src/HOL/Analysis/Line_Segment.thy
author paulson <lp15@cam.ac.uk>
Thu, 17 Apr 2025 22:57:26 +0100
changeset 82522 62afd98e3f3e
parent 79582 7822b55b26ce
permissions -rw-r--r--
more tidying
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     1
(* Title:      HOL/Analysis/Line_Segment.thy
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     2
   Author:     L C Paulson, University of Cambridge
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     3
   Author:     Robert Himmelmann, TU Muenchen
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     4
   Author:     Bogdan Grechuk, University of Edinburgh
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     5
   Author:     Armin Heller, TU Muenchen
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     6
   Author:     Johannes Hoelzl, TU Muenchen
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     7
*)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     8
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
     9
section \<open>Line Segment\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    10
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    11
theory Line_Segment
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    12
imports
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    13
  Convex
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    14
  Topology_Euclidean_Space
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    15
begin
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    16
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    17
subsection\<^marker>\<open>tag unimportant\<close> \<open>Topological Properties of Convex Sets, Metric Spaces and Functions\<close>
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    18
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    19
lemma convex_supp_sum:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    20
  assumes "convex S" and 1: "supp_sum u I = 1"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    21
      and "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> u i \<and> (u i = 0 \<or> f i \<in> S)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    22
    shows "supp_sum (\<lambda>i. u i *\<^sub>R f i) I \<in> S"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    23
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    24
  have fin: "finite {i \<in> I. u i \<noteq> 0}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    25
    using 1 sum.infinite by (force simp: supp_sum_def support_on_def)
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    26
  then have "supp_sum (\<lambda>i. u i *\<^sub>R f i) I = sum (\<lambda>i. u i *\<^sub>R f i) {i \<in> I. u i \<noteq> 0}"
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    27
    by (force intro: sum.mono_neutral_left simp: supp_sum_def support_on_def)
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    28
  also have "... \<in> S"
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    29
    using 1 assms by (force simp: supp_sum_def support_on_def intro: convex_sum [OF fin \<open>convex S\<close>])
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    30
  finally show ?thesis .
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    31
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    32
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    33
lemma sphere_eq_empty [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    34
  fixes a :: "'a::{real_normed_vector, perfect_space}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    35
  shows "sphere a r = {} \<longleftrightarrow> r < 0"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
    36
  by (metis empty_iff linorder_not_less mem_sphere sphere_empty vector_choose_dist)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    37
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    38
lemma cone_closure:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    39
  fixes S :: "'a::real_normed_vector set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    40
  assumes "cone S"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    41
  shows "cone (closure S)"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
    42
  by (metis UnCI assms closure_Un_frontier closure_eq_empty closure_scaleR cone_iff)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    43
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    44
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    45
corollary component_complement_connected:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    46
  fixes S :: "'a::real_normed_vector set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    47
  assumes "connected S" "C \<in> components (-S)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    48
  shows "connected(-C)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    49
  using component_diff_connected [of S UNIV] assms
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    50
  by (auto simp: Compl_eq_Diff_UNIV)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    51
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    52
proposition clopen:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    53
  fixes S :: "'a :: real_normed_vector set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    54
  shows "closed S \<and> open S \<longleftrightarrow> S = {} \<or> S = UNIV"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
    55
  using  connected_UNIV by (force simp add: connected_clopen)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    56
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    57
corollary compact_open:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    58
  fixes S :: "'a :: euclidean_space set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    59
  shows "compact S \<and> open S \<longleftrightarrow> S = {}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    60
  by (auto simp: compact_eq_bounded_closed clopen)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    61
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    62
corollary finite_imp_not_open:
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    63
  fixes S :: "'a::{real_normed_vector, perfect_space} set"
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
    64
  shows "\<lbrakk>finite S; open S\<rbrakk> \<Longrightarrow> S={}"
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    65
  using clopen [of S] finite_imp_closed not_bounded_UNIV by blast
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    66
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    67
corollary empty_interior_finite:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    68
    fixes S :: "'a::{real_normed_vector, perfect_space} set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    69
    shows "finite S \<Longrightarrow> interior S = {}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    70
  by (metis interior_subset finite_subset open_interior [of S] finite_imp_not_open)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    71
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    72
text \<open>Balls, being convex, are connected.\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    73
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    74
lemma convex_local_global_minimum:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    75
  fixes s :: "'a::real_normed_vector set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    76
  assumes "e > 0"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    77
    and "convex_on s f"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    78
    and "ball x e \<subseteq> s"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    79
    and "\<forall>y\<in>ball x e. f x \<le> f y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    80
  shows "\<forall>y\<in>s. f x \<le> f y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    81
proof (rule ccontr)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    82
  have "x \<in> s" using assms(1,3) by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    83
  assume "\<not> ?thesis"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    84
  then obtain y where "y\<in>s" and y: "f x > f y" by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    85
  then have xy: "0 < dist x y"  by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    86
  then obtain u where "0 < u" "u \<le> 1" and u: "u < e / dist x y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    87
    using field_lbound_gt_zero[of 1 "e / dist x y"] xy \<open>e>0\<close> by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    88
  then have "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
    89
    using \<open>x\<in>s\<close> \<open>y\<in>s\<close> by (smt (verit) assms(2) convex_on_def)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    90
  moreover
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    91
  have *: "x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    92
    by (simp add: algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    93
  have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
    94
    by (smt (verit) "*" \<open>0 < u\<close> dist_norm mem_ball norm_scaleR pos_less_divide_eq u xy)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    95
  then have "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    96
    using assms(4) by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    97
  ultimately show False
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    98
    using mult_strict_left_mono[OF y \<open>u>0\<close>]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
    99
    unfolding left_diff_distrib
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   100
    by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   101
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   102
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   103
lemma convex_ball [iff]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   104
  fixes x :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   105
  shows "convex (ball x e)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   106
proof (auto simp: convex_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   107
  fix y z
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   108
  assume yz: "dist x y < e" "dist x z < e"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   109
  fix u v :: real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   110
  assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   111
  have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z"
79582
7822b55b26ce Correct the definition of a convex function, and updated the proofs
paulson <lp15@cam.ac.uk>
parents: 78477
diff changeset
   112
    using uv yz by (meson UNIV_I convex_def convex_on_def convex_on_dist)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   113
  then show "dist x (u *\<^sub>R y + v *\<^sub>R z) < e"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   114
    using convex_bound_lt[OF yz uv] by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   115
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   116
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   117
lemma convex_cball [iff]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   118
  fixes x :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   119
  shows "convex (cball x e)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   120
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   121
  {
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   122
    fix y z
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   123
    assume yz: "dist x y \<le> e" "dist x z \<le> e"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   124
    fix u v :: real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   125
    assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   126
    have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z"
79582
7822b55b26ce Correct the definition of a convex function, and updated the proofs
paulson <lp15@cam.ac.uk>
parents: 78477
diff changeset
   127
      using uv yz by (meson UNIV_I convex_def convex_on_def convex_on_dist)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   128
    then have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   129
      using convex_bound_le[OF yz uv] by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   130
  }
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   131
  then show ?thesis by (auto simp: convex_def Ball_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   132
