 | 
|  |     84 | text \<open>De Morgan's law\<close> \<comment> \<open>Proof from \<^url>\<open>https://planetmath.org/orthocomplementedlattice\<close>\<close>
 | 
|  |     85 | lemma compl_sup [simp]: "- (x \<squnion> y) = - x \<sqinter> - y"
 | 
|  |     86 | proof -
 | 
|  |     87 |   have "- (x \<squnion> y) \<le> - x"
 | 
|  |     88 |     by (simp add: ortho_antimono)
 | 
|  |     89 |   moreover have "- (x \<squnion> y) \<le> - y"
 | 
|  |     90 |     by (simp add: ortho_antimono)
 | 
|  |     91 |   ultimately have 1: "- (x \<squnion> y) \<le> - x \<sqinter> - y"
 | 
|  |     92 |     by (simp add: sup.coboundedI1)
 | 
|  |     93 |   have \<open>x \<le> - (-x \<sqinter> -y)\<close>
 | 
|  |     94 |     by (metis inf.cobounded1 ortho_antimono ortho_involution)
 | 
|  |     95 |   moreover have \<open>y \<le> - (-x \<sqinter> -y)\<close>
 | 
|  |     96 |     by (metis inf.cobounded2 ortho_antimono ortho_involution)
 | 
|  |     97 |   ultimately have \<open>x \<squnion> y \<le> - (-x \<sqinter> -y)\<close>
 | 
|  |     98 |     by auto
 | 
|  |     99 |   hence 2: \<open>-x \<sqinter> -y \<le> - (x \<squnion> y)\<close>
 | 
|  |    100 |     using ortho_antimono by fastforce
 | 
|  |    101 |   from 1 2 show ?thesis
 | 
|  |    102 |     using dual_order.antisym by blast
 | 
|  |    103 | qed
 | 
|  |    104 | 
 | 
|  |    105 | text \<open>De Morgan's law\<close>
 | 
|  |    106 | lemma compl_inf [simp]: "- (x \<sqinter> y) = - x \<squnion> - y"
 | 
|  |    107 |   using compl_sup
 | 
|  |    108 |   by (metis ortho_involution)
 | 
|  |    109 | 
 | 
|  |    110 | lemma compl_mono:
 | 
|  |    111 |   assumes "x \<le> y"
 | 
|  |    112 |   shows "- y \<le> - x"
 | 
|  |    113 |   by (simp add: assms local.ortho_antimono)
 | 
|  |    114 | 
 | 
|  |    115 | lemma compl_le_compl_iff [simp]: "- x \<le> - y \<longleftrightarrow> y \<le> x"
 | 
|  |    116 |   by (auto dest: compl_mono)
 | 
|  |    117 | 
 | 
|  |    118 | lemma compl_le_swap1:
 | 
|  |    119 |   assumes "y \<le> - x"
 | 
|  |    120 |   shows "x \<le> -y"
 | 
|  |    121 |   using assms ortho_antimono by fastforce
 | 
|  |    122 | 
 | 
|  |    123 | lemma compl_le_swap2:
 | 
|  |    124 |   assumes "- y \<le> x"
 | 
|  |    125 |   shows "- x \<le> y"
 | 
|  |    126 |   using assms local.ortho_antimono by fastforce
 | 
|  |    127 | 
 | 
|  |    128 | lemma compl_less_compl_iff[simp]: "- x < - y \<longleftrightarrow> y < x"
 | 
|  |    129 |   by (auto simp add: less_le)
 | 
|  |    130 | 
 | 
|  |    131 | lemma compl_less_swap1:
 | 
|  |    132 |   assumes "y < - x"
 | 
|  |    133 |   shows "x < - y"
 | 
|  |    134 |   using assms compl_less_compl_iff by fastforce
 | 
|  |    135 | 
 | 
|  |    136 | lemma compl_less_swap2:
 | 
|  |    137 |   assumes "- y < x"
 | 
|  |    138 |   shows "- x < y"
 | 
|  |    139 |   using assms compl_le_swap1 compl_le_swap2 less_le_not_le by auto
 | 
|  |    140 | 
 | 
|  |    141 | lemma sup_cancel_left1: \<open>x \<squnion> a \<squnion> (- x \<squnion> b) = \<top>\<close>
 | 
|  |    142 |   by (simp add: sup_commute sup_left_commute)
 | 
|  |    143 | 
 | 
|  |    144 | lemma sup_cancel_left2: \<open>- x \<squnion> a \<squnion> (x \<squnion> b) = \<top>\<close>
 | 
|  |    145 |   by (simp add: sup.commute sup_left_commute)
 | 
|  |    146 | 
 | 
