Split off new HOL-Complex_Analysis session from HOL-Analysis
authorManuel Eberl <eberlm@in.tum.de>
Sat, 30 Nov 2019 13:47:33 +0100
changeset 71189 954ee5acaae0
parent 71181 8331063570d6
child 71190 8b8f9d3b3fac
Split off new HOL-Complex_Analysis session from HOL-Analysis
src/HOL/Analysis/Analysis.thy
src/HOL/Analysis/Cauchy_Integral_Theorem.thy
src/HOL/Analysis/Change_Of_Vars.thy
src/HOL/Analysis/Complex_Analysis_Basics.thy
src/HOL/Analysis/Conformal_Mappings.thy
src/HOL/Analysis/Derivative.thy
src/HOL/Analysis/FPS_Convergence.thy
src/HOL/Analysis/Gamma_Function.thy
src/HOL/Analysis/Great_Picard.thy
src/HOL/Analysis/Line_Segment.thy
src/HOL/Analysis/Path_Connected.thy
src/HOL/Analysis/Smooth_Paths.thy
src/HOL/Analysis/Vitali_Covering_Theorem.thy
src/HOL/Analysis/Winding_Numbers.thy
src/HOL/Complex_Analysis/Cauchy_Integral_Theorem.thy
src/HOL/Complex_Analysis/Complex_Analysis.thy
src/HOL/Complex_Analysis/Conformal_Mappings.thy
src/HOL/Complex_Analysis/Great_Picard.thy
src/HOL/Complex_Analysis/Riemann_Mapping.thy
src/HOL/Complex_Analysis/Winding_Numbers.thy
src/HOL/Complex_Analysis/document/root.bib
src/HOL/Complex_Analysis/document/root.tex
src/HOL/ROOT
--- a/src/HOL/Analysis/Analysis.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Analysis.thy	Sat Nov 30 13:47:33 2019 +0100
@@ -35,16 +35,14 @@
   Weierstrass_Theorems
   Polytope
   Jordan_Curve
-  Winding_Numbers
-  Riemann_Mapping
   Poly_Roots
-  Conformal_Mappings
-  FPS_Convergence
   Generalised_Binomial_Theorem
   Gamma_Function
   Change_Of_Vars
   Multivariate_Analysis
   Simplex_Content
+  FPS_Convergence
+  Smooth_Paths
 begin
 
 end
--- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Wed Nov 27 16:54:33 2019 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,7847 +0,0 @@
-section \<open>Complex Path Integrals and Cauchy's Integral Theorem\<close>
-
-text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2015)\<close>
-
-theory Cauchy_Integral_Theorem
-imports
-  Complex_Transcendental
-  Henstock_Kurzweil_Integration
-  Weierstrass_Theorems
-  Retracts
-begin
-
-lemma leibniz_rule_holomorphic:
-  fixes f::"complex \<Rightarrow> 'b::euclidean_space \<Rightarrow> complex"
-  assumes "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_field_derivative fx x t) (at x within U)"
-  assumes "\<And>x. x \<in> U \<Longrightarrow> (f x) integrable_on cbox a b"
-  assumes "continuous_on (U \<times> (cbox a b)) (\<lambda>(x, t). fx x t)"
-  assumes "convex U"
-  shows "(\<lambda>x. integral (cbox a b) (f x)) holomorphic_on U"
-  using leibniz_rule_field_differentiable[OF assms(1-3) _ assms(4)]
-  by (auto simp: holomorphic_on_def)
-
-lemma Ln_measurable [measurable]: "Ln \<in> measurable borel borel"
-proof -
-  have *: "Ln (-of_real x) = of_real (ln x) + \<i> * pi" if "x > 0" for x
-    using that by (subst Ln_minus) (auto simp: Ln_of_real)
-  have **: "Ln (of_real x) = of_real (ln (-x)) + \<i> * pi" if "x < 0" for x
-    using *[of "-x"] that by simp
-  have cont: "(\<lambda>x. indicat_real (- \<real>\<^sub>\<le>\<^sub>0) x *\<^sub>R Ln x) \<in> borel_measurable borel"
-    by (intro borel_measurable_continuous_on_indicator continuous_intros) auto
-  have "(\<lambda>x. if x \<in> \<real>\<^sub>\<le>\<^sub>0 then ln (-Re x) + \<i> * pi else indicator (-\<real>\<^sub>\<le>\<^sub>0) x *\<^sub>R Ln x) \<in> borel \<rightarrow>\<^sub>M borel"
-    (is "?f \<in> _") by (rule measurable_If_set[OF _ cont]) auto
-  hence "(\<lambda>x. if x = 0 then Ln 0 else ?f x) \<in> borel \<rightarrow>\<^sub>M borel" by measurable
-  also have "(\<lambda>x. if x = 0 then Ln 0 else ?f x) = Ln"
-    by (auto simp: fun_eq_iff ** nonpos_Reals_def)
-  finally show ?thesis .
-qed
-
-lemma powr_complex_measurable [measurable]:
-  assumes [measurable]: "f \<in> measurable M borel" "g \<in> measurable M borel"
-  shows   "(\<lambda>x. f x powr g x :: complex) \<in> measurable M borel"
-  using assms by (simp add: powr_def)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Homeomorphisms of arc images\<close>
-
-lemma homeomorphism_arc:
-  fixes g :: "real \<Rightarrow> 'a::t2_space"
-  assumes "arc g"
-  obtains h where "homeomorphism {0..1} (path_image g) g h"
-using assms by (force simp: arc_def homeomorphism_compact path_def path_image_def)
-
-lemma homeomorphic_arc_image_interval:
-  fixes g :: "real \<Rightarrow> 'a::t2_space" and a::real
-  assumes "arc g" "a < b"
-  shows "(path_image g) homeomorphic {a..b}"
-proof -
-  have "(path_image g) homeomorphic {0..1::real}"
-    by (meson assms(1) homeomorphic_def homeomorphic_sym homeomorphism_arc)
-  also have "\<dots> homeomorphic {a..b}"
-    using assms by (force intro: homeomorphic_closed_intervals_real)
-  finally show ?thesis .
-qed
-
-lemma homeomorphic_arc_images:
-  fixes g :: "real \<Rightarrow> 'a::t2_space" and h :: "real \<Rightarrow> 'b::t2_space"
-  assumes "arc g" "arc h"
-  shows "(path_image g) homeomorphic (path_image h)"
-proof -
-  have "(path_image g) homeomorphic {0..1::real}"
-    by (meson assms homeomorphic_def homeomorphic_sym homeomorphism_arc)
-  also have "\<dots> homeomorphic (path_image h)"
-    by (meson assms homeomorphic_def homeomorphism_arc)
-  finally show ?thesis .
-qed
-
-lemma path_connected_arc_complement:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-  assumes "arc \<gamma>" "2 \<le> DIM('a)"
-  shows "path_connected(- path_image \<gamma>)"
-proof -
-  have "path_image \<gamma> homeomorphic {0..1::real}"
-    by (simp add: assms homeomorphic_arc_image_interval)
-  then
-  show ?thesis
-    apply (rule path_connected_complement_homeomorphic_convex_compact)
-      apply (auto simp: assms)
-    done
-qed
-
-lemma connected_arc_complement:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-  assumes "arc \<gamma>" "2 \<le> DIM('a)"
-  shows "connected(- path_image \<gamma>)"
-  by (simp add: assms path_connected_arc_complement path_connected_imp_connected)
-
-lemma inside_arc_empty:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-  assumes "arc \<gamma>"
-    shows "inside(path_image \<gamma>) = {}"
-proof (cases "DIM('a) = 1")
-  case True
-  then show ?thesis
-    using assms connected_arc_image connected_convex_1_gen inside_convex by blast
-next
-  case False
-  show ?thesis
-  proof (rule inside_bounded_complement_connected_empty)
-    show "connected (- path_image \<gamma>)"
-      apply (rule connected_arc_complement [OF assms])
-      using False
-      by (metis DIM_ge_Suc0 One_nat_def Suc_1 not_less_eq_eq order_class.order.antisym)
-    show "bounded (path_image \<gamma>)"
-      by (simp add: assms bounded_arc_image)
-  qed
-qed
-
-lemma inside_simple_curve_imp_closed:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-    shows "\<lbrakk>simple_path \<gamma>; x \<in> inside(path_image \<gamma>)\<rbrakk> \<Longrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
-  using arc_simple_path  inside_arc_empty by blast
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Piecewise differentiable functions\<close>
-
-definition piecewise_differentiable_on
-           (infixr "piecewise'_differentiable'_on" 50)
-  where "f piecewise_differentiable_on i  \<equiv>
-           continuous_on i f \<and>
-           (\<exists>S. finite S \<and> (\<forall>x \<in> i - S. f differentiable (at x within i)))"
-
-lemma piecewise_differentiable_on_imp_continuous_on:
-    "f piecewise_differentiable_on S \<Longrightarrow> continuous_on S f"
-by (simp add: piecewise_differentiable_on_def)
-
-lemma piecewise_differentiable_on_subset:
-    "f piecewise_differentiable_on S \<Longrightarrow> T \<le> S \<Longrightarrow> f piecewise_differentiable_on T"
-  using continuous_on_subset
-  unfolding piecewise_differentiable_on_def
-  apply safe
-  apply (blast elim: continuous_on_subset)
-  by (meson Diff_iff differentiable_within_subset subsetCE)
-
-lemma differentiable_on_imp_piecewise_differentiable:
-  fixes a:: "'a::{linorder_topology,real_normed_vector}"
-  shows "f differentiable_on {a..b} \<Longrightarrow> f piecewise_differentiable_on {a..b}"
-  apply (simp add: piecewise_differentiable_on_def differentiable_imp_continuous_on)
-  apply (rule_tac x="{a,b}" in exI, simp add: differentiable_on_def)
-  done
-
-lemma differentiable_imp_piecewise_differentiable:
-    "(\<And>x. x \<in> S \<Longrightarrow> f differentiable (at x within S))
-         \<Longrightarrow> f piecewise_differentiable_on S"
-by (auto simp: piecewise_differentiable_on_def differentiable_imp_continuous_on differentiable_on_def
-         intro: differentiable_within_subset)
-
-lemma piecewise_differentiable_const [iff]: "(\<lambda>x. z) piecewise_differentiable_on S"
-  by (simp add: differentiable_imp_piecewise_differentiable)
-
-lemma piecewise_differentiable_compose:
-    "\<lbrakk>f piecewise_differentiable_on S; g piecewise_differentiable_on (f ` S);
-      \<And>x. finite (S \<inter> f-`{x})\<rbrakk>
-      \<Longrightarrow> (g \<circ> f) piecewise_differentiable_on S"
-  apply (simp add: piecewise_differentiable_on_def, safe)
-  apply (blast intro: continuous_on_compose2)
-  apply (rename_tac A B)
-  apply (rule_tac x="A \<union> (\<Union>x\<in>B. S \<inter> f-`{x})" in exI)