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   133
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   134
lemma connected_ball [iff]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   135
  fixes x :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   136
  shows "connected (ball x e)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   137
  using convex_connected convex_ball by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   138
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   139
lemma connected_cball [iff]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   140
  fixes x :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   141
  shows "connected (cball x e)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   142
  using convex_connected convex_cball by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   143
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   144
lemma bounded_convex_hull:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   145
  fixes s :: "'a::real_normed_vector set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   146
  assumes "bounded s"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   147
  shows "bounded (convex hull s)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   148
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   149
  from assms obtain B where B: "\<forall>x\<in>s. norm x \<le> B"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   150
    unfolding bounded_iff by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   151
  show ?thesis
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   152
    by (simp add: bounded_subset[OF bounded_cball, of _ 0 B] B subsetI subset_hull)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   153
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   154
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   155
lemma finite_imp_bounded_convex_hull:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   156
  fixes s :: "'a::real_normed_vector set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   157
  shows "finite s \<Longrightarrow> bounded (convex hull s)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   158
  using bounded_convex_hull finite_imp_bounded
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   159
  by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   160
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   161
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   162
subsection \<open>Midpoint\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   163
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   164
definition\<^marker>\<open>tag important\<close> midpoint :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   165
  where "midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   166
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   167
lemma midpoint_idem [simp]: "midpoint x x = x"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   168
  unfolding midpoint_def  by simp
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   169
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   170
lemma midpoint_sym: "midpoint a b = midpoint b a"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   171
  unfolding midpoint_def by (auto simp add: scaleR_right_distrib)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   172
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   173
lemma midpoint_eq_iff: "midpoint a b = c \<longleftrightarrow> a + b = c + c"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   174
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   175
  have "midpoint a b = c \<longleftrightarrow> scaleR 2 (midpoint a b) = scaleR 2 c"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   176
    by simp
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   177
  then show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   178
    unfolding midpoint_def scaleR_2 [symmetric] by simp
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   179
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   180
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   181
lemma
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   182
  fixes a::real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   183
  assumes "a \<le> b" shows ge_midpoint_1: "a \<le> midpoint a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   184
                    and le_midpoint_1: "midpoint a b \<le> b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   185
  by (simp_all add: midpoint_def assms)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   186
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   187
lemma dist_midpoint:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   188
  fixes a b :: "'a::real_normed_vector" shows
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   189
  "dist a (midpoint a b) = (dist a b) / 2" (is ?t1)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   190
  "dist b (midpoint a b) = (dist a b) / 2" (is ?t2)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   191
  "dist (midpoint a b) a = (dist a b) / 2" (is ?t3)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   192
  "dist (midpoint a b) b = (dist a b) / 2" (is ?t4)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   193
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   194
  have *: "\<And>x y::'a. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   195
    unfolding equation_minus_iff by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   196
  have **: "\<And>x y::'a. 2 *\<^sub>R x =   y \<Longrightarrow> norm x = (norm y) / 2"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   197
    by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   198
  note scaleR_right_distrib [simp]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   199
  show ?t1
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   200
    unfolding midpoint_def dist_norm
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   201
    apply (rule **)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   202
    apply (simp add: scaleR_right_diff_distrib)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   203
    apply (simp add: scaleR_2)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   204
    done
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   205
  show ?t2
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   206
    unfolding midpoint_def dist_norm
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   207
    apply (rule *)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   208
    apply (simp add: scaleR_right_diff_distrib)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   209
    apply (simp add: scaleR_2)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   210
    done
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   211
  show ?t3
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   212
    unfolding midpoint_def dist_norm
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   213
    apply (rule *)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   214
    apply (simp add: scaleR_right_diff_distrib)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   215
    apply (simp add: scaleR_2)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   216
    done
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   217
  show ?t4
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   218
    unfolding midpoint_def dist_norm
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   219
    apply (rule **)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   220
    apply (simp add: scaleR_right_diff_distrib)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   221
    apply (simp add: scaleR_2)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   222
    done
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   223
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   224
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   225
lemma midpoint_eq_endpoint [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   226
  "midpoint a b = a \<longleftrightarrow> a = b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   227
  "midpoint a b = b \<longleftrightarrow> a = b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   228
  unfolding midpoint_eq_iff by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   229
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   230
lemma midpoint_plus_self [simp]: "midpoint a b + midpoint a b = a + b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   231
  using midpoint_eq_iff by metis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   232
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   233
lemma midpoint_linear_image:
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   234
  "linear f \<Longrightarrow> midpoint(f a)(f b) = f(midpoint a b)"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   235
  by (simp add: linear_iff midpoint_def)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   236
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   237
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   238
subsection \<open>Open and closed segments\<close>
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   239
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   240
definition\<^marker>\<open>tag important\<close> closed_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   241
  where "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   242
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   243
definition\<^marker>\<open>tag important\<close> open_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   244
  "open_segment a b \<equiv> closed_segment a b - {a,b}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   245
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   246
lemmas segment = open_segment_def closed_segment_def
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   247
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   248
lemma in_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   249
    "x \<in> closed_segment a b \<longleftrightarrow> (\<exists>u. 0 \<le> u \<and> u \<le> 1 \<and> x = (1 - u) *\<^sub>R a + u *\<^sub>R b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   250
    "x \<in> open_segment a b \<longleftrightarrow> a \<noteq> b \<and> (\<exists>u. 0 < u \<and> u < 1 \<and> x = (1 - u) *\<^sub>R a + u *\<^sub>R b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   251
  using less_eq_real_def by (auto simp: segment algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   252
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   253
lemma closed_segment_linear_image:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   254
  "closed_segment (f a) (f b) = f ` (closed_segment a b)" if "linear f"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   255
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   256
  interpret linear f by fact
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   257
  show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   258
    by (force simp add: in_segment add scale)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   259
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   260
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   261
lemma open_segment_linear_image:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   262
    "\<lbrakk>linear f; inj f\<rbrakk> \<Longrightarrow> open_segment (f a) (f b) = f ` (open_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   263
  by (force simp: open_segment_def closed_segment_linear_image inj_on_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   264
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   265
lemma closed_segment_translation:
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   266
    "closed_segment (c + a) (c + b) = (\<lambda>x. c + x) ` (closed_segment a b)" (is "?L = _ ` ?R")
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   267
proof -
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   268
  have "\<And>x. x \<in> ?L \<Longrightarrow> x - c \<in> ?R" "\<And>x. \<lbrakk>x \<in> ?R\<rbrakk> \<Longrightarrow> c + x \<in> ?L"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   269
    by (auto simp: in_segment algebra_simps)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   270
  then show ?thesis by force
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   271
qed
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   272
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   273