|  |    147 | lemma inf_cancel_left1: \<open>x \<sqinter> a \<sqinter> (- x \<sqinter> b) = \<bottom>\<close>
 | 
|  |    148 |   by (simp add: inf.left_commute inf_commute)
 | 
|  |    149 | 
 | 
|  |    150 | lemma inf_cancel_left2: \<open>- x \<sqinter> a \<sqinter> (x \<sqinter> b) = \<bottom>\<close>
 | 
|  |    151 |   using inf.left_commute inf_commute by auto
 | 
|  |    152 | 
 | 
|  |    153 | lemma sup_compl_top_left1 [simp]: \<open>- x \<squnion> (x \<squnion> y) = \<top>\<close>
 | 
|  |    154 |   by (simp add: sup_assoc[symmetric])
 | 
|  |    155 | 
 | 
|  |    156 | lemma sup_compl_top_left2 [simp]: \<open>x \<squnion> (- x \<squnion> y) = \<top>\<close>
 | 
|  |    157 |   using sup_compl_top_left1[of "- x" y] by simp
 | 
|  |    158 | 
 | 
|  |    159 | lemma inf_compl_bot_left1 [simp]: \<open>- x \<sqinter> (x \<sqinter> y) = \<bottom>\<close>
 | 
|  |    160 |   by (simp add: inf_assoc[symmetric])
 | 
|  |    161 | 
 | 
|  |    162 | lemma inf_compl_bot_left2 [simp]: \<open>x \<sqinter> (- x \<sqinter> y) = \<bottom>\<close>
 | 
|  |    163 |   using inf_compl_bot_left1[of "- x" y] by simp
 | 
|  |    164 | 
 | 
|  |    165 | lemma inf_compl_bot_right [simp]: \<open>x \<sqinter> (y \<sqinter> - x) = \<bottom>\<close>
 | 
|  |    166 |   by (subst inf_left_commute) simp
 | 
|  |    167 | 
 | 
|  |    168 | end
 | 
|  |    169 | 
 | 
|  |    170 | class complete_orthocomplemented_lattice = orthocomplemented_lattice + complete_lattice
 | 
|  |    171 | begin
 | 
|  |    172 | 
 | 
|  |    173 | subclass complete_complemented_lattice ..
 | 
|  |    174 | 
 | 
|  |    175 | end
 | 
|  |    176 | 
 | 
|  |    177 | text \<open>The following class \<open>orthomodular_lattice\<close> describes orthomodular lattices,
 | 
|  |    178 | following   \<^url>\<open>https://en.wikipedia.org/wiki/Complemented_lattice#Orthomodular_lattices\<close>.\<close>
 | 
|  |    179 | class orthomodular_lattice = orthocomplemented_lattice
 | 
|  |    180 |   opening lattice_syntax +
 | 
|  |    181 |   assumes orthomodular: "x \<le> y \<Longrightarrow> x \<squnion> (- x) \<sqinter> y = y" begin
 | 
|  |    182 | 
 | 
|  |    183 | lemma dual_orthomodular_lattice:
 | 
|  |    184 |   "class.orthomodular_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>)  \<top> \<bottom>"
 | 
|  |    185 | proof (rule class.orthomodular_lattice.intro)
 | 
|  |    186 |   show "class.orthocomplemented_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
 | 
|  |    187 |     by (rule dual_orthocomplemented_lattice)
 | 
|  |    188 |   show "class.orthomodular_lattice_axioms uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<sqinter>)"
 | 
|  |    189 |   proof (unfold_locales)
 | 
|  |    190 |     show "(x::'a) \<sqinter> (- x \<squnion> y) = y"
 | 
|  |    191 |       if "(y::'a) \<le> x"
 | 
|  |    192 |       for x :: 'a
 | 
|  |    193 |         and y :: 'a
 | 
|  |    194 |       using that local.compl_eq_compl_iff local.ortho_antimono local.orthomodular by fastforce
 | 
|  |    195 |   qed
 | 
|  |    196 | 
 | 
|  |    197 | qed
 | 
|  |    198 | 
 | 
|  |    199 | end
 | 
|  |    200 | 
 | 
|  |    201 | class complete_orthomodular_lattice = orthomodular_lattice + complete_lattice
 | 
|  |    202 | begin
 | 
|  |    203 | 
 | 
|  |    204 | subclass complete_orthocomplemented_lattice ..