-  apply (blast intro!: differentiable_chain_within)
-  done
-
-lemma piecewise_differentiable_affine:
-  fixes m::real
-  assumes "f piecewise_differentiable_on ((\<lambda>x. m *\<^sub>R x + c) ` S)"
-  shows "(f \<circ> (\<lambda>x. m *\<^sub>R x + c)) piecewise_differentiable_on S"
-proof (cases "m = 0")
-  case True
-  then show ?thesis
-    unfolding o_def
-    by (force intro: differentiable_imp_piecewise_differentiable differentiable_const)
-next
-  case False
-  show ?thesis
-    apply (rule piecewise_differentiable_compose [OF differentiable_imp_piecewise_differentiable])
-    apply (rule assms derivative_intros | simp add: False vimage_def real_vector_affinity_eq)+
-    done
-qed
-
-lemma piecewise_differentiable_cases:
-  fixes c::real
-  assumes "f piecewise_differentiable_on {a..c}"
-          "g piecewise_differentiable_on {c..b}"
-           "a \<le> c" "c \<le> b" "f c = g c"
-  shows "(\<lambda>x. if x \<le> c then f x else g x) piecewise_differentiable_on {a..b}"
-proof -
-  obtain S T where st: "finite S" "finite T"
-               and fd: "\<And>x. x \<in> {a..c} - S \<Longrightarrow> f differentiable at x within {a..c}"
-               and gd: "\<And>x. x \<in> {c..b} - T \<Longrightarrow> g differentiable at x within {c..b}"
-    using assms
-    by (auto simp: piecewise_differentiable_on_def)
-  have finabc: "finite ({a,b,c} \<union> (S \<union> T))"
-    by (metis \<open>finite S\<close> \<open>finite T\<close> finite_Un finite_insert finite.emptyI)
-  have "continuous_on {a..c} f" "continuous_on {c..b} g"
-    using assms piecewise_differentiable_on_def by auto
-  then have "continuous_on {a..b} (\<lambda>x. if x \<le> c then f x else g x)"
-    using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
-                               OF closed_real_atLeastAtMost [of c b],
-                               of f g "\<lambda>x. x\<le>c"]  assms
-    by (force simp: ivl_disj_un_two_touch)
-  moreover
-  { fix x
-    assume x: "x \<in> {a..b} - ({a,b,c} \<union> (S \<union> T))"
-    have "(\<lambda>x. if x \<le> c then f x else g x) differentiable at x within {a..b}" (is "?diff_fg")
-    proof (cases x c rule: le_cases)
-      case le show ?diff_fg
-      proof (rule differentiable_transform_within [where d = "dist x c"])
-        have "f differentiable at x"
-          using x le fd [of x] at_within_interior [of x "{a..c}"] by simp
-        then show "f differentiable at x within {a..b}"
-          by (simp add: differentiable_at_withinI)
-      qed (use x le st dist_real_def in auto)
-    next
-      case ge show ?diff_fg
-      proof (rule differentiable_transform_within [where d = "dist x c"])
-        have "g differentiable at x"
-          using x ge gd [of x] at_within_interior [of x "{c..b}"] by simp
-        then show "g differentiable at x within {a..b}"
-          by (simp add: differentiable_at_withinI)
-      qed (use x ge st dist_real_def in auto)
-    qed
-  }
-  then have "\<exists>S. finite S \<and>
-                 (\<forall>x\<in>{a..b} - S. (\<lambda>x. if x \<le> c then f x else g x) differentiable at x within {a..b})"
-    by (meson finabc)
-  ultimately show ?thesis
-    by (simp add: piecewise_differentiable_on_def)
-qed
-
-lemma piecewise_differentiable_neg:
-    "f piecewise_differentiable_on S \<Longrightarrow> (\<lambda>x. -(f x)) piecewise_differentiable_on S"
-  by (auto simp: piecewise_differentiable_on_def continuous_on_minus)
-
-lemma piecewise_differentiable_add:
-  assumes "f piecewise_differentiable_on i"
-          "g piecewise_differentiable_on i"
-    shows "(\<lambda>x. f x + g x) piecewise_differentiable_on i"
-proof -
-  obtain S T where st: "finite S" "finite T"
-                       "\<forall>x\<in>i - S. f differentiable at x within i"
-                       "\<forall>x\<in>i - T. g differentiable at x within i"
-    using assms by (auto simp: piecewise_differentiable_on_def)
-  then have "finite (S \<union> T) \<and> (\<forall>x\<in>i - (S \<union> T). (\<lambda>x. f x + g x) differentiable at x within i)"
-    by auto
-  moreover have "continuous_on i f" "continuous_on i g"
-    using assms piecewise_differentiable_on_def by auto
-  ultimately show ?thesis
-    by (auto simp: piecewise_differentiable_on_def continuous_on_add)
-qed
-
-lemma piecewise_differentiable_diff:
-    "\<lbrakk>f piecewise_differentiable_on S;  g piecewise_differentiable_on S\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. f x - g x) piecewise_differentiable_on S"
-  unfolding diff_conv_add_uminus
-  by (metis piecewise_differentiable_add piecewise_differentiable_neg)
-
-lemma continuous_on_joinpaths_D1:
-    "continuous_on {0..1} (g1 +++ g2) \<Longrightarrow> continuous_on {0..1} g1"
-  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> ((*)(inverse 2))"])
-  apply (rule continuous_intros | simp)+
-  apply (auto elim!: continuous_on_subset simp: joinpaths_def)
-  done
-
-lemma continuous_on_joinpaths_D2:
-    "\<lbrakk>continuous_on {0..1} (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> continuous_on {0..1} g2"
-  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> (\<lambda>x. inverse 2*x + 1/2)"])
-  apply (rule continuous_intros | simp)+
-  apply (auto elim!: continuous_on_subset simp add: joinpaths_def pathfinish_def pathstart_def Ball_def)
-  done
-
-lemma piecewise_differentiable_D1:
-  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}"
-  shows "g1 piecewise_differentiable_on {0..1}"
-proof -
-  obtain S where cont: "continuous_on {0..1} g1" and "finite S"
-    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
-    using assms unfolding piecewise_differentiable_on_def
-    by (blast dest!: continuous_on_joinpaths_D1)
-  show ?thesis
-    unfolding piecewise_differentiable_on_def
-  proof (intro exI conjI ballI cont)
-    show "finite (insert 1 (((*)2) ` S))"
-      by (simp add: \<open>finite S\<close>)
-    show "g1 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
-    proof (rule_tac d="dist (x/2) (1/2)" in differentiable_transform_within)
-      have "g1 +++ g2 differentiable at (x / 2) within {0..1/2}"
-        by (rule differentiable_subset [OF S [of "x/2"]] | use that in force)+
-      then show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x within {0..1}"
-        using image_affinity_atLeastAtMost_div [of 2 0 "0::real" 1]
-        by (auto intro: differentiable_chain_within)
-    qed (use that in \<open>auto simp: joinpaths_def\<close>)
-  qed
-qed
-
-lemma piecewise_differentiable_D2:
-  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}" and eq: "pathfinish g1 = pathstart g2"
-  shows "g2 piecewise_differentiable_on {0..1}"
-proof -
-  have [simp]: "g1 1 = g2 0"
-    using eq by (simp add: pathfinish_def pathstart_def)
-  obtain S where cont: "continuous_on {0..1} g2" and "finite S"
-    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
-    using assms unfolding piecewise_differentiable_on_def
-    by (blast dest!: continuous_on_joinpaths_D2)
-  show ?thesis
-    unfolding piecewise_differentiable_on_def
-  proof (intro exI conjI ballI cont)
-    show "finite (insert 0 ((\<lambda>x. 2*x-1)`S))"
-      by (simp add: \<open>finite S\<close>)
-    show "g2 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1)`S)" for x
-    proof (rule_tac d="dist ((x+1)/2) (1/2)" in differentiable_transform_within)
-      have x2: "(x + 1) / 2 \<notin> S"
-        using that
-        apply (clarsimp simp: image_iff)
-        by (metis add.commute add_diff_cancel_left' mult_2 field_sum_of_halves)
-      have "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
-        by (rule differentiable_chain_within differentiable_subset [OF S [of "(x+1)/2"]] | use x2 that in force)+
-      then show "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
-        by (auto intro: differentiable_chain_within)
-      show "(g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'" if "x' \<in> {0..1}" "dist x' x < dist ((x + 1) / 2) (1/2)" for x'
-      proof -
-        have [simp]: "(2*x'+2)/2 = x'+1"
-          by (simp add: field_split_simps)
-        show ?thesis
-          using that by (auto simp: joinpaths_def)
-      qed
-    qed (use that in \<open>auto simp: joinpaths_def\<close>)
-  qed
-qed
-
-
-subsection\<open>The concept of continuously differentiable\<close>
-
-text \<open>
-John Harrison writes as follows:
-
-``The usual assumption in complex analysis texts is that a path \<open>\<gamma>\<close> should be piecewise
-continuously differentiable, which ensures that the path integral exists at least for any continuous
-f, since all piecewise continuous functions are integrable. However, our notion of validity is
-weaker, just piecewise differentiability\ldots{} [namely] continuity plus differentiability except on a
-finite set\ldots{} [Our] underlying theory of integration is the Kurzweil-Henstock theory. In contrast to
-the Riemann or Lebesgue theory (but in common with a simple notion based on antiderivatives), this
-can integrate all derivatives.''
-
-"Formalizing basic complex analysis." From Insight to Proof: Festschrift in Honour of Andrzej Trybulec.
-Studies in Logic, Grammar and Rhetoric 10.23 (2007): 151-165.