lemma open_segment_translation:
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   274
  "open_segment (c + a) (c + b) = image (\<lambda>x. c + x) (open_segment a b)"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   275
  by (simp add: open_segment_def closed_segment_translation translation_diff)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   276
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   277
lemma closed_segment_of_real:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   278
    "closed_segment (of_real x) (of_real y) = of_real ` closed_segment x y"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   279
  by (simp add: closed_segment_linear_image linearI scaleR_conv_of_real)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   280
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   281
lemma open_segment_of_real:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   282
    "open_segment (of_real x) (of_real y) = of_real ` open_segment x y"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   283
  by (simp add: closed_segment_of_real image_set_diff inj_of_real open_segment_def)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   284
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   285
lemma closed_segment_Reals:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   286
    "\<lbrakk>x \<in> Reals; y \<in> Reals\<rbrakk> \<Longrightarrow> closed_segment x y = of_real ` closed_segment (Re x) (Re y)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   287
  by (metis closed_segment_of_real of_real_Re)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   288
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   289
lemma open_segment_Reals:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   290
    "\<lbrakk>x \<in> Reals; y \<in> Reals\<rbrakk> \<Longrightarrow> open_segment x y = of_real ` open_segment (Re x) (Re y)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   291
  by (metis open_segment_of_real of_real_Re)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   292
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   293
lemma open_segment_PairD:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   294
    "(x, x') \<in> open_segment (a, a') (b, b')
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   295
     \<Longrightarrow> (x \<in> open_segment a b \<or> a = b) \<and> (x' \<in> open_segment a' b' \<or> a' = b')"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   296
  by (auto simp: in_segment)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   297
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   298
lemma closed_segment_PairD:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   299
  "(x, x') \<in> closed_segment (a, a') (b, b') \<Longrightarrow> x \<in> closed_segment a b \<and> x' \<in> closed_segment a' b'"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   300
  by (auto simp: closed_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   301
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   302
lemma closed_segment_translation_eq [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   303
    "d + x \<in> closed_segment (d + a) (d + b) \<longleftrightarrow> x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   304
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   305
  have *: "\<And>d x a b. x \<in> closed_segment a b \<Longrightarrow> d + x \<in> closed_segment (d + a) (d + b)"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   306
    using closed_segment_translation by blast
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   307
  show ?thesis
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   308
    using * [where d = "-d"] * by fastforce
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   309
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   310
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   311
lemma open_segment_translation_eq [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   312
    "d + x \<in> open_segment (d + a) (d + b) \<longleftrightarrow> x \<in> open_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   313
  by (simp add: open_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   314
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   315
lemma of_real_closed_segment [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   316
  "of_real x \<in> closed_segment (of_real a) (of_real b) \<longleftrightarrow> x \<in> closed_segment a b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   317
  by (simp add: closed_segment_of_real image_iff)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   318
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   319
lemma of_real_open_segment [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   320
  "of_real x \<in> open_segment (of_real a) (of_real b) \<longleftrightarrow> x \<in> open_segment a b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   321
  by (simp add: image_iff open_segment_of_real)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   322
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   323
lemma convex_contains_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   324
  "convex S \<longleftrightarrow> (\<forall>a\<in>S. \<forall>b\<in>S. closed_segment a b \<subseteq> S)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   325
  unfolding convex_alt closed_segment_def by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   326
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   327
lemma closed_segment_in_Reals:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   328
   "\<lbrakk>x \<in> closed_segment a b; a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> x \<in> Reals"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   329
  by (meson subsetD convex_Reals convex_contains_segment)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   330
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   331
lemma open_segment_in_Reals:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   332
   "\<lbrakk>x \<in> open_segment a b; a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> x \<in> Reals"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   333
  by (metis Diff_iff closed_segment_in_Reals open_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   334
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   335
lemma closed_segment_subset: "\<lbrakk>x \<in> S; y \<in> S; convex S\<rbrakk> \<Longrightarrow> closed_segment x y \<subseteq> S"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   336
  by (simp add: convex_contains_segment)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   337
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   338
lemma closed_segment_subset_convex_hull:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   339
    "\<lbrakk>x \<in> convex hull S; y \<in> convex hull S\<rbrakk> \<Longrightarrow> closed_segment x y \<subseteq> convex hull S"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   340
  using convex_contains_segment by blast
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   341
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   342
lemma segment_convex_hull:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   343
  "closed_segment a b = convex hull {a,b}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   344
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   345
  have *: "\<And>x. {x} \<noteq> {}" by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   346
  show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   347
    unfolding segment convex_hull_insert[OF *] convex_hull_singleton
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   348
    by (safe; rule_tac x="1 - u" in exI; force)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   349
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   350
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   351
lemma open_closed_segment: "u \<in> open_segment w z \<Longrightarrow> u \<in> closed_segment w z"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   352
  by (auto simp add: closed_segment_def open_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   353
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   354
lemma segment_open_subset_closed:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   355
   "open_segment a b \<subseteq> closed_segment a b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   356
  by (simp add: open_closed_segment subsetI)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   357
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   358
lemma bounded_closed_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   359
  fixes a :: "'a::real_normed_vector" shows "bounded (closed_segment a b)"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   360
  by (simp add: bounded_convex_hull segment_convex_hull)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   361
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   362
lemma bounded_open_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   363
    fixes a :: "'a::real_normed_vector" shows "bounded (open_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   364
  by (rule bounded_subset [OF bounded_closed_segment segment_open_subset_closed])
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   365
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   366
lemmas bounded_segment = bounded_closed_segment open_closed_segment
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   367
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   368
lemma ends_in_segment [iff]: "a \<in> closed_segment a b" "b \<in> closed_segment a b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   369
  by (simp_all add: hull_inc segment_convex_hull)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   370
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   371
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   372
lemma eventually_closed_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   373
  fixes x0::"'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   374
  assumes "open X0" "x0 \<in> X0"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   375
  shows "\<forall>\<^sub>F x in at x0 within U. closed_segment x0 x \<subseteq> X0"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   376
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   377
  from openE[OF assms]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   378
  obtain e where e: "0 < e" "ball x0 e \<subseteq> X0" .
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   379
  then have "\<forall>\<^sub>F x in at x0 within U. x \<in> ball x0 e"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   380
    by (auto simp: dist_commute eventually_at)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   381
  then show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   382
  proof eventually_elim
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   383
    case (elim x)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   384
    have "x0 \<in> ball x0 e" using \<open>e > 0\<close> by simp
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   385
    then have "closed_segment x0 x \<subseteq> ball x0 e"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   386
      using closed_segment_subset elim by blast 
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   387
    then show ?case
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   388
      using e(2) by auto 
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   389
  qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   390
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   391
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   392
lemma closed_segment_commute: "closed_segment a b = closed_segment b a"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   393
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   394
  have "{a, b} = {b, a}" by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   395
  thus ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   396
    by (simp add: segment_convex_hull)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   397
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   398
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   399
lemma segment_bound1:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   400
  assumes "x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   401
  shows "norm (x - a) \<le> norm (b - a)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   402
proof -
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   403