 | 
|  |    205 | 
 | 
|  |    206 | end
 | 
|  |    207 | 
 | 
|  |    208 | context boolean_algebra
 | 
|  |    209 |   opening lattice_syntax
 | 
|  |    210 | begin
 | 
|  |    211 | 
 | 
|  |    212 | subclass orthomodular_lattice
 | 
|  |    213 | proof
 | 
|  |    214 |   fix x y
 | 
|  |    215 |   show \<open>x \<squnion> - x \<sqinter> y = y\<close>
 | 
|  |    216 |     if \<open>x \<le> y\<close>
 | 
|  |    217 |     using that
 | 
|  |    218 |     by (simp add: sup.absorb_iff2 sup_inf_distrib1)
 | 
|  |    219 |   show \<open>x - y = x \<sqinter> - y\<close>
 | 
|  |    220 |     by (simp add: diff_eq)
 | 
|  |    221 | qed auto
 | 
|  |    222 | 
 | 
|  |    223 | end
 | 
|  |    224 | 
 | 
|  |    225 | context complete_boolean_algebra
 | 
|  |    226 | begin
 | 
|  |    227 | 
 | 
|  |    228 | subclass complete_orthomodular_lattice ..
 | 
|  |    229 | 
 | 
|  |    230 | end
 | 
|  |    231 | 
 | 
|  |    232 | lemma image_of_maximum:
 | 
|  |    233 |   fixes f::"'a::order \<Rightarrow> 'b::conditionally_complete_lattice"
 | 
|  |    234 |   assumes "mono f"
 | 
|  |    235 |     and "\<And>x. x:M \<Longrightarrow> x\<le>m"
 | 
|  |    236 |     and "m:M"
 | 
|  |    237 |   shows "(SUP x\<in>M. f x) = f m"
 | 
|  |    238 |   by (smt (verit, ccfv_threshold) assms(1) assms(2) assms(3) cSup_eq_maximum imageE imageI monoD)
 | 
|  |    239 | 
 | 
|  |    240 | lemma cSup_eq_cSup:
 | 
|  |    241 |   fixes A B :: \<open>'a::conditionally_complete_lattice set\<close>
 | 
|  |    242 |   assumes bdd: \<open>bdd_above A\<close>
 | 
|  |    243 |   assumes B: \<open>\<And>a. a\<in>A \<Longrightarrow> \<exists>b\<in>B. b \<ge> a\<close>
 | 
|  |    244 |   assumes A: \<open>\<And>b. b\<in>B \<Longrightarrow> \<exists>a\<in>A. a \<ge> b\<close>
 | 
|  |    245 |   shows \<open>Sup A = Sup B\<close>
 | 
|  |    246 | proof (cases \<open>B = {}\<close>)
 | 
|  |    247 |   case True
 | 
|  |    248 |   with A B have \<open>A = {}\<close>
 | 
|  |    249 |     by auto
 | 
|  |    250 |   with True show ?thesis by simp
 | 
|  |    251 | next
 | 
|  |    252 |   case False
 | 
|  |    253 |   have \<open>bdd_above B\<close>
 | 
|  |    254 |     by (meson A bdd bdd_above_def order_trans)
 | 
|  |    255 |   have \<open>A \<noteq> {}\<close>
 | 
|  |    256 |     using A False by blast
 | 
|  |    257 |   moreover have \<open>a \<le> Sup B\<close> if \<open>a \<in> A\<close> for a
 | 
|  |    258 |   proof -
 | 
|  |    259 |     obtain b where \<open>b \<in> B\<close> and \<open>b \<ge> a\<close>
 | 
|  |    260 |       using B \<open>a \<in> A\<close> by auto
 | 
|  |    261 |     then show ?thesis
 | 
|  |    262 |       apply (rule cSup_upper2)
 | 
|  |    263 |       using \<open>bdd_above B\<close> by simp
 | 
|  |    264 |   qed
 | 
|  |    265 |   moreover have \<open>Sup B \<le> c\<close> if \<open>\<And>a. a \<in> A \<Longrightarrow> a \<le> c\<close> for c
 | 
|  |    266 |     using False apply (rule cSup_least)
 | 
|  |    267 |     using A that by fastforce
 | 
|  |    268 |   ultimately show ?thesis
 | 
|  |    269 |     by (rule cSup_eq_non_empty)
 | 
|  |    270 | qed
 | 
|  |    271 | 
 | 
|  |    272 | end
 |