-
-And indeed he does not assume that his derivatives are continuous, but the penalty is unreasonably
-difficult proofs concerning winding numbers. We need a self-contained and straightforward theorem
-asserting that all derivatives can be integrated before we can adopt Harrison's choice.\<close>
-
-definition\<^marker>\<open>tag important\<close> C1_differentiable_on :: "(real \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> real set \<Rightarrow> bool"
-           (infix "C1'_differentiable'_on" 50)
-  where
-  "f C1_differentiable_on S \<longleftrightarrow>
-   (\<exists>D. (\<forall>x \<in> S. (f has_vector_derivative (D x)) (at x)) \<and> continuous_on S D)"
-
-lemma C1_differentiable_on_eq:
-    "f C1_differentiable_on S \<longleftrightarrow>
-     (\<forall>x \<in> S. f differentiable at x) \<and> continuous_on S (\<lambda>x. vector_derivative f (at x))"
-     (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    unfolding C1_differentiable_on_def
-    by (metis (no_types, lifting) continuous_on_eq  differentiableI_vector vector_derivative_at)
-next
-  assume ?rhs
-  then show ?lhs
-    using C1_differentiable_on_def vector_derivative_works by fastforce
-qed
-
-lemma C1_differentiable_on_subset:
-  "f C1_differentiable_on T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> f C1_differentiable_on S"
-  unfolding C1_differentiable_on_def  continuous_on_eq_continuous_within
-  by (blast intro:  continuous_within_subset)
-
-lemma C1_differentiable_compose:
-  assumes fg: "f C1_differentiable_on S" "g C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
-  shows "(g \<circ> f) C1_differentiable_on S"
-proof -
-  have "\<And>x. x \<in> S \<Longrightarrow> g \<circ> f differentiable at x"
-    by (meson C1_differentiable_on_eq assms differentiable_chain_at imageI)
-  moreover have "continuous_on S (\<lambda>x. vector_derivative (g \<circ> f) (at x))"
-  proof (rule continuous_on_eq [of _ "\<lambda>x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x))"])
-    show "continuous_on S (\<lambda>x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)))"
-      using fg
-      apply (clarsimp simp add: C1_differentiable_on_eq)
-      apply (rule Limits.continuous_on_scaleR, assumption)
-      by (metis (mono_tags, lifting) continuous_at_imp_continuous_on continuous_on_compose continuous_on_cong differentiable_imp_continuous_within o_def)
-    show "\<And>x. x \<in> S \<Longrightarrow> vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)) = vector_derivative (g \<circ> f) (at x)"
-      by (metis (mono_tags, hide_lams) C1_differentiable_on_eq fg imageI vector_derivative_chain_at)
-  qed
-  ultimately show ?thesis
-    by (simp add: C1_differentiable_on_eq)
-qed
-
-lemma C1_diff_imp_diff: "f C1_differentiable_on S \<Longrightarrow> f differentiable_on S"
-  by (simp add: C1_differentiable_on_eq differentiable_at_imp_differentiable_on)
-
-lemma C1_differentiable_on_ident [simp, derivative_intros]: "(\<lambda>x. x) C1_differentiable_on S"
-  by (auto simp: C1_differentiable_on_eq)
-
-lemma C1_differentiable_on_const [simp, derivative_intros]: "(\<lambda>z. a) C1_differentiable_on S"
-  by (auto simp: C1_differentiable_on_eq)
-
-lemma C1_differentiable_on_add [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x + g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
-
-lemma C1_differentiable_on_minus [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> (\<lambda>x. - f x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
-
-lemma C1_differentiable_on_diff [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x - g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
-
-lemma C1_differentiable_on_mult [simp, derivative_intros]:
-  fixes f g :: "real \<Rightarrow> 'a :: real_normed_algebra"
-  shows "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x * g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq
-  by (auto simp: continuous_on_add continuous_on_mult continuous_at_imp_continuous_on differentiable_imp_continuous_within)
-
-lemma C1_differentiable_on_scaleR [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq
-  by (rule continuous_intros | simp add: continuous_at_imp_continuous_on differentiable_imp_continuous_within)+
-
-
-definition\<^marker>\<open>tag important\<close> piecewise_C1_differentiable_on
-           (infixr "piecewise'_C1'_differentiable'_on" 50)
-  where "f piecewise_C1_differentiable_on i  \<equiv>
-           continuous_on i f \<and>
-           (\<exists>S. finite S \<and> (f C1_differentiable_on (i - S)))"
-
-lemma C1_differentiable_imp_piecewise:
-    "f C1_differentiable_on S \<Longrightarrow> f piecewise_C1_differentiable_on S"
-  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_at_imp_continuous_on differentiable_imp_continuous_within)
-
-lemma piecewise_C1_imp_differentiable:
-    "f piecewise_C1_differentiable_on i \<Longrightarrow> f piecewise_differentiable_on i"
-  by (auto simp: piecewise_C1_differentiable_on_def piecewise_differentiable_on_def
-           C1_differentiable_on_def differentiable_def has_vector_derivative_def
-           intro: has_derivative_at_withinI)
-
-lemma piecewise_C1_differentiable_compose:
-  assumes fg: "f piecewise_C1_differentiable_on S" "g piecewise_C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
-  shows "(g \<circ> f) piecewise_C1_differentiable_on S"
-proof -
-  have "continuous_on S (\<lambda>x. g (f x))"
-    by (metis continuous_on_compose2 fg order_refl piecewise_C1_differentiable_on_def)
-  moreover have "\<exists>T. finite T \<and> g \<circ> f C1_differentiable_on S - T"
-  proof -
-    obtain F where "finite F" and F: "f C1_differentiable_on S - F" and f: "f piecewise_C1_differentiable_on S"
-      using fg by (auto simp: piecewise_C1_differentiable_on_def)
-    obtain G where "finite G" and G: "g C1_differentiable_on f ` S - G" and g: "g piecewise_C1_differentiable_on f ` S"
-      using fg by (auto simp: piecewise_C1_differentiable_on_def)
-    show ?thesis
-    proof (intro exI conjI)
-      show "finite (F \<union> (\<Union>x\<in>G. S \<inter> f-`{x}))"
-        using fin by (auto simp only: Int_Union \<open>finite F\<close> \<open>finite G\<close> finite_UN finite_imageI)
-      show "g \<circ> f C1_differentiable_on S - (F \<union> (\<Union>x\<in>G. S \<inter> f -` {x}))"
-        apply (rule C1_differentiable_compose)
-          apply (blast intro: C1_differentiable_on_subset [OF F])
-          apply (blast intro: C1_differentiable_on_subset [OF G])
-        by (simp add:  C1_differentiable_on_subset G Diff_Int_distrib2 fin)
-    qed
-  qed
-  ultimately show ?thesis
-    by (simp add: piecewise_C1_differentiable_on_def)
-qed
-
-lemma piecewise_C1_differentiable_on_subset:
-    "f piecewise_C1_differentiable_on S \<Longrightarrow> T \<le> S \<Longrightarrow> f piecewise_C1_differentiable_on T"
-  by (auto simp: piecewise_C1_differentiable_on_def elim!: continuous_on_subset C1_differentiable_on_subset)
-
-lemma C1_differentiable_imp_continuous_on:
-  "f C1_differentiable_on S \<Longrightarrow> continuous_on S f"
-  unfolding C1_differentiable_on_eq continuous_on_eq_continuous_within
-  using differentiable_at_withinI differentiable_imp_continuous_within by blast
-
-lemma C1_differentiable_on_empty [iff]: "f C1_differentiable_on {}"
-  unfolding C1_differentiable_on_def
-  by auto
-
-lemma piecewise_C1_differentiable_affine:
-  fixes m::real
-  assumes "f piecewise_C1_differentiable_on ((\<lambda>x. m * x + c) ` S)"
-  shows "(f \<circ> (\<lambda>x. m *\<^sub>R x + c)) piecewise_C1_differentiable_on S"
-proof (cases "m = 0")
-  case True
-  then show ?thesis
-    unfolding o_def by (auto simp: piecewise_C1_differentiable_on_def)
-next
-  case False
-  have *: "\<And>x. finite (S \<inter> {y. m * y + c = x})"
-    using False not_finite_existsD by fastforce
-  show ?thesis
-    apply (rule piecewise_C1_differentiable_compose [OF C1_differentiable_imp_piecewise])
-    apply (rule * assms derivative_intros | simp add: False vimage_def)+
-    done
-qed
-
-lemma piecewise_C1_differentiable_cases:
-  fixes c::real
-  assumes "f piecewise_C1_differentiable_on {a..c}"
-          "g piecewise_C1_differentiable_on {c..b}"
-           "a \<le> c" "c \<le> b" "f c = g c"
-  shows "(\<lambda>x. if x \<le> c then f x else g x) piecewise_C1_differentiable_on {a..b}"
-proof -
-  obtain S T where st: "f C1_differentiable_on ({a..c} - S)"
-                       "g C1_differentiable_on ({c..b} - T)"
-                       "finite S" "finite T"
-    using assms
-    by (force simp: piecewise_C1_differentiable_on_def)
-  then have f_diff: "f differentiable_on {a..<c} - S"
-        and g_diff: "g differentiable_on {c<..b} - T"
-    by (simp_all add: C1_differentiable_on_eq differentiable_at_withinI differentiable_on_def)
-  have "continuous_on {a..c} f" "continuous_on {c..b} g"
-    using assms piecewise_C1_differentiable_on_def by auto
-  then have cab: "continuous_on {a..b} (\<lambda>x. if x \<le> c then f x else g x)"
-    using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
-                               OF closed_real_atLeastAtMost [of c b],
-                               of f g "\<lambda>x. x\<le>c"]  assms
-    by (force simp: ivl_disj_un_two_touch)
-  { fix x
-    assume x: "x \<in> {a..b} - insert c (S \<union> T)"
-    have "(\<lambda>x. if x \<le> c then f x else g x) differentiable at x" (is "?diff_fg")
-    proof (cases x c rule: le_cases)
-      case le show ?diff_fg
-        apply (rule differentiable_transform_within [where f=f and d = "dist x c"])
-        using x dist_real_def le st by (auto simp: C1_differentiable_on_eq)
-    next
-      case ge show ?diff_fg
-        apply (rule differentiable_transform_within [where f=g and d = "dist x c"])
-        using dist_nz x dist_real_def ge st x by (auto simp: C1_differentiable_on_eq)
-    qed
-  }
-  then have "(\<forall>x \<in> {a..b} - insert c (S \<union> T). (\<lambda>x. if x \<le> c then f x else g x) differentiable at x)"
-    by auto
-  moreover
-  { assume fcon: "continuous_on ({a<..<c} - S) (\<lambda>x. vector_derivative f (at x))"
-       and gcon: "continuous_on ({c<..<b} - T) (\<lambda>x. vector_derivative g (at x))"
-    have "open ({a<..<c} - S)"  "open ({c<..<b} - T)"
-      using st by (simp_all add: open_Diff finite_imp_closed)
-    moreover have "continuous_on ({a<..<c} - S) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-    proof -
-      have "((\<lambda>x. if x \<le> c then f x else g x) has_vector_derivative vector_derivative f (at x))            (at x)"
-        if "a < x" "x < c" "x \<notin> S" for x
-      proof -
-        have f: "f differentiable at x"
-          by (meson C1_differentiable_on_eq Diff_iff atLeastAtMost_iff less_eq_real_def st(1) that)
-        show ?thesis
-          using that
-          apply (rule_tac f=f and d="dist x c" in has_vector_derivative_transform_within)
-             apply (auto simp: dist_norm vector_derivative_works [symmetric] f)
-          done
-      qed
-      then show ?thesis
-        by (metis (no_types, lifting) continuous_on_eq [OF fcon] DiffE greaterThanLessThan_iff vector_derivative_at)
-    qed
-    moreover have "continuous_on ({c<..<b} - T) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-    proof -
-      have "((\<lambda>x. if x \<le> c then f x else g x) has_vector_derivative vector_derivative g (at x))            (at x)"
-        if "c < x" "x < b" "x \<notin> T" for x
-      proof -
-        have g: "g differentiable at x"
-          by (metis C1_differentiable_on_eq DiffD1 DiffI atLeastAtMost_diff_ends greaterThanLessThan_iff st(2) that)
-        show ?thesis
-          using that
-          apply (rule_tac f=g and d="dist x c" in has_vector_derivative_transform_within)
-             apply (auto simp: dist_norm vector_derivative_works [symmetric] g)
-          done
-      qed
-      then show ?thesis
-        by (metis (no_types, lifting) continuous_on_eq [OF gcon] DiffE greaterThanLessThan_iff vector_derivative_at)
-    qed
-    ultimately have "continuous_on ({a<..<b} - insert c (S \<union> T))
-        (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-      by (rule continuous_on_subset [OF continuous_on_open_Un], auto)
-  } note * = this
-  have "continuous_on ({a<..<b} - insert c (S \<union> T)) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-    using st
-    by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset intro: *)
-  ultimately have "\<exists>S. finite S \<and> ((\<lambda>x. if x \<le> c then f x else g x) C1_differentiable_on {a..b} - S)"
-    apply (rule_tac x="{a,b,c} \<union> S \<union> T" in exI)
-    using st  by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset)
-  with cab show ?thesis
-    by (simp add: piecewise_C1_differentiable_on_def)
-qed
-