  obtain u where u: "x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1"
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   404
    using assms by (auto simp add: closed_segment_def)
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   405
  then have "norm (u *\<^sub>R b - u *\<^sub>R a) \<le> norm (b - a)"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   406
    by (simp add: mult_left_le_one_le flip: scaleR_diff_right)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   407
  with u show ?thesis
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   408
    by (metis add_diff_cancel_left scaleR_collapse)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   409
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   410
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   411
lemma segment_bound:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   412
  assumes "x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   413
  shows "norm (x - a) \<le> norm (b - a)" "norm (x - b) \<le> norm (b - a)"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   414
  by (metis assms closed_segment_commute dist_commute dist_norm segment_bound1)+
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   415
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   416
lemma open_segment_bound1:
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   417
  assumes "x \<in> open_segment a b"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   418
  shows "norm (x - a) < norm (b - a)"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   419
proof -
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   420
  obtain u where u: "x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 < u" "u < 1"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   421
    by (meson assms in_segment)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   422
  then have "norm (u *\<^sub>R b - u *\<^sub>R a) < norm (b - a)"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   423
    using assms in_segment(2) less_eq_real_def by (fastforce simp flip: scaleR_diff_right)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   424
  with u show ?thesis
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   425
    by (metis add_diff_cancel_left scaleR_collapse)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   426
qed
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   427
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   428
lemma open_segment_commute: "open_segment a b = open_segment b a"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   429
  by (simp add: closed_segment_commute insert_commute open_segment_def)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   430
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   431
lemma closed_segment_idem [simp]: "closed_segment a a = {a}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   432
  unfolding segment by (auto simp add: algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   433
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   434
lemma open_segment_idem [simp]: "open_segment a a = {}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   435
  by (simp add: open_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   436
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   437
lemma closed_segment_eq_open: "closed_segment a b = open_segment a b \<union> {a,b}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   438
  using open_segment_def by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   439
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   440
lemma convex_contains_open_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   441
  "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. open_segment a b \<subseteq> s)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   442
  by (simp add: convex_contains_segment closed_segment_eq_open)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   443
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   444
lemma closed_segment_eq_real_ivl1:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   445
  fixes a b::real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   446
  assumes "a \<le> b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   447
  shows "closed_segment a b = {a .. b}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   448
proof safe
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   449
  fix x
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   450
  assume "x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   451
  then obtain u where u: "0 \<le> u" "u \<le> 1" and x_def: "x = (1 - u) * a + u * b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   452
    by (auto simp: closed_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   453
  have "u * a \<le> u * b" "(1 - u) * a \<le> (1 - u) * b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   454
    by (auto intro!: mult_left_mono u assms)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   455
  then show "x \<in> {a .. b}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   456
    unfolding x_def by (auto simp: algebra_simps)
71169
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   457
next
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   458
  show "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> closed_segment a b"
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   459
    by (force simp: closed_segment_def divide_simps algebra_simps
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   460
              intro: exI[where x="(x - a) / (b - a)" for x])
df1d96114754 Fixed a few messy proofs and adjusted inconsistent section headings
paulson <lp15@cam.ac.uk>
parents: 71028
diff changeset
   461
qed 
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   462
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   463
lemma closed_segment_eq_real_ivl:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   464
  fixes a b::real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   465
  shows "closed_segment a b = (if a \<le> b then {a .. b} else {b .. a})"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   466
  by (metis closed_segment_commute closed_segment_eq_real_ivl1 nle_le)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   467
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   468
lemma open_segment_eq_real_ivl:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   469
  fixes a b::real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   470
  shows "open_segment a b = (if a \<le> b then {a<..<b} else {b<..<a})"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   471
by (auto simp: closed_segment_eq_real_ivl open_segment_def split: if_split_asm)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   472
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   473
lemma closed_segment_real_eq:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   474
  fixes u::real shows "closed_segment u v = (\<lambda>x. (v - u) * x + u) ` {0..1}"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   475
  by (simp add: closed_segment_eq_real_ivl image_affinity_atLeastAtMost)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   476
71189
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   477
lemma closed_segment_same_Re:
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   478
  assumes "Re a = Re b"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   479
  shows   "closed_segment a b = {z. Re z = Re a \<and> Im z \<in> closed_segment (Im a) (Im b)}"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   480
proof safe
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   481
  fix z assume "z \<in> closed_segment a b"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   482
  then obtain u where u: "u \<in> {0..1}" "z = a + of_real u * (b - a)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   483
    by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   484
  from assms show "Re z = Re a" by (auto simp: u)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   485
  from u(1) show "Im z \<in> closed_segment (Im a) (Im b)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   486
    by (force simp: u closed_segment_def algebra_simps)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   487
next
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   488
  fix z assume [simp]: "Re z = Re a" and "Im z \<in> closed_segment (Im a) (Im b)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   489
  then obtain u where u: "u \<in> {0..1}" "Im z = Im a + of_real u * (Im b - Im a)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   490
    by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   491
  from u(1) show "z \<in> closed_segment a b" using assms
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   492
    by (force simp: u closed_segment_def algebra_simps scaleR_conv_of_real complex_eq_iff)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   493
qed
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   494
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   495
lemma closed_segment_same_Im:
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   496
  assumes "Im a = Im b"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   497
  shows   "closed_segment a b = {z. Im z = Im a \<and> Re z \<in> closed_segment (Re a) (Re b)}"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   498
proof safe
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   499
  fix z assume "z \<in> closed_segment a b"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   500
  then obtain u where u: "u \<in> {0..1}" "z = a + of_real u * (b - a)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   501
    by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   502
  from assms show "Im z = Im a" by (auto simp: u)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   503
  from u(1) show "Re z \<in> closed_segment (Re a) (Re b)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   504
    by (force simp: u closed_segment_def algebra_simps)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   505
next
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   506
  fix z assume [simp]: "Im z = Im a" and "Re z \<in> closed_segment (Re a) (Re b)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   507
  then obtain u where u: "u \<in> {0..1}" "Re z = Re a + of_real u * (Re b - Re a)"
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   508
    by (auto simp: closed_segment_def scaleR_conv_of_real algebra_simps)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   509
  from u(1) show "z \<in> closed_segment a b" using assms
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   510
    by (force simp: u closed_segment_def algebra_simps scaleR_conv_of_real complex_eq_iff)
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   511
qed
954ee5acaae0 Split off new HOL-Complex_Analysis session from HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 71169
diff changeset
   512
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   513
lemma dist_in_closed_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   514
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   515
  assumes "x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   516
    shows "dist x a \<le> dist a b \<and> dist x b \<le> dist a b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   517
  by (metis assms dist_commute dist_norm segment_bound(2) segment_bound1)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   518
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   519
lemma dist_in_open_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   520
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   521
  assumes "x \<in> open_segment a b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   522
  shows "dist x a < dist a b \<and> dist x b < dist a b"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   523
  by (metis assms dist_commute dist_norm open_segment_bound1 open_segment_commute)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   524
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   525
lemma dist_decreases_open_segment_0:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   526
  fixes x :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   527
  assumes "x \<in> open_segment 0 b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   528
    shows "dist c x < dist c 0 \<or> dist c x < dist c b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   529
proof (rule ccontr, clarsimp simp: not_less)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   530
  obtain u where u: "0 \<noteq> b" "0 < u" "u < 1" and x: "x = u *\<^sub>R b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   531
    using assms by (auto simp: in_segment)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   532
  have xb: "x \<bullet> b < b \<bullet> b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   533
    using u x by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   534
  assume "norm c \<le> dist c x"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   535
  then have "c \<bullet> c \<le> (c - x) \<bullet> (c - x)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   536
    by (simp add: dist_norm norm_le)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   537
  moreover have "0 < x \<bullet> b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   538
    using u x by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   539
  ultimately have less: "c \<bullet> b < x \<bullet> b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   540
    by (simp add: x algebra_simps inner_commute u)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   541
  assume "dist c b \<le> dist c x"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   542
  then have "(c - b) \<bullet> (c - b) \<le> (c - x) \<bullet> (c - x)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   543
    by (simp add: dist_norm norm_le)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   544
  then have "(b \<bullet> b) * (1 - u*u) \<le> 2 * (b \<bullet> c) * (1-u)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   545
    by (simp add: x algebra_simps inner_commute)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   546
  then have "(1+u) * (b \<bullet> b) * (1-u) \<le> 2 * (b \<bullet> c) * (1-u)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   547
    by (simp add: algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   548
  then have "(1+u) * (b \<bullet> b) \<le> 2 * (b \<bullet> c)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   549
    using \<open>u < 1\<close> by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   550
  with xb have "c \<bullet> b \<ge> x \<bullet> b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   551
    by (auto simp: x algebra_simps inner_commute)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   552
  with less show False by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   553
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   554
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   555
proposition dist_decreases_open_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   556
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   557
  assumes "x \<in> open_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   558
    shows "dist c x < dist c a \<or> dist c x < dist c b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   559
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   560
  have *: "x - a \<in> open_segment 0 (b - a)" using assms
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   561
    by (metis diff_self open_segment_translation_eq uminus_add_conv_diff)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   562
  show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   563
    using dist_decreases_open_segment_0 [OF *, of "c-a"] assms
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   564
    by (simp add: dist_norm)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   565
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   566
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   567
corollary open_segment_furthest_le:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   568
  fixes a b x y :: "'a::euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   569
  assumes "x \<in> open_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   570
  shows "norm (y - x) < norm (y - a) \<or>  norm (y - x) < norm (y - b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   571
  by (metis assms dist_decreases_open_segment dist_norm)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   572
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   573
corollary dist_decreases_closed_segment:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   574
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   575
  assumes "x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   576
    shows "dist c x \<le> dist c a \<or> dist c x \<le> dist c b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   577
  by (smt (verit, ccfv_threshold) Un_iff assms closed_segment_eq_open dist_norm empty_iff insertE open_segment_furthest_le)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   578
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   579
corollary segment_furthest_le:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   580
  fixes a b x y :: "'a::euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   581
  assumes "x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   582
  shows "norm (y - x) \<le> norm (y - a) \<or>  norm (y - x) \<le> norm (y - b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   583
  by (metis assms dist_decreases_closed_segment dist_norm)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   584
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   585
lemma convex_intermediate_ball:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   586
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   587
  shows "\<lbrakk>ball a r \<subseteq> T; T \<subseteq> cball a r\<rbrakk> \<Longrightarrow> convex T"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   588
  by (smt (verit) convex_contains_open_segment dist_decreases_open_segment mem_ball mem_cball subset_eq)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   589
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   590
lemma csegment_midpoint_subset: "closed_segment (midpoint a b) b \<subseteq> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   591
  apply (clarsimp simp: midpoint_def in_segment)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   592
  apply (rule_tac x="(1 + u) / 2" in exI)
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   593
  apply (simp add: algebra_simps add_divide_distrib diff_divide_distrib)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   594
  by (metis field_sum_of_halves scaleR_left.add)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   595
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   596
lemma notin_segment_midpoint:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   597
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   598
  shows "a \<noteq> b \<Longrightarrow> a \<notin> closed_segment (midpoint a b) b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   599
  by (auto simp: dist_midpoint dest!: dist_in_closed_segment)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   600
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   601
subsubsection\<open>More lemmas, especially for working with the underlying formula\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   602
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   603
lemma segment_eq_compose:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   604
  fixes a :: "'a :: real_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   605
  shows "(\<lambda>u. (1 - u) *\<^sub>R a + u *\<^sub>R b) = (\<lambda>x. a + x) o (\<lambda>u. u *\<^sub>R (b - a))"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   606
    by (simp add: o_def algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   607
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   608
lemma segment_degen_1:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   609
  fixes a :: "'a :: real_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   610
  shows "(1 - u) *\<^sub>R a + u *\<^sub>R b = b \<longleftrightarrow> a=b \<or> u=1"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   611
  by (smt (verit, best) add_right_cancel scaleR_cancel_left scaleR_collapse)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   612
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   613
lemma segment_degen_0:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   614
    fixes a :: "'a :: real_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   615
    shows "(1 - u) *\<^sub>R a + u *\<^sub>R b = a \<longleftrightarrow> a=b \<or> u=0"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   616
  using segment_degen_1 [of "1-u" b a] by (auto simp: algebra_simps)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   617
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   618
lemma add_scaleR_degen:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   619
  fixes a b ::"'a::real_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   620
  assumes  "(u *\<^sub>R b + v *\<^sub>R a) = (u *\<^sub>R a + v *\<^sub>R b)"  "u \<noteq> v"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   621
  shows "a=b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   622
  by (smt (verit) add_diff_cancel_left' add_diff_eq assms scaleR_cancel_left scaleR_left.diff)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   623
  
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   624
lemma closed_segment_image_interval:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   625
     "closed_segment a b = (\<lambda>u. (1 - u) *\<^sub>R a + u *\<^sub>R b) ` {0..1}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   626
  by (auto simp: set_eq_iff image_iff closed_segment_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   627
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   628
lemma open_segment_image_interval:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   629
     "open_segment a b = (if a=b then {} else (\<lambda>u. (1 - u) *\<^sub>R a + u *\<^sub>R b) ` {0<..<1})"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   630
  by (auto simp:  open_segment_def closed_segment_def segment_degen_0 segment_degen_1)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   631
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   632
lemmas segment_image_interval = closed_segment_image_interval open_segment_image_interval
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   633
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   634
lemma closed_segment_neq_empty [simp]: "closed_segment a b \<noteq> {}"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   635
  by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   636
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   637
lemma open_segment_eq_empty [simp]: "open_segment a b = {} \<longleftrightarrow> a = b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   638
  by (simp add: segment_image_interval(2))
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   639
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   640
lemma open_segment_eq_empty' [simp]: "{} = open_segment a b \<longleftrightarrow> a = b"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   641
  using open_segment_eq_empty by blast
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   642
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   643
lemmas segment_eq_empty = closed_segment_neq_empty open_segment_eq_empty
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   644
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   645
lemma inj_segment:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   646
  fixes a :: "'a :: real_vector"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   647
  assumes "a \<noteq> b"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   648
    shows "inj_on (\<lambda>u. (1 - u) *\<^sub>R a + u *\<^sub>R b) I"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   649
proof
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   650
  fix x y
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   651
  assume "(1 - x) *\<^sub>R a + x *\<^sub>R b = (1 - y) *\<^sub>R a + y *\<^sub>R b"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   652
  then have "x *\<^sub>R (b - a) = y *\<^sub>R (b - a)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   653
    by (simp add: algebra_simps)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   654
  with assms show "x = y"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   655
    by (simp add: real_vector.scale_right_imp_eq)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   656
qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   657
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   658