-lemma piecewise_C1_differentiable_neg:
-    "f piecewise_C1_differentiable_on S \<Longrightarrow> (\<lambda>x. -(f x)) piecewise_C1_differentiable_on S"
-  unfolding piecewise_C1_differentiable_on_def
-  by (auto intro!: continuous_on_minus C1_differentiable_on_minus)
-
-lemma piecewise_C1_differentiable_add:
-  assumes "f piecewise_C1_differentiable_on i"
-          "g piecewise_C1_differentiable_on i"
-    shows "(\<lambda>x. f x + g x) piecewise_C1_differentiable_on i"
-proof -
-  obtain S t where st: "finite S" "finite t"
-                       "f C1_differentiable_on (i-S)"
-                       "g C1_differentiable_on (i-t)"
-    using assms by (auto simp: piecewise_C1_differentiable_on_def)
-  then have "finite (S \<union> t) \<and> (\<lambda>x. f x + g x) C1_differentiable_on i - (S \<union> t)"
-    by (auto intro: C1_differentiable_on_add elim!: C1_differentiable_on_subset)
-  moreover have "continuous_on i f" "continuous_on i g"
-    using assms piecewise_C1_differentiable_on_def by auto
-  ultimately show ?thesis
-    by (auto simp: piecewise_C1_differentiable_on_def continuous_on_add)
-qed
-
-lemma piecewise_C1_differentiable_diff:
-    "\<lbrakk>f piecewise_C1_differentiable_on S;  g piecewise_C1_differentiable_on S\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. f x - g x) piecewise_C1_differentiable_on S"
-  unfolding diff_conv_add_uminus
-  by (metis piecewise_C1_differentiable_add piecewise_C1_differentiable_neg)
-
-lemma piecewise_C1_differentiable_D1:
-  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
-  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}"
-    shows "g1 piecewise_C1_differentiable_on {0..1}"
-proof -
-  obtain S where "finite S"
-             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
-    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have g1D: "g1 differentiable at x" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
-  proof (rule differentiable_transform_within)
-    show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x"
-      using that g12D
-      apply (simp only: joinpaths_def)
-      by (rule differentiable_chain_at derivative_intros | force)+
-    show "\<And>x'. \<lbrakk>dist x' x < dist (x/2) (1/2)\<rbrakk>
-          \<Longrightarrow> (g1 +++ g2 \<circ> (*) (inverse 2)) x' = g1 x'"
-      using that by (auto simp: dist_real_def joinpaths_def)
-  qed (use that in \<open>auto simp: dist_real_def\<close>)
-  have [simp]: "vector_derivative (g1 \<circ> (*) 2) (at (x/2)) = 2 *\<^sub>R vector_derivative g1 (at x)"
-               if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
-    apply (subst vector_derivative_chain_at)
-    using that
-    apply (rule derivative_eq_intros g1D | simp)+
-    done
-  have "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-    using co12 by (rule continuous_on_subset) force
-  then have coDhalf: "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 \<circ> (*)2) (at x))"
-  proof (rule continuous_on_eq [OF _ vector_derivative_at])
-    show "(g1 +++ g2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
-      if "x \<in> {0..1/2} - insert (1/2) S" for x
-    proof (rule has_vector_derivative_transform_within)
-      show "(g1 \<circ> (*) 2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
-        using that
-        by (force intro: g1D differentiable_chain_at simp: vector_derivative_works [symmetric])
-      show "\<And>x'. \<lbrakk>dist x' x < dist x (1/2)\<rbrakk> \<Longrightarrow> (g1 \<circ> (*) 2) x' = (g1 +++ g2) x'"
-        using that by (auto simp: dist_norm joinpaths_def)
-    qed (use that in \<open>auto simp: dist_norm\<close>)
-  qed
-  have "continuous_on ({0..1} - insert 1 ((*) 2 ` S))
-                      ((\<lambda>x. 1/2 * vector_derivative (g1 \<circ> (*)2) (at x)) \<circ> (*)(1/2))"
-    apply (rule continuous_intros)+
-    using coDhalf
-    apply (simp add: scaleR_conv_of_real image_set_diff image_image)
-    done
-  then have con_g1: "continuous_on ({0..1} - insert 1 ((*) 2 ` S)) (\<lambda>x. vector_derivative g1 (at x))"
-    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
-  have "continuous_on {0..1} g1"
-    using continuous_on_joinpaths_D1 assms piecewise_C1_differentiable_on_def by blast
-  with \<open>finite S\<close> show ?thesis
-    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-    apply (rule_tac x="insert 1 (((*)2)`S)" in exI)
-    apply (simp add: g1D con_g1)
-  done
-qed
-
-lemma piecewise_C1_differentiable_D2:
-  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
-  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}" "pathfinish g1 = pathstart g2"
-    shows "g2 piecewise_C1_differentiable_on {0..1}"
-proof -
-  obtain S where "finite S"
-             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
-    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have g2D: "g2 differentiable at x" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
-  proof (rule differentiable_transform_within)
-    show "g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2) differentiable at x"
-      using g12D that
-      apply (simp only: joinpaths_def)
-      apply (drule_tac x= "(x+1) / 2" in bspec, force simp: field_split_simps)
-      apply (rule differentiable_chain_at derivative_intros | force)+
-      done
-    show "\<And>x'. dist x' x < dist ((x + 1) / 2) (1/2) \<Longrightarrow> (g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'"
-      using that by (auto simp: dist_real_def joinpaths_def field_simps)
-    qed (use that in \<open>auto simp: dist_norm\<close>)
-  have [simp]: "vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at ((x+1)/2)) = 2 *\<^sub>R vector_derivative g2 (at x)"
-               if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
-    using that  by (auto simp: vector_derivative_chain_at field_split_simps g2D)
-  have "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-    using co12 by (rule continuous_on_subset) force
-  then have coDhalf: "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x))"
-  proof (rule continuous_on_eq [OF _ vector_derivative_at])
-    show "(g1 +++ g2 has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
-          (at x)"
-      if "x \<in> {1 / 2..1} - insert (1 / 2) S" for x
-    proof (rule_tac f="g2 \<circ> (\<lambda>x. 2*x-1)" and d="dist (3/4) ((x+1)/2)" in has_vector_derivative_transform_within)
-      show "(g2 \<circ> (\<lambda>x. 2 * x - 1) has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
-            (at x)"
-        using that by (force intro: g2D differentiable_chain_at simp: vector_derivative_works [symmetric])
-      show "\<And>x'. \<lbrakk>dist x' x < dist (3 / 4) ((x + 1) / 2)\<rbrakk> \<Longrightarrow> (g2 \<circ> (\<lambda>x. 2 * x - 1)) x' = (g1 +++ g2) x'"
-        using that by (auto simp: dist_norm joinpaths_def add_divide_distrib)
-    qed (use that in \<open>auto simp: dist_norm\<close>)
-  qed
-  have [simp]: "((\<lambda>x. (x+1) / 2) ` ({0..1} - insert 0 ((\<lambda>x. 2 * x - 1) ` S))) = ({1/2..1} - insert (1/2) S)"
-    apply (simp add: image_set_diff inj_on_def image_image)
-    apply (auto simp: image_affinity_atLeastAtMost_div add_divide_distrib)
-    done
-  have "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S))
-                      ((\<lambda>x. 1/2 * vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x)) \<circ> (\<lambda>x. (x+1)/2))"
-    by (rule continuous_intros | simp add:  coDhalf)+
-  then have con_g2: "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)) (\<lambda>x. vector_derivative g2 (at x))"
-    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
-  have "continuous_on {0..1} g2"
-    using continuous_on_joinpaths_D2 assms piecewise_C1_differentiable_on_def by blast
-  with \<open>finite S\<close> show ?thesis
-    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-    apply (rule_tac x="insert 0 ((\<lambda>x. 2 * x - 1) ` S)" in exI)
-    apply (simp add: g2D con_g2)
-  done
-qed
-
-subsection \<open>Valid paths, and their start and finish\<close>
-
-definition\<^marker>\<open>tag important\<close> valid_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
-  where "valid_path f \<equiv> f piecewise_C1_differentiable_on {0..1::real}"
-
-definition closed_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
-  where "closed_path g \<equiv> g 0 = g 1"
-
-text\<open>In particular, all results for paths apply\<close>
-
-lemma valid_path_imp_path: "valid_path g \<Longrightarrow> path g"
-  by (simp add: path_def piecewise_C1_differentiable_on_def valid_path_def)
-
-lemma connected_valid_path_image: "valid_path g \<Longrightarrow> connected(path_image g)"
-  by (metis connected_path_image valid_path_imp_path)
-
-lemma compact_valid_path_image: "valid_path g \<Longrightarrow> compact(path_image g)"
-  by (metis compact_path_image valid_path_imp_path)
-
-lemma bounded_valid_path_image: "valid_path g \<Longrightarrow> bounded(path_image g)"
-  by (metis bounded_path_image valid_path_imp_path)
-
-lemma closed_valid_path_image: "valid_path g \<Longrightarrow> closed(path_image g)"
-  by (metis closed_path_image valid_path_imp_path)
-
-lemma valid_path_compose:
-  assumes "valid_path g"
-      and der: "\<And>x. x \<in> path_image g \<Longrightarrow> f field_differentiable (at x)"
-      and con: "continuous_on (path_image g) (deriv f)"
-    shows "valid_path (f \<circ> g)"
-proof -
-  obtain S where "finite S" and g_diff: "g C1_differentiable_on {0..1} - S"
-    using \<open>valid_path g\<close> unfolding valid_path_def piecewise_C1_differentiable_on_def by auto
-  have "f \<circ> g differentiable at t" when "t\<in>{0..1} - S" for t
-    proof (rule differentiable_chain_at)
-      show "g differentiable at t" using \<open>valid_path g\<close>
-        by (meson C1_differentiable_on_eq \<open>g C1_differentiable_on {0..1} - S\<close> that)
-    next
-      have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
-      then show "f differentiable at (g t)"
-        using der[THEN field_differentiable_imp_differentiable] by auto
-    qed
-  moreover have "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (f \<circ> g) (at x))"
-    proof (rule continuous_on_eq [where f = "\<lambda>x. vector_derivative g (at x) * deriv f (g x)"],
-        rule continuous_intros)
-      show "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative g (at x))"
-        using g_diff C1_differentiable_on_eq by auto
-    next
-      have "continuous_on {0..1} (\<lambda>x. deriv f (g x))"
-        using continuous_on_compose[OF _ con[unfolded path_image_def],unfolded comp_def]
-          \<open>valid_path g\<close> piecewise_C1_differentiable_on_def valid_path_def
-        by blast
-      then show "continuous_on ({0..1} - S) (\<lambda>x. deriv f (g x))"
-        using continuous_on_subset by blast
-    next
-      show "vector_derivative g (at t) * deriv f (g t) = vector_derivative (f \<circ> g) (at t)"
-          when "t \<in> {0..1} - S" for t
-        proof (rule vector_derivative_chain_at_general[symmetric])
-          show "g differentiable at t" by (meson C1_differentiable_on_eq g_diff that)
-        next
-          have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
-          then show "f field_differentiable at (g t)" using der by auto
-        qed
-    qed
-  ultimately have "f \<circ> g C1_differentiable_on {0..1} - S"
-    using C1_differentiable_on_eq by blast
-  moreover have "path (f \<circ> g)"
-    apply (rule path_continuous_image[OF valid_path_imp_path[OF \<open>valid_path g\<close>]])
-    using der
-    by (simp add: continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
-  ultimately show ?thesis unfolding valid_path_def piecewise_C1_differentiable_on_def path_def
-    using \<open>finite S\<close> by auto
-qed
-  
-lemma valid_path_uminus_comp[simp]:
-  fixes g::"real \<Rightarrow> 'a ::real_normed_field"
-  shows "valid_path (uminus \<circ> g) \<longleftrightarrow> valid_path g"
-proof 
-  show "valid_path g \<Longrightarrow> valid_path (uminus \<circ> g)" for g::"real \<Rightarrow> 'a"
-    by (auto intro!: valid_path_compose derivative_intros simp add: deriv_linear[of "-1",simplified])  
-  then show "valid_path g" when "valid_path (uminus \<circ> g)"
-    by (metis fun.map_comp group_add_class.minus_comp_minus id_comp that)
-qed
-
-lemma valid_path_offset[simp]:
-  shows "valid_path (\<lambda>t. g t - z) \<longleftrightarrow> valid_path g"  
-proof 
-  show *: "valid_path (g::real\<Rightarrow>'a) \<Longrightarrow> valid_path (\<lambda>t. g t - z)" for g z
-    unfolding valid_path_def
-    by (fastforce intro:derivative_intros C1_differentiable_imp_piecewise piecewise_C1_differentiable_diff)
-  show "valid_path (\<lambda>t. g t - z) \<Longrightarrow> valid_path g"
-    using *[of "\<lambda>t. g t - z" "-z",simplified] .
-qed
-  
-
-subsection\<open>Contour Integrals along a path\<close>
-
-text\<open>This definition is for complex numbers only, and does not generalise to line integrals in a vector field\<close>
-
-text\<open>piecewise differentiable function on [0,1]\<close>
-
-definition\<^marker>\<open>tag important\<close> has_contour_integral :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool"
-           (infixr "has'_contour'_integral" 50)
-  where "(f has_contour_integral i) g \<equiv>
-           ((\<lambda>x. f(g x) * vector_derivative g (at x within {0..1}))
-            has_integral i) {0..1}"
-
-definition\<^marker>\<open>tag important\<close> contour_integrable_on
-           (infixr "contour'_integrable'_on" 50)
-  where "f contour_integrable_on g \<equiv> \<exists>i. (f has_contour_integral i) g"
-
-definition\<^marker>\<open>tag important\<close> contour_integral
-  where "contour_integral g f \<equiv> SOME i. (f has_contour_integral i) g \<or> \<not> f contour_integrable_on g \<and> i=0"
-
-lemma not_integrable_contour_integral: "\<not> f contour_integrable_on g \<Longrightarrow> contour_integral g f = 0"
-  unfolding contour_integrable_on_def contour_integral_def by blast
-
-lemma contour_integral_unique: "(f has_contour_integral i) g \<Longrightarrow> contour_integral g f = i"
-  apply (simp add: contour_integral_def has_contour_integral_def contour_integrable_on_def)
-  using has_integral_unique by blast
-
-lemma has_contour_integral_eqpath:
-     "\<lbrakk>(f has_contour_integral y) p; f contour_integrable_on \<gamma>;
-       contour_integral p f = contour_integral \<gamma> f\<rbrakk>
-      \<Longrightarrow> (f has_contour_integral y) \<gamma>"
-using contour_integrable_on_def contour_integral_unique by auto
-
-lemma has_contour_integral_integral:
-    "f contour_integrable_on i \<Longrightarrow> (f has_contour_integral (contour_integral i f)) i"
-  by (metis contour_integral_unique contour_integrable_on_def)
-
-lemma has_contour_integral_unique:
-    "(f has_contour_integral i) g \<Longrightarrow> (f has_contour_integral j) g \<Longrightarrow> i = j"
-  using has_integral_unique
-  by (auto simp: has_contour_integral_def)
-
-lemma has_contour_integral_integrable: "(f has_contour_integral i) g \<Longrightarrow> f contour_integrable_on g"
-  using contour_integrable_on_def by blast
-
-text\<open>Show that we can forget about the localized derivative.\<close>
-
-lemma has_integral_localized_vector_derivative:
-    "((\<lambda>x. f (g x) * vector_derivative g (at x within {a..b})) has_integral i) {a..b} \<longleftrightarrow>
-     ((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {a..b}"
-proof -
-  have *: "{a..b} - {a,b} = interior {a..b}"
-    by (simp add: atLeastAtMost_diff_ends)
-  show ?thesis
-    apply (rule has_integral_spike_eq [of "{a,b}"])
-    apply (auto simp: at_within_interior [of _ "{a..b}"])
-    done
-qed
-
-lemma integrable_on_localized_vector_derivative:
-    "(\<lambda>x. f (g x) * vector_derivative g (at x within {a..b})) integrable_on {a..b} \<longleftrightarrow>
-     (\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on {a..b}"
-  by (simp add: integrable_on_def has_integral_localized_vector_derivative)
-
-lemma has_contour_integral:
-     "(f has_contour_integral i) g \<longleftrightarrow>
-      ((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}"
-  by (simp add: has_integral_localized_vector_derivative has_contour_integral_def)
-
-lemma contour_integrable_on:
-     "f contour_integrable_on g \<longleftrightarrow>
-      (\<lambda>t. f(g t) * vector_derivative g (at t)) integrable_on {0..1}"
-  by (simp add: has_contour_integral integrable_on_def contour_integrable_on_def)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Reversing a path\<close>
-
-lemma valid_path_imp_reverse:
-  assumes "valid_path g"
-    shows "valid_path(reversepath g)"
-proof -
-  obtain S where "finite S" and S: "g C1_differentiable_on ({0..1} - S)"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  then have "finite ((-) 1 ` S)"
-    by auto
-  moreover have "(reversepath g C1_differentiable_on ({0..1} - (-) 1 ` S))"
-    unfolding reversepath_def
-    apply (rule C1_differentiable_compose [of "\<lambda>x::real. 1-x" _ g, unfolded o_def])
-    using S
-    by (force simp: finite_vimageI inj_on_def C1_differentiable_on_eq elim!: continuous_on_subset)+
-  ultimately show ?thesis using assms
-    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def path_def [symmetric])
-qed
-
-lemma valid_path_reversepath [simp]: "valid_path(reversepath g) \<longleftrightarrow> valid_path g"
-  using valid_path_imp_reverse by force
-
-lemma has_contour_integral_reversepath:
-  assumes "valid_path g" and f: "(f has_contour_integral i) g"
-    shows "(f has_contour_integral (-i)) (reversepath g)"
-proof -
-  { fix S x
-    assume xs: "g C1_differentiable_on ({0..1} - S)" "x \<notin> (-) 1 ` S" "0 \<le> x" "x \<le> 1"
-    have "vector_derivative (\<lambda>x. g (1 - x)) (at x within {0..1}) =
-            - vector_derivative g (at (1 - x) within {0..1})"
-    proof -
-      obtain f' where f': "(g has_vector_derivative f') (at (1 - x))"
-        using xs
-        by (force simp: has_vector_derivative_def C1_differentiable_on_def)
-      have "(g \<circ> (\<lambda>x. 1 - x) has_vector_derivative -1 *\<^sub>R f') (at x)"
-        by (intro vector_diff_chain_within has_vector_derivative_at_within [OF f'] derivative_eq_intros | simp)+
-      then have mf': "((\<lambda>x. g (1 - x)) has_vector_derivative -f') (at x)"
-        by (simp add: o_def)
-      show ?thesis
-        using xs
-        by (auto simp: vector_derivative_at_within_ivl [OF mf'] vector_derivative_at_within_ivl [OF f'])
-    qed
-  } note * = this
-  obtain S where S: "continuous_on {0..1} g" "finite S" "g C1_differentiable_on {0..1} - S"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  have "((\<lambda>x. - (f (g (1 - x)) * vector_derivative g (at (1 - x) within {0..1}))) has_integral -i)
-       {0..1}"
-    using has_integral_affinity01 [where m= "-1" and c=1, OF f [unfolded has_contour_integral_def]]
-    by (simp add: has_integral_neg)
-  then show ?thesis
-    using S
-    apply (clarsimp simp: reversepath_def has_contour_integral_def)
-    apply (rule_tac S = "(\<lambda>x. 1 - x) ` S" in has_integral_spike_finite)
-      apply (auto simp: *)
-    done
-qed
-
-lemma contour_integrable_reversepath:
-    "valid_path g \<Longrightarrow> f contour_integrable_on g \<Longrightarrow> f contour_integrable_on (reversepath g)"
-  using has_contour_integral_reversepath contour_integrable_on_def by blast
-
-lemma contour_integrable_reversepath_eq:
-    "valid_path g \<Longrightarrow> (f contour_integrable_on (reversepath g) \<longleftrightarrow> f contour_integrable_on g)"
-  using contour_integrable_reversepath valid_path_reversepath by fastforce
-
-lemma contour_integral_reversepath:
-  assumes "valid_path g"
-    shows "contour_integral (reversepath g) f = - (contour_integral g f)"
-proof (cases "f contour_integrable_on g")
-  case True then show ?thesis
-    by (simp add: assms contour_integral_unique has_contour_integral_integral has_contour_integral_reversepath)
-next
-  case False then have "\<not> f contour_integrable_on (reversepath g)"
-    by (simp add: assms contour_integrable_reversepath_eq)
-  with False show ?thesis by (simp add: not_integrable_contour_integral)
-qed
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Joining two paths together\<close>
-
-lemma valid_path_join:
-  assumes "valid_path g1" "valid_path g2" "pathfinish g1 = pathstart g2"
-    shows "valid_path(g1 +++ g2)"
-proof -
-  have "g1 1 = g2 0"
-    using assms by (auto simp: pathfinish_def pathstart_def)
-  moreover have "(g1 \<circ> (\<lambda>x. 2*x)) piecewise_C1_differentiable_on {0..1/2}"
-    apply (rule piecewise_C1_differentiable_compose)
-    using assms
-    apply (auto simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_joinpaths)
-    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
-    done
-  moreover have "(g2 \<circ> (\<lambda>x. 2*x-1)) piecewise_C1_differentiable_on {1/2..1}"
-    apply (rule piecewise_C1_differentiable_compose)
-    using assms unfolding valid_path_def piecewise_C1_differentiable_on_def
-    by (auto intro!: continuous_intros finite_vimageI [where h = "(\<lambda>x. 2*x - 1)"] inj_onI
-             simp: image_affinity_atLeastAtMost_diff continuous_on_joinpaths)
-  ultimately show ?thesis
-    apply (simp only: valid_path_def continuous_on_joinpaths joinpaths_def)
-    apply (rule piecewise_C1_differentiable_cases)
-    apply (auto simp: o_def)
-    done
-qed
-
-lemma valid_path_join_D1:
-  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
-  shows "valid_path (g1 +++ g2) \<Longrightarrow> valid_path g1"
-  unfolding valid_path_def
-  by (rule piecewise_C1_differentiable_D1)
-
-lemma valid_path_join_D2:
-  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
-  shows "\<lbrakk>valid_path (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> valid_path g2"
-  unfolding valid_path_def
-  by (rule piecewise_C1_differentiable_D2)
-
-lemma valid_path_join_eq [simp]:
-  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
-  shows "pathfinish g1 = pathstart g2 \<Longrightarrow> (valid_path(g1 +++ g2) \<longleftrightarrow> valid_path g1 \<and> valid_path g2)"
-  using valid_path_join_D1 valid_path_join_D2 valid_path_join by blast
-
-lemma has_contour_integral_join:
-  assumes "(f has_contour_integral i1) g1" "(f has_contour_integral i2) g2"
-          "valid_path g1" "valid_path g2"
-    shows "(f has_contour_integral (i1 + i2)) (g1 +++ g2)"
-proof -
-  obtain s1 s2
-    where s1: "finite s1" "\<forall>x\<in>{0..1} - s1. g1 differentiable at x"