lemma finite_closed_segment [simp]: "finite(closed_segment a b) \<longleftrightarrow> a = b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   659
  using infinite_Icc [OF zero_less_one] finite_imageD [OF _ inj_segment [of a b]]
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   660
  unfolding segment_image_interval
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   661
  by (smt (verit, del_insts) finite.emptyI finite_insert finite_subset image_subset_iff insertCI segment_degen_0)
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   662
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   663
lemma finite_open_segment [simp]: "finite(open_segment a b) \<longleftrightarrow> a = b"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   664
  by (auto simp: open_segment_def)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   665
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   666
lemmas finite_segment = finite_closed_segment finite_open_segment
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   667
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   668
lemma closed_segment_eq_sing: "closed_segment a b = {c} \<longleftrightarrow> a = c \<and> b = c"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   669
  by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   670
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   671
lemma open_segment_eq_sing: "open_segment a b \<noteq> {c}"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   672
  by (metis finite_insert finite_open_segment insert_not_empty open_segment_image_interval)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   673
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   674
lemmas segment_eq_sing = closed_segment_eq_sing open_segment_eq_sing
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   675
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   676
lemma compact_segment [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   677
  fixes a :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   678
  shows "compact (closed_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   679
  by (auto simp: segment_image_interval intro!: compact_continuous_image continuous_intros)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   680
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   681
lemma closed_segment [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   682
  fixes a :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   683
  shows "closed (closed_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   684
  by (simp add: compact_imp_closed)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   685
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   686
lemma closure_closed_segment [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   687
  fixes a :: "'a::real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   688
  shows "closure(closed_segment a b) = closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   689
  by simp
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   690
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   691
lemma open_segment_bound:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   692
  assumes "x \<in> open_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   693
  shows "norm (x - a) < norm (b - a)" "norm (x - b) < norm (b - a)"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   694
  by (metis assms norm_minus_commute open_segment_bound1 open_segment_commute)+
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   695
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   696
lemma closure_open_segment [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   697
  "closure (open_segment a b) = (if a = b then {} else closed_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   698
    for a :: "'a::euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   699
proof (cases "a = b")
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   700
  case True
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   701
  then show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   702
    by simp
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   703
next
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   704
  case False
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   705
  have "closure ((\<lambda>u. u *\<^sub>R (b - a)) ` {0<..<1}) = (\<lambda>u. u *\<^sub>R (b - a)) ` closure {0<..<1}"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   706
  proof (rule closure_injective_linear_image [symmetric])
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   707
  qed (use False in \<open>auto intro!: injI\<close>)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   708
  then have "closure
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   709
     ((\<lambda>u. (1 - u) *\<^sub>R a + u *\<^sub>R b) ` {0<..<1}) = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b) ` closure {0<..<1}"
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   710
    using closure_translation [of a "((\<lambda>x. x *\<^sub>R b - x *\<^sub>R a) ` {0<..<1})"]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   711
    by (simp add: segment_eq_compose field_simps scaleR_diff_left scaleR_diff_right image_image)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   712
  then show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   713
    by (simp add: segment_image_interval closure_greaterThanLessThan [symmetric] del: closure_greaterThanLessThan)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   714
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   715
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   716
lemma closed_open_segment_iff [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   717
    fixes a :: "'a::euclidean_space"  shows "closed(open_segment a b) \<longleftrightarrow> a = b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   718
  by (metis open_segment_def DiffE closure_eq closure_open_segment ends_in_segment(1) insert_iff segment_image_interval(2))
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   719
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   720
lemma compact_open_segment_iff [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   721
    fixes a :: "'a::euclidean_space"  shows "compact(open_segment a b) \<longleftrightarrow> a = b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   722
  by (simp add: bounded_open_segment compact_eq_bounded_closed)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   723
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   724
lemma convex_closed_segment [iff]: "convex (closed_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   725
  unfolding segment_convex_hull by(rule convex_convex_hull)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   726
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   727
lemma convex_open_segment [iff]: "convex (open_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   728
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   729
  have "convex ((\<lambda>u. u *\<^sub>R (b - a)) ` {0<..<1})"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   730
    by (rule convex_linear_image) auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   731
  then have "convex ((+) a ` (\<lambda>u. u *\<^sub>R (b - a)) ` {0<..<1})"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   732
    by (rule convex_translation)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   733
  then show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   734
    by (simp add: image_image open_segment_image_interval segment_eq_compose field_simps scaleR_diff_left scaleR_diff_right)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   735
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   736
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   737
lemmas convex_segment = convex_closed_segment convex_open_segment
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   738
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   739
lemma subset_closed_segment:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   740
    "closed_segment a b \<subseteq> closed_segment c d \<longleftrightarrow>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   741
     a \<in> closed_segment c d \<and> b \<in> closed_segment c d"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   742
  using closed_segment_subset convex_closed_segment ends_in_segment in_mono by blast
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   743
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   744
lemma subset_co_segment:
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   745
  "closed_segment a b \<subseteq> open_segment c d \<longleftrightarrow>
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   746
     a \<in> open_segment c d \<and> b \<in> open_segment c d"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   747
  using closed_segment_subset by blast
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   748
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   749
lemma subset_open_segment:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   750
  fixes a :: "'a::euclidean_space"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   751
  shows "open_segment a b \<subseteq> open_segment c d \<longleftrightarrow>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   752
         a = b \<or> a \<in> closed_segment c d \<and> b \<in> closed_segment c d"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   753
        (is "?lhs = ?rhs")
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   754
proof (cases "a = b")
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   755
  case True then show ?thesis by simp
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   756
next
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   757
  case False show ?thesis
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   758
  proof
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   759
    assume rhs: ?rhs
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   760
    with \<open>a \<noteq> b\<close> have "c \<noteq> d"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   761
      using closed_segment_idem singleton_iff by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   762
    have "\<exists>uc. (1 - u) *\<^sub>R ((1 - ua) *\<^sub>R c + ua *\<^sub>R d) + u *\<^sub>R ((1 - ub) *\<^sub>R c + ub *\<^sub>R d) =
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   763
               (1 - uc) *\<^sub>R c + uc *\<^sub>R d \<and> 0 < uc \<and> uc < 1"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   764
        if neq: "(1 - ua) *\<^sub>R c + ua *\<^sub>R d \<noteq> (1 - ub) *\<^sub>R c + ub *\<^sub>R d" "c \<noteq> d"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   765
           and "a = (1 - ua) *\<^sub>R c + ua *\<^sub>R d" "b = (1 - ub) *\<^sub>R c + ub *\<^sub>R d"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   766
           and u: "0 < u" "u < 1" and uab: "0 \<le> ua" "ua \<le> 1" "0 \<le> ub" "ub \<le> 1"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   767
        for u ua ub
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   768
    proof -
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   769
      have "ua \<noteq> ub"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   770
        using neq by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   771
      moreover have "(u - 1) * ua \<le> 0" using u uab
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   772
        by (simp add: mult_nonpos_nonneg)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   773
      ultimately have lt: "(u - 1) * ua < u * ub" using u uab
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   774
        by (metis antisym_conv diff_ge_0_iff_ge le_less_trans mult_eq_0_iff mult_le_0_iff not_less)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   775
      have "p * ua + q * ub < p+q" if p: "0 < p" and  q: "0 < q" for p q
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   776
      proof -
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   777
        have "\<not> p \<le> 0" "\<not> q \<le> 0"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   778
          using p q not_less by blast+
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   779
        then show ?thesis
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   780
          by (smt (verit) \<open>ua \<noteq> ub\<close> mult_cancel_left1 mult_left_le uab(2) uab(4))
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   781
      qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   782