-      and s2: "finite s2" "\<forall>x\<in>{0..1} - s2. g2 differentiable at x"
-    using assms
-    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have 1: "((\<lambda>x. f (g1 x) * vector_derivative g1 (at x)) has_integral i1) {0..1}"
-   and 2: "((\<lambda>x. f (g2 x) * vector_derivative g2 (at x)) has_integral i2) {0..1}"
-    using assms
-    by (auto simp: has_contour_integral)
-  have i1: "((\<lambda>x. (2*f (g1 (2*x))) * vector_derivative g1 (at (2*x))) has_integral i1) {0..1/2}"
-   and i2: "((\<lambda>x. (2*f (g2 (2*x - 1))) * vector_derivative g2 (at (2*x - 1))) has_integral i2) {1/2..1}"
-    using has_integral_affinity01 [OF 1, where m= 2 and c=0, THEN has_integral_cmul [where c=2]]
-          has_integral_affinity01 [OF 2, where m= 2 and c="-1", THEN has_integral_cmul [where c=2]]
-    by (simp_all only: image_affinity_atLeastAtMost_div_diff, simp_all add: scaleR_conv_of_real mult_ac)
-  have g1: "\<lbrakk>0 \<le> z; z*2 < 1; z*2 \<notin> s1\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at z) =
-            2 *\<^sub>R vector_derivative g1 (at (z*2))" for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g1(2*x))" and d = "\<bar>z - 1/2\<bar>"]])
-    apply (simp_all add: dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. 2*x" 2 _ g1, simplified o_def])
-    apply (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
-    using s1
-    apply (auto simp: algebra_simps vector_derivative_works)
-    done
-  have g2: "\<lbrakk>1 < z*2; z \<le> 1; z*2 - 1 \<notin> s2\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at z) =
-            2 *\<^sub>R vector_derivative g2 (at (z*2 - 1))" for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g2 (2*x - 1))" and d = "\<bar>z - 1/2\<bar>"]])
-    apply (simp_all add: dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. 2*x - 1" 2 _ g2, simplified o_def])
-    apply (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
-    using s2
-    apply (auto simp: algebra_simps vector_derivative_works)
-    done
-  have "((\<lambda>x. f ((g1 +++ g2) x) * vector_derivative (g1 +++ g2) (at x)) has_integral i1) {0..1/2}"
-    apply (rule has_integral_spike_finite [OF _ _ i1, of "insert (1/2) ((*)2 -` s1)"])
-    using s1
-    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
-    apply (clarsimp simp add: joinpaths_def scaleR_conv_of_real mult_ac g1)
-    done
-  moreover have "((\<lambda>x. f ((g1 +++ g2) x) * vector_derivative (g1 +++ g2) (at x)) has_integral i2) {1/2..1}"
-    apply (rule has_integral_spike_finite [OF _ _ i2, of "insert (1/2) ((\<lambda>x. 2*x-1) -` s2)"])
-    using s2
-    apply (force intro: finite_vimageI [where h = "\<lambda>x. 2*x-1"] inj_onI)
-    apply (clarsimp simp add: joinpaths_def scaleR_conv_of_real mult_ac g2)
-    done
-  ultimately
-  show ?thesis
-    apply (simp add: has_contour_integral)
-    apply (rule has_integral_combine [where c = "1/2"], auto)
-    done
-qed
-
-lemma contour_integrable_joinI:
-  assumes "f contour_integrable_on g1" "f contour_integrable_on g2"
-          "valid_path g1" "valid_path g2"
-    shows "f contour_integrable_on (g1 +++ g2)"
-  using assms
-  by (meson has_contour_integral_join contour_integrable_on_def)
-
-lemma contour_integrable_joinD1:
-  assumes "f contour_integrable_on (g1 +++ g2)" "valid_path g1"
-    shows "f contour_integrable_on g1"
-proof -
-  obtain s1
-    where s1: "finite s1" "\<forall>x\<in>{0..1} - s1. g1 differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have "(\<lambda>x. f ((g1 +++ g2) (x/2)) * vector_derivative (g1 +++ g2) (at (x/2))) integrable_on {0..1}"
-    using assms
-    apply (auto simp: contour_integrable_on)
-    apply (drule integrable_on_subcbox [where a=0 and b="1/2"])
-    apply (auto intro: integrable_affinity [of _ 0 "1/2::real" "1/2" 0, simplified])
-    done
-  then have *: "(\<lambda>x. (f ((g1 +++ g2) (x/2))/2) * vector_derivative (g1 +++ g2) (at (x/2))) integrable_on {0..1}"
-    by (auto dest: integrable_cmul [where c="1/2"] simp: scaleR_conv_of_real)
-  have g1: "\<lbrakk>0 < z; z < 1; z \<notin> s1\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at (z/2)) =
-            2 *\<^sub>R vector_derivative g1 (at z)"  for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g1(2*x))" and d = "\<bar>(z-1)/2\<bar>"]])
-    apply (simp_all add: field_simps dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. x*2" 2 _ g1, simplified o_def])
-    using s1
-    apply (auto simp: vector_derivative_works has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
-    done
-  show ?thesis
-    using s1
-    apply (auto simp: contour_integrable_on)
-    apply (rule integrable_spike_finite [of "{0,1} \<union> s1", OF _ _ *])
-    apply (auto simp: joinpaths_def scaleR_conv_of_real g1)
-    done
-qed
-
-lemma contour_integrable_joinD2:
-  assumes "f contour_integrable_on (g1 +++ g2)" "valid_path g2"
-    shows "f contour_integrable_on g2"
-proof -
-  obtain s2
-    where s2: "finite s2" "\<forall>x\<in>{0..1} - s2. g2 differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have "(\<lambda>x. f ((g1 +++ g2) (x/2 + 1/2)) * vector_derivative (g1 +++ g2) (at (x/2 + 1/2))) integrable_on {0..1}"
-    using assms
-    apply (auto simp: contour_integrable_on)
-    apply (drule integrable_on_subcbox [where a="1/2" and b=1], auto)
-    apply (drule integrable_affinity [of _ "1/2::real" 1 "1/2" "1/2", simplified])
-    apply (simp add: image_affinity_atLeastAtMost_diff)
-    done
-  then have *: "(\<lambda>x. (f ((g1 +++ g2) (x/2 + 1/2))/2) * vector_derivative (g1 +++ g2) (at (x/2 + 1/2)))
-                integrable_on {0..1}"
-    by (auto dest: integrable_cmul [where c="1/2"] simp: scaleR_conv_of_real)
-  have g2: "\<lbrakk>0 < z; z < 1; z \<notin> s2\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at (z/2+1/2)) =
-            2 *\<^sub>R vector_derivative g2 (at z)" for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g2(2*x-1))" and d = "\<bar>z/2\<bar>"]])
-    apply (simp_all add: field_simps dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. x*2-1" 2 _ g2, simplified o_def])
-    using s2
-    apply (auto simp: has_vector_derivative_def has_derivative_def bounded_linear_mult_left
-                      vector_derivative_works add_divide_distrib)
-    done
-  show ?thesis
-    using s2
-    apply (auto simp: contour_integrable_on)
-    apply (rule integrable_spike_finite [of "{0,1} \<union> s2", OF _ _ *])
-    apply (auto simp: joinpaths_def scaleR_conv_of_real g2)
-    done
-qed
-
-lemma contour_integrable_join [simp]:
-  shows
-    "\<lbrakk>valid_path g1; valid_path g2\<rbrakk>
-     \<Longrightarrow> f contour_integrable_on (g1 +++ g2) \<longleftrightarrow> f contour_integrable_on g1 \<and> f contour_integrable_on g2"
-using contour_integrable_joinD1 contour_integrable_joinD2 contour_integrable_joinI by blast
-
-lemma contour_integral_join [simp]:
-  shows
-    "\<lbrakk>f contour_integrable_on g1; f contour_integrable_on g2; valid_path g1; valid_path g2\<rbrakk>
-        \<Longrightarrow> contour_integral (g1 +++ g2) f = contour_integral g1 f + contour_integral g2 f"
-  by (simp add: has_contour_integral_integral has_contour_integral_join contour_integral_unique)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Shifting the starting point of a (closed) path\<close>
-
-lemma shiftpath_alt_def: "shiftpath a f = (\<lambda>x. if x \<le> 1-a then f (a + x) else f (a + x - 1))"
-  by (auto simp: shiftpath_def)
-
-lemma valid_path_shiftpath [intro]:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "valid_path(shiftpath a g)"
-  using assms
-  apply (auto simp: valid_path_def shiftpath_alt_def)
-  apply (rule piecewise_C1_differentiable_cases)
-  apply (auto simp: algebra_simps)
-  apply (rule piecewise_C1_differentiable_affine [of g 1 a, simplified o_def scaleR_one])
-  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
-  apply (rule piecewise_C1_differentiable_affine [of g 1 "a-1", simplified o_def scaleR_one algebra_simps])
-  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
-  done
-
-lemma has_contour_integral_shiftpath:
-  assumes f: "(f has_contour_integral i) g" "valid_path g"
-      and a: "a \<in> {0..1}"
-    shows "(f has_contour_integral i) (shiftpath a g)"
-proof -
-  obtain s
-    where s: "finite s" and g: "\<forall>x\<in>{0..1} - s. g differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have *: "((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}"
-    using assms by (auto simp: has_contour_integral)
-  then have i: "i = integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)) +
-                    integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x))"
-    apply (rule has_integral_unique)
-    apply (subst add.commute)
-    apply (subst integral_combine)
-    using assms * integral_unique by auto
-  { fix x
-    have "0 \<le> x \<Longrightarrow> x + a < 1 \<Longrightarrow> x \<notin> (\<lambda>x. x - a) ` s \<Longrightarrow>
-         vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a))"
-      unfolding shiftpath_def
-      apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g(a+x))" and d = "dist(1-a) x"]])
-        apply (auto simp: field_simps dist_real_def abs_if split: if_split_asm)
-      apply (rule vector_diff_chain_at [of "\<lambda>x. x+a" 1 _ g, simplified o_def scaleR_one])
-       apply (intro derivative_eq_intros | simp)+
-      using g
-       apply (drule_tac x="x+a" in bspec)
-      using a apply (auto simp: has_vector_derivative_def vector_derivative_works image_def add.commute)
-      done
-  } note vd1 = this
-  { fix x
-    have "1 < x + a \<Longrightarrow> x \<le> 1 \<Longrightarrow> x \<notin> (\<lambda>x. x - a + 1) ` s \<Longrightarrow>