      then have "(1 - u) * ua + u * ub < 1" using u \<open>ua \<noteq> ub\<close>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   783
        by (metis diff_add_cancel diff_gt_0_iff_gt)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   784
      with lt show ?thesis
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   785
        by (rule_tac x="ua + u*(ub-ua)" in exI) (simp add: algebra_simps)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   786
    qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   787
    with rhs \<open>a \<noteq> b\<close> \<open>c \<noteq> d\<close> show ?lhs
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   788
      unfolding open_segment_image_interval closed_segment_def
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   789
      by (fastforce simp add:)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   790
  next
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   791
    assume lhs: ?lhs
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   792
    with \<open>a \<noteq> b\<close> have "c \<noteq> d"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   793
      by (meson finite_open_segment rev_finite_subset)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   794
    have "closure (open_segment a b) \<subseteq> closure (open_segment c d)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   795
      using lhs closure_mono by blast
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   796
    then have "closed_segment a b \<subseteq> closed_segment c d"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   797
      by (simp add: \<open>a \<noteq> b\<close> \<open>c \<noteq> d\<close>)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   798
    then show ?rhs
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   799
      by (force simp: \<open>a \<noteq> b\<close>)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   800
  qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   801
qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   802
77140
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   803
lemma closed_segment_same_fst:
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   804
  "fst a = fst b \<Longrightarrow> closed_segment a b = {fst a} \<times> closed_segment (snd a) (snd b)"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   805
  by (auto simp: closed_segment_def scaleR_prod_def)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   806
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   807
lemma closed_segment_same_snd:
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   808
  "snd a = snd b \<Longrightarrow> closed_segment a b = closed_segment (fst a) (fst b) \<times> {snd a}"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   809
  by (auto simp: closed_segment_def scaleR_prod_def)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   810
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   811
lemma subset_oc_segment:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   812
  fixes a :: "'a::euclidean_space"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   813
  shows "open_segment a b \<subseteq> closed_segment c d \<longleftrightarrow>
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   814
         a = b \<or> a \<in> closed_segment c d \<and> b \<in> closed_segment c d" 
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   815
    (is "?lhs = ?rhs")
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   816
proof
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   817
  show "?lhs \<Longrightarrow> ?rhs"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   818
    by (metis closure_closed_segment closure_mono closure_open_segment subset_closed_segment)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   819
  show "?rhs \<Longrightarrow> ?lhs"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   820
    by (meson dual_order.trans segment_open_subset_closed subset_open_segment)
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   821
qed
71230
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   822
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   823
lemmas subset_segment = subset_closed_segment subset_co_segment subset_oc_segment subset_open_segment
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   824
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   825
lemma dist_half_times2:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   826
  fixes a :: "'a :: real_normed_vector"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   827
  shows "dist ((1 / 2) *\<^sub>R (a + b)) x * 2 = dist (a+b) (2 *\<^sub>R x)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   828
proof -
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   829
  have "norm ((1 / 2) *\<^sub>R (a + b) - x) * 2 = norm (2 *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   830
    by simp
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   831
  also have "... = norm ((a + b) - 2 *\<^sub>R x)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   832
    by (simp add: real_vector.scale_right_diff_distrib)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   833
  finally show ?thesis
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   834
    by (simp only: dist_norm)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   835
qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   836
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   837
lemma closed_segment_as_ball:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   838
    "closed_segment a b = affine hull {a,b} \<inter> cball(inverse 2 *\<^sub>R (a + b))(norm(b - a) / 2)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   839
proof (cases "b = a")
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   840
  case True then show ?thesis by (auto simp: hull_inc)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   841
next
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   842
  case False
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   843
  then have *: "((\<exists>u v. x = u *\<^sub>R a + v *\<^sub>R b \<and> u + v = 1) \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   844
                  dist ((1 / 2) *\<^sub>R (a + b)) x * 2 \<le> norm (b - a)) =
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   845
                 (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1)" for x
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   846
  proof -
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   847
    have "((\<exists>u v. x = u *\<^sub>R a + v *\<^sub>R b \<and> u + v = 1) \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   848
                  dist ((1 / 2) *\<^sub>R (a + b)) x * 2 \<le> norm (b - a)) =
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   849
          ((\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b) \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   850
                  dist ((1 / 2) *\<^sub>R (a + b)) x * 2 \<le> norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   851
      unfolding eq_diff_eq [symmetric] by simp
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   852
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   853
                          norm ((a+b) - (2 *\<^sub>R x)) \<le> norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   854
      by (simp add: dist_half_times2) (simp add: dist_norm)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   855
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   856
            norm ((a+b) - (2 *\<^sub>R ((1 - u) *\<^sub>R a + u *\<^sub>R b))) \<le> norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   857
      by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   858
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   859
                norm ((1 - u * 2) *\<^sub>R (b - a)) \<le> norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   860
      by (simp add: algebra_simps scaleR_2)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   861
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   862
                          \<bar>1 - u * 2\<bar> * norm (b - a) \<le> norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   863
      by simp
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   864
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> \<bar>1 - u * 2\<bar> \<le> 1)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   865
      by (simp add: mult_le_cancel_right2 False)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   866
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   867
      by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   868
    finally show ?thesis .
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   869
  qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   870
  show ?thesis
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   871
    by (simp add: affine_hull_2 Set.set_eq_iff closed_segment_def *)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   872
qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   873
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   874
lemma open_segment_as_ball:
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   875
    "open_segment a b =
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   876
     affine hull {a,b} \<inter> ball(inverse 2 *\<^sub>R (a + b))(norm(b - a) / 2)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   877
proof (cases "b = a")
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   878
  case True then show ?thesis by (auto simp: hull_inc)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   879
next
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   880
  case False
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   881
  then have *: "((\<exists>u v. x = u *\<^sub>R a + v *\<^sub>R b \<and> u + v = 1) \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   882
                  dist ((1 / 2) *\<^sub>R (a + b)) x * 2 < norm (b - a)) =
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   883
                 (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 < u \<and> u < 1)" for x
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   884
  proof -
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   885
    have "((\<exists>u v. x = u *\<^sub>R a + v *\<^sub>R b \<and> u + v = 1) \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   886
                  dist ((1 / 2) *\<^sub>R (a + b)) x * 2 < norm (b - a)) =
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   887
          ((\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b) \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   888
                  dist ((1 / 2) *\<^sub>R (a + b)) x * 2 < norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   889
      unfolding eq_diff_eq [symmetric] by simp
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   890
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   891
                          norm ((a+b) - (2 *\<^sub>R x)) < norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   892
      by (simp add: dist_half_times2) (simp add: dist_norm)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   893
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   894
            norm ((a+b) - (2 *\<^sub>R ((1 - u) *\<^sub>R a + u *\<^sub>R b))) < norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   895
      by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   896
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   897
                norm ((1 - u * 2) *\<^sub>R (b - a)) < norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   898
      by (simp add: algebra_simps scaleR_2)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   899
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and>
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   900
                          \<bar>1 - u * 2\<bar> * norm (b - a) < norm (b - a))"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   901
      by simp
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   902
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> \<bar>1 - u * 2\<bar> < 1)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   903
      by (simp add: mult_le_cancel_right2 False)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   904
    also have "... = (\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 < u \<and> u < 1)"
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   905
      by auto
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   906
    finally show ?thesis .