-          vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a - 1))"
-      unfolding shiftpath_def
-      apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g(a+x-1))" and d = "dist (1-a) x"]])
-        apply (auto simp: field_simps dist_real_def abs_if split: if_split_asm)
-      apply (rule vector_diff_chain_at [of "\<lambda>x. x+a-1" 1 _ g, simplified o_def scaleR_one])
-       apply (intro derivative_eq_intros | simp)+
-      using g
-      apply (drule_tac x="x+a-1" in bspec)
-      using a apply (auto simp: has_vector_derivative_def vector_derivative_works image_def add.commute)
-      done
-  } note vd2 = this
-  have va1: "(\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on ({a..1})"
-    using * a   by (fastforce intro: integrable_subinterval_real)
-  have v0a: "(\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on ({0..a})"
-    apply (rule integrable_subinterval_real)
-    using * a by auto
-  have "((\<lambda>x. f (shiftpath a g x) * vector_derivative (shiftpath a g) (at x))
-        has_integral  integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)))  {0..1 - a}"
-    apply (rule has_integral_spike_finite
-             [where S = "{1-a} \<union> (\<lambda>x. x-a) ` s" and f = "\<lambda>x. f(g(a+x)) * vector_derivative g (at(a+x))"])
-      using s apply blast
-     using a apply (auto simp: algebra_simps vd1)
-     apply (force simp: shiftpath_def add.commute)
-    using has_integral_affinity [where m=1 and c=a, simplified, OF integrable_integral [OF va1]]
-    apply (simp add: image_affinity_atLeastAtMost_diff [where m=1 and c=a, simplified] add.commute)
-    done
-  moreover
-  have "((\<lambda>x. f (shiftpath a g x) * vector_derivative (shiftpath a g) (at x))
-        has_integral  integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x)))  {1 - a..1}"
-    apply (rule has_integral_spike_finite
-             [where S = "{1-a} \<union> (\<lambda>x. x-a+1) ` s" and f = "\<lambda>x. f(g(a+x-1)) * vector_derivative g (at(a+x-1))"])
-      using s apply blast
-     using a apply (auto simp: algebra_simps vd2)
-     apply (force simp: shiftpath_def add.commute)
-    using has_integral_affinity [where m=1 and c="a-1", simplified, OF integrable_integral [OF v0a]]
-    apply (simp add: image_affinity_atLeastAtMost [where m=1 and c="1-a", simplified])
-    apply (simp add: algebra_simps)
-    done
-  ultimately show ?thesis
-    using a
-    by (auto simp: i has_contour_integral intro: has_integral_combine [where c = "1-a"])
-qed
-
-lemma has_contour_integral_shiftpath_D:
-  assumes "(f has_contour_integral i) (shiftpath a g)"
-          "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "(f has_contour_integral i) g"
-proof -
-  obtain s
-    where s: "finite s" and g: "\<forall>x\<in>{0..1} - s. g differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  { fix x
-    assume x: "0 < x" "x < 1" "x \<notin> s"
-    then have gx: "g differentiable at x"
-      using g by auto
-    have "vector_derivative g (at x within {0..1}) =
-          vector_derivative (shiftpath (1 - a) (shiftpath a g)) (at x within {0..1})"
-      apply (rule vector_derivative_at_within_ivl
-                  [OF has_vector_derivative_transform_within_open
-                      [where f = "(shiftpath (1 - a) (shiftpath a g))" and S = "{0<..<1}-s"]])
-      using s g assms x
-      apply (auto simp: finite_imp_closed open_Diff shiftpath_shiftpath
-                        at_within_interior [of _ "{0..1}"] vector_derivative_works [symmetric])
-      apply (rule differentiable_transform_within [OF gx, of "min x (1-x)"])
-      apply (auto simp: dist_real_def shiftpath_shiftpath abs_if split: if_split_asm)
-      done
-  } note vd = this
-  have fi: "(f has_contour_integral i) (shiftpath (1 - a) (shiftpath a g))"
-    using assms  by (auto intro!: has_contour_integral_shiftpath)
-  show ?thesis
-    apply (simp add: has_contour_integral_def)
-    apply (rule has_integral_spike_finite [of "{0,1} \<union> s", OF _ _  fi [unfolded has_contour_integral_def]])
-    using s assms vd
-    apply (auto simp: Path_Connected.shiftpath_shiftpath)
-    done
-qed
-
-lemma has_contour_integral_shiftpath_eq:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "(f has_contour_integral i) (shiftpath a g) \<longleftrightarrow> (f has_contour_integral i) g"
-  using assms has_contour_integral_shiftpath has_contour_integral_shiftpath_D by blast
-
-lemma contour_integrable_on_shiftpath_eq:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "f contour_integrable_on (shiftpath a g) \<longleftrightarrow> f contour_integrable_on g"
-using assms contour_integrable_on_def has_contour_integral_shiftpath_eq by auto
-
-lemma contour_integral_shiftpath:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "contour_integral (shiftpath a g) f = contour_integral g f"
-   using assms
-   by (simp add: contour_integral_def contour_integrable_on_def has_contour_integral_shiftpath_eq)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>More about straight-line paths\<close>
-
-lemma has_vector_derivative_linepath_within:
-    "(linepath a b has_vector_derivative (b - a)) (at x within s)"
-apply (simp add: linepath_def has_vector_derivative_def algebra_simps)
-apply (rule derivative_eq_intros | simp)+
-done
-
-lemma vector_derivative_linepath_within:
-    "x \<in> {0..1} \<Longrightarrow> vector_derivative (linepath a b) (at x within {0..1}) = b - a"
-  apply (rule vector_derivative_within_cbox [of 0 "1::real", simplified])
-  apply (auto simp: has_vector_derivative_linepath_within)
-  done
-
-lemma vector_derivative_linepath_at [simp]: "vector_derivative (linepath a b) (at x) = b - a"
-  by (simp add: has_vector_derivative_linepath_within vector_derivative_at)
-
-lemma valid_path_linepath [iff]: "valid_path (linepath a b)"
-  apply (simp add: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_on_linepath)
-  apply (rule_tac x="{}" in exI)
-  apply (simp add: differentiable_on_def differentiable_def)
-  using has_vector_derivative_def has_vector_derivative_linepath_within
-  apply (fastforce simp add: continuous_on_eq_continuous_within)
-  done
-
-lemma has_contour_integral_linepath:
-  shows "(f has_contour_integral i) (linepath a b) \<longleftrightarrow>
-         ((\<lambda>x. f(linepath a b x) * (b - a)) has_integral i) {0..1}"
-  by (simp add: has_contour_integral)
-
-lemma linepath_in_path:
-  shows "x \<in> {0..1} \<Longrightarrow> linepath a b x \<in> closed_segment a b"
-  by (auto simp: segment linepath_def)
-
-lemma linepath_image_01: "linepath a b ` {0..1} = closed_segment a b"
-  by (auto simp: segment linepath_def)
-
-lemma linepath_in_convex_hull:
-    fixes x::real
-    assumes a: "a \<in> convex hull s"
-        and b: "b \<in> convex hull s"
-        and x: "0\<le>x" "x\<le>1"
-       shows "linepath a b x \<in> convex hull s"
-  apply (rule closed_segment_subset_convex_hull [OF a b, THEN subsetD])
-  using x
-  apply (auto simp: linepath_image_01 [symmetric])
-  done
-
-lemma Re_linepath: "Re(linepath (of_real a) (of_real b) x) = (1 - x)*a + x*b"
-  by (simp add: linepath_def)
-
-lemma Im_linepath: "Im(linepath (of_real a) (of_real b) x) = 0"
-  by (simp add: linepath_def)
-
-lemma has_contour_integral_trivial [iff]: "(f has_contour_integral 0) (linepath a a)"
-  by (simp add: has_contour_integral_linepath)
-
-lemma has_contour_integral_trivial_iff [simp]: "(f has_contour_integral i) (linepath a a) \<longleftrightarrow> i=0"
-  using has_contour_integral_unique by blast
-
-lemma contour_integral_trivial [simp]: "contour_integral (linepath a a) f = 0"
-  using has_contour_integral_trivial contour_integral_unique by blast
-
-lemma differentiable_linepath [intro]: "linepath a b differentiable at x within A"
-  by (auto simp: linepath_def)
-
-lemma bounded_linear_linepath:
-  assumes "bounded_linear f"
-  shows   "f (linepath a b x) = linepath (f a) (f b) x"
-proof -
-  interpret f: bounded_linear f by fact
-  show ?thesis by (simp add: linepath_def f.add f.scale)
-qed
-
-lemma bounded_linear_linepath':
-  assumes "bounded_linear f"
-  shows   "f \<circ> linepath a b = linepath (f a) (f b)"
-  using bounded_linear_linepath[OF assms] by (simp add: fun_eq_iff)
-
-lemma cnj_linepath: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x"
-  by (simp add: linepath_def)
-
-lemma cnj_linepath': "cnj \<circ> linepath a b = linepath (cnj a) (cnj b)"
-  by (simp add: linepath_def fun_eq_iff)
-
-subsection\<open>Relation to subpath construction\<close>
-
-lemma valid_path_subpath:
-  fixes g :: "real \<Rightarrow> 'a :: real_normed_vector"
-  assumes "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
-    shows "valid_path(subpath u v g)"
-proof (cases "v=u")
-  case True
-  then show ?thesis
-    unfolding valid_path_def subpath_def
-    by (force intro: C1_differentiable_on_const C1_differentiable_imp_piecewise)
-next
-  case False
-  have "(g \<circ> (\<lambda>x. ((v-u) * x + u))) piecewise_C1_differentiable_on {0..1}"
-    apply (rule piecewise_C1_differentiable_compose)
-    apply (simp add: C1_differentiable_imp_piecewise)
-     apply (simp add: image_affinity_atLeastAtMost)
-    using assms False
-    apply (auto simp: algebra_simps valid_path_def piecewise_C1_differentiable_on_subset)
-    apply (subst Int_commute)
-    apply (auto simp: inj_on_def algebra_simps crossproduct_eq finite_vimage_IntI)
-    done
-  then show ?thesis
-    by (auto simp: o_def valid_path_def subpath_def)
-qed
-
-lemma has_contour_integral_subpath_refl [iff]: "(f has_contour_integral 0) (subpath u u g)"
-  by (simp add: has_contour_integral subpath_def)
-
-lemma contour_integrable_subpath_refl [iff]: "f contour_integrable_on (subpath u u g)"