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   907
  qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   908
  show ?thesis
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   909
    using False by (force simp: affine_hull_2 Set.set_eq_iff open_segment_image_interval *)
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   910
qed
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   911
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   912
lemmas segment_as_ball = closed_segment_as_ball open_segment_as_ball
095cf95d7725 moved segment lemmas where they belong
nipkow
parents: 71189
diff changeset
   913
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   914
lemma connected_segment [iff]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   915
  fixes x :: "'a :: real_normed_vector"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   916
  shows "connected (closed_segment x y)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   917
  by (simp add: convex_connected)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   918
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   919
lemma is_interval_closed_segment_1[intro, simp]: "is_interval (closed_segment a b)" for a b::real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   920
  unfolding closed_segment_eq_real_ivl
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   921
  by (auto simp: is_interval_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   922
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   923
lemma IVT'_closed_segment_real:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   924
  fixes f :: "real \<Rightarrow> real"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   925
  assumes "y \<in> closed_segment (f a) (f b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   926
  assumes "continuous_on (closed_segment a b) f"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   927
  shows "\<exists>x \<in> closed_segment a b. f x = y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   928
  using IVT'[of f a y b]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   929
    IVT'[of "-f" a "-y" b]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   930
    IVT'[of f b y a]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   931
    IVT'[of "-f" b "-y" a] assms
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   932
  by (cases "a \<le> b"; cases "f b \<ge> f a") (auto simp: closed_segment_eq_real_ivl continuous_on_minus)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   933
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   934
subsection \<open>Betweenness\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   935
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   936
definition\<^marker>\<open>tag important\<close> "between = (\<lambda>(a,b) x. x \<in> closed_segment a b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   937
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   938
lemma betweenI:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   939
  assumes "0 \<le> u" "u \<le> 1" "x = (1 - u) *\<^sub>R a + u *\<^sub>R b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   940
  shows "between (a, b) x"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   941
  using assms unfolding between_def closed_segment_def by auto
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   942
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   943
lemma betweenE:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   944
  assumes "between (a, b) x"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   945
  obtains u where "0 \<le> u" "u \<le> 1" "x = (1 - u) *\<^sub>R a + u *\<^sub>R b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   946
  using assms unfolding between_def closed_segment_def by auto
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   947
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   948
lemma between_implies_scaled_diff:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   949
  assumes "between (S, T) X" "between (S, T) Y" "S \<noteq> Y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   950
  obtains c where "(X - Y) = c *\<^sub>R (S - Y)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   951
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   952
  from \<open>between (S, T) X\<close> obtain u\<^sub>X where X: "X = u\<^sub>X *\<^sub>R S + (1 - u\<^sub>X) *\<^sub>R T"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   953
    by (metis add.commute betweenE eq_diff_eq)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   954
  from \<open>between (S, T) Y\<close> obtain u\<^sub>Y where Y: "Y = u\<^sub>Y *\<^sub>R S + (1 - u\<^sub>Y) *\<^sub>R T"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   955
    by (metis add.commute betweenE eq_diff_eq)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   956
  have "X - Y = (u\<^sub>X - u\<^sub>Y) *\<^sub>R (S - T)"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
   957
    by (simp add: X Y scaleR_left.diff scaleR_right_diff_distrib)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   958
  moreover from Y have "S - Y = (1 - u\<^sub>Y) *\<^sub>R (S - T)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   959
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   960
  moreover note \<open>S \<noteq> Y\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   961
  ultimately have "(X - Y) = ((u\<^sub>X - u\<^sub>Y) / (1 - u\<^sub>Y)) *\<^sub>R (S - Y)" by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   962
  from this that show thesis by blast
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   963
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   964
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   965
lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   966
  unfolding between_def by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   967
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   968
lemma between: "between (a, b) (x::'a::euclidean_space) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   969
proof (cases "a = b")
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   970
  case True
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   971
  then show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   972
    by (auto simp add: between_def dist_commute)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   973
next
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   974
  case False
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   975
  then have Fal: "norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   976
    by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   977
  have *: "\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   978
    by (auto simp add: algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   979
  have "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)" if "x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1" for u
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   980
  proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   981
    have *: "a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   982
      unfolding that(1) by (auto simp add:algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   983
    show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   984
      unfolding norm_minus_commute[of x a] * using \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   985
      by simp
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   986
  qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   987
  moreover have "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" if "dist a b = dist a x + dist x b" 
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   988
  proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   989
    let ?\<beta> = "norm (a - x) / norm (a - b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   990
    show "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   991
    proof (intro exI conjI)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   992
      show "?\<beta> \<le> 1"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   993
        using Fal2 unfolding that[unfolded dist_norm] norm_ge_zero by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   994
      show "x = (1 - ?\<beta>) *\<^sub>R a + (?\<beta>) *\<^sub>R b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   995
      proof (subst euclidean_eq_iff; intro ballI)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   996
        fix i :: 'a
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   997
        assume i: "i \<in> Basis"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   998
        have "((1 - ?\<beta>) *\<^sub>R a + (?\<beta>) *\<^sub>R b) \<bullet> i 
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
   999
              = ((norm (a - b) - norm (a - x)) * (a \<bullet> i) + norm (a - x) * (b \<bullet> i)) / norm (a - b)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1000
          using Fal by (auto simp add: field_simps inner_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1001
        also have "\<dots> = x\<bullet>i"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1002
          apply (rule divide_eq_imp[OF Fal])
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1003
          unfolding that[unfolded dist_norm]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1004
          using that[unfolded dist_triangle_eq] i
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1005
          apply (subst (asm) euclidean_eq_iff)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1006
           apply (auto simp add: field_simps inner_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1007
          done
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1008
        finally show "x \<bullet> i = ((1 - ?\<beta>) *\<^sub>R a + (?\<beta>) *\<^sub>R b) \<bullet> i"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1009
          by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1010
      qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1011
    qed (use Fal2 in auto)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1012
  qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1013
  ultimately show ?thesis
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1014
    by (force simp add: between_def closed_segment_def dist_triangle_eq)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1015
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1016
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1017
lemma between_midpoint:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1018
  fixes a :: "'a::euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1019
  shows "between (a,b) (midpoint a b)" (is ?t1)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1020
    and "between (b,a) (midpoint a b)" (is ?t2)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1021
proof -
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1022
  have *: "\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1023
    by auto
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1024
  show ?t1 ?t2
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1025
    unfolding between midpoint_def dist_norm
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1026
    by (auto simp add: field_simps inner_simps euclidean_eq_iff[where 'a='a] intro!: *)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1027
qed
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1029
lemma between_mem_convex_hull:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1030
  "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1031
  unfolding between_mem_segment segment_convex_hull ..
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1032
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1033
lemma between_triv_iff [simp]: "between (a,a) b \<longleftrightarrow> a=b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1034
  by (auto simp: between_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1035
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1036
lemma between_triv1 [simp]: "between (a,b) a"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1037
  by (auto simp: between_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1038
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1039
lemma between_triv2 [simp]: "between (a,b) b"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1040
  by (auto simp: between_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1041
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1042
lemma between_commute:
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1043
  "between (a,b) = between (b,a)"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1044
  by (auto simp: between_def closed_segment_commute)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1045
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1046
lemma between_antisym:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1047
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1048
  shows "\<lbrakk>between (b,c) a; between (a,c) b\<rbrakk> \<Longrightarrow> a = b"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1049
  by (auto simp: between dist_commute)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1050
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1051
lemma between_trans:
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1052
  fixes a :: "'a :: euclidean_space"
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1053
  shows "\<lbrakk>between (b,c) a; between (a,c) d\<rbrakk> \<Longrightarrow> between (b,c) d"
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1054
  using dist_triangle2 [of b c d] dist_triangle3 [of b d a]
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1055
  by (auto simp: between dist_commute)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1056
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1057
lemma between_norm:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1058
    fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1059
    shows "between (a,b) x \<longleftrightarrow> norm(x - a) *\<^sub>R (b - x) = norm(b - x) *\<^sub>R (x - a)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1060
  by (auto simp: between dist_triangle_eq norm_minus_commute algebra_simps)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1061
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1062
lemma between_swap:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1063
  fixes A B X Y :: "'a::euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1064
  assumes "between (A, B) X"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1065
  assumes "between (A, B) Y"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1066
  shows "between (X, B) Y \<longleftrightarrow> between (A, Y) X"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1067
  using assms by (auto simp add: between)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1068
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1069
lemma between_translation [simp]: "between (a + y,a + z) (a + x) \<longleftrightarrow> between (y,z) x"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1070
  by (auto simp: between_def)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1071
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1072
lemma between_trans_2:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1073
  fixes a :: "'a :: euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1074
  shows "\<lbrakk>between (b,c) a; between (a,b) d\<rbrakk> \<Longrightarrow> between (c,d) a"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1075
  by (metis between_commute between_swap between_trans)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1076
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1077
lemma between_scaleR_lift [simp]:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1078
  fixes v :: "'a::euclidean_space"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1079
  shows "between (a *\<^sub>R v, b *\<^sub>R v) (c *\<^sub>R v) \<longleftrightarrow> v = 0 \<or> between (a, b) c"
78477
37abfe400ae6 Removal of ugly old proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  1080
  by (simp add: between dist_norm flip: scaleR_left_diff_distrib distrib_right)
71028
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1081
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1082
lemma between_1:
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1083
  fixes x::real
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1084
  shows "between (a,b) x \<longleftrightarrow> (a \<le> x \<and> x \<le> b) \<or> (b \<le> x \<and> x \<le> a)"
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1085
  by (auto simp: between_mem_segment closed_segment_eq_real_ivl)
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1086
c2465b429e6e Line_Segment is independent of Convex_Euclidean_Space
immler
parents:
diff changeset
  1087
end