-  using has_contour_integral_subpath_refl contour_integrable_on_def by blast
-
-lemma contour_integral_subpath_refl [simp]: "contour_integral (subpath u u g) f = 0"
-  by (simp add: contour_integral_unique)
-
-lemma has_contour_integral_subpath:
-  assumes f: "f contour_integrable_on g" and g: "valid_path g"
-      and uv: "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
-    shows "(f has_contour_integral  integral {u..v} (\<lambda>x. f(g x) * vector_derivative g (at x)))
-           (subpath u v g)"
-proof (cases "v=u")
-  case True
-  then show ?thesis
-    using f   by (simp add: contour_integrable_on_def subpath_def has_contour_integral)
-next
-  case False
-  obtain s where s: "\<And>x. x \<in> {0..1} - s \<Longrightarrow> g differentiable at x" and fs: "finite s"
-    using g unfolding piecewise_C1_differentiable_on_def C1_differentiable_on_eq valid_path_def by blast
-  have *: "((\<lambda>x. f (g ((v - u) * x + u)) * vector_derivative g (at ((v - u) * x + u)))
-            has_integral (1 / (v - u)) * integral {u..v} (\<lambda>t. f (g t) * vector_derivative g (at t)))
-           {0..1}"
-    using f uv
-    apply (simp add: contour_integrable_on subpath_def has_contour_integral)
-    apply (drule integrable_on_subcbox [where a=u and b=v, simplified])
-    apply (simp_all add: has_integral_integral)
-    apply (drule has_integral_affinity [where m="v-u" and c=u, simplified])
-    apply (simp_all add: False image_affinity_atLeastAtMost_div_diff scaleR_conv_of_real)
-    apply (simp add: divide_simps False)
-    done
-  { fix x
-    have "x \<in> {0..1} \<Longrightarrow>
-           x \<notin> (\<lambda>t. (v-u) *\<^sub>R t + u) -` s \<Longrightarrow>
-           vector_derivative (\<lambda>x. g ((v-u) * x + u)) (at x) = (v-u) *\<^sub>R vector_derivative g (at ((v-u) * x + u))"
-      apply (rule vector_derivative_at [OF vector_diff_chain_at [simplified o_def]])
-      apply (intro derivative_eq_intros | simp)+
-      apply (cut_tac s [of "(v - u) * x + u"])
-      using uv mult_left_le [of x "v-u"]
-      apply (auto simp:  vector_derivative_works)
-      done
-  } note vd = this
-  show ?thesis
-    apply (cut_tac has_integral_cmul [OF *, where c = "v-u"])
-    using fs assms
-    apply (simp add: False subpath_def has_contour_integral)
-    apply (rule_tac S = "(\<lambda>t. ((v-u) *\<^sub>R t + u)) -` s" in has_integral_spike_finite)
-    apply (auto simp: inj_on_def False finite_vimageI vd scaleR_conv_of_real)
-    done
-qed
-
-lemma contour_integrable_subpath:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
-    shows "f contour_integrable_on (subpath u v g)"
-  apply (cases u v rule: linorder_class.le_cases)
-   apply (metis contour_integrable_on_def has_contour_integral_subpath [OF assms])
-  apply (subst reversepath_subpath [symmetric])
-  apply (rule contour_integrable_reversepath)
-   using assms apply (blast intro: valid_path_subpath)
-  apply (simp add: contour_integrable_on_def)
-  using assms apply (blast intro: has_contour_integral_subpath)
-  done
-
-lemma has_integral_contour_integral_subpath:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
-    shows "(((\<lambda>x. f(g x) * vector_derivative g (at x)))
-            has_integral  contour_integral (subpath u v g) f) {u..v}"
-  using assms
-  apply (auto simp: has_integral_integrable_integral)
-  apply (rule integrable_on_subcbox [where a=u and b=v and S = "{0..1}", simplified])
-  apply (auto simp: contour_integral_unique [OF has_contour_integral_subpath] contour_integrable_on)
-  done
-
-lemma contour_integral_subcontour_integral:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
-    shows "contour_integral (subpath u v g) f =
-           integral {u..v} (\<lambda>x. f(g x) * vector_derivative g (at x))"
-  using assms has_contour_integral_subpath contour_integral_unique by blast
-
-lemma contour_integral_subpath_combine_less:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
-          "u<v" "v<w"
-    shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
-           contour_integral (subpath u w g) f"
-  using assms apply (auto simp: contour_integral_subcontour_integral)
-  apply (rule integral_combine, auto)
-  apply (rule integrable_on_subcbox [where a=u and b=w and S = "{0..1}", simplified])
-  apply (auto simp: contour_integrable_on)
-  done
-
-lemma contour_integral_subpath_combine:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
-    shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
-           contour_integral (subpath u w g) f"
-proof (cases "u\<noteq>v \<and> v\<noteq>w \<and> u\<noteq>w")
-  case True
-    have *: "subpath v u g = reversepath(subpath u v g) \<and>
-             subpath w u g = reversepath(subpath u w g) \<and>
-             subpath w v g = reversepath(subpath v w g)"
-      by (auto simp: reversepath_subpath)
-    have "u < v \<and> v < w \<or>
-          u < w \<and> w < v \<or>
-          v < u \<and> u < w \<or>
-          v < w \<and> w < u \<or>
-          w < u \<and> u < v \<or>
-          w < v \<and> v < u"
-      using True assms by linarith
-    with assms show ?thesis
-      using contour_integral_subpath_combine_less [of f g u v w]
-            contour_integral_subpath_combine_less [of f g u w v]
-            contour_integral_subpath_combine_less [of f g v u w]
-            contour_integral_subpath_combine_less [of f g v w u]
-            contour_integral_subpath_combine_less [of f g w u v]
-            contour_integral_subpath_combine_less [of f g w v u]
-      apply simp
-      apply (elim disjE)
-      apply (auto simp: * contour_integral_reversepath contour_integrable_subpath
-               valid_path_subpath algebra_simps)
-      done
-next
-  case False
-  then show ?thesis
-    apply (auto)
-    using assms
-    by (metis eq_neg_iff_add_eq_0 contour_integral_reversepath reversepath_subpath valid_path_subpath)
-qed
-
-lemma contour_integral_integral:
-     "contour_integral g f = integral {0..1} (\<lambda>x. f (g x) * vector_derivative g (at x))"
-  by (simp add: contour_integral_def integral_def has_contour_integral contour_integrable_on)
-
-lemma contour_integral_cong:
-  assumes "g = g'" "\<And>x. x \<in> path_image g \<Longrightarrow> f x = f' x"
-  shows   "contour_integral g f = contour_integral g' f'"
-  unfolding contour_integral_integral using assms
-  by (intro integral_cong) (auto simp: path_image_def)
-
-
-text \<open>Contour integral along a segment on the real axis\<close>
-
-lemma has_contour_integral_linepath_Reals_iff:
-  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
-  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
-  shows   "(f has_contour_integral I) (linepath a b) \<longleftrightarrow>
-             ((\<lambda>x. f (of_real x)) has_integral I) {Re a..Re b}"
-proof -
-  from assms have [simp]: "of_real (Re a) = a" "of_real (Re b) = b"
-    by (simp_all add: complex_eq_iff)
-  from assms have "a \<noteq> b" by auto
-  have "((\<lambda>x. f (of_real x)) has_integral I) (cbox (Re a) (Re b)) \<longleftrightarrow>
-          ((\<lambda>x. f (a + b * of_real x - a * of_real x)) has_integral I /\<^sub>R (Re b - Re a)) {0..1}"
-    by (subst has_integral_affinity_iff [of "Re b - Re a" _ "Re a", symmetric])
-       (insert assms, simp_all add: field_simps scaleR_conv_of_real)
-  also have "(\<lambda>x. f (a + b * of_real x - a * of_real x)) =
-               (\<lambda>x. (f (a + b * of_real x - a * of_real x) * (b - a)) /\<^sub>R (Re b - Re a))"
-    using \<open>a \<noteq> b\<close> by (auto simp: field_simps fun_eq_iff scaleR_conv_of_real)
-  also have "(\<dots> has_integral I /\<^sub>R (Re b - Re a)) {0..1} \<longleftrightarrow> 
-               ((\<lambda>x. f (linepath a b x) * (b - a)) has_integral I) {0..1}" using assms
-    by (subst has_integral_cmul_iff) (auto simp: linepath_def scaleR_conv_of_real algebra_simps)
-  also have "\<dots> \<longleftrightarrow> (f has_contour_integral I) (linepath a b)" unfolding has_contour_integral_def
-    by (intro has_integral_cong) (simp add: vector_derivative_linepath_within)
-  finally show ?thesis by simp
-qed
-
-lemma contour_integrable_linepath_Reals_iff:
-  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
-  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
-  shows   "(f contour_integrable_on linepath a b) \<longleftrightarrow>
-             (\<lambda>x. f (of_real x)) integrable_on {Re a..Re b}"
-  using has_contour_integral_linepath_Reals_iff[OF assms, of f]
-  by (auto simp: contour_integrable_on_def integrable_on_def)
-
-lemma contour_integral_linepath_Reals_eq:
-  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
-  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
-  shows   "contour_integral (linepath a b) f = integral {Re a..Re b} (\<lambda>x. f (of_real x))"
-proof (cases "f contour_integrable_on linepath a b")
-  case True
-  thus ?thesis using has_contour_integral_linepath_Reals_iff[OF assms, of f]
-    using has_contour_integral_integral has_contour_integral_unique by blast
-next
-  case False
-  thus ?thesis using contour_integrable_linepath_Reals_iff[OF assms, of f]
-    by (simp add: not_integrable_contour_integral not_integrable_integral)
-qed
-
-
-
-text\<open>Cauchy's theorem where there's a primitive\<close>
-
-lemma contour_integral_primitive_lemma:
-  fixes f :: "complex \<Rightarrow> complex" and g :: "real \<Rightarrow> complex"
-  assumes "a \<le> b"
-      and "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
-      and "g piecewise_differentiable_on {a..b}"  "\<And>x. x \<in> {a..b} \<Longrightarrow> g x \<in> s"
-    shows "((\<lambda>x. f'(g x) * vector_derivative g (at x within {a..b}))
-             has_integral (f(g b) - f(g a))) {a..b}"
-proof -
-  obtain k where k: "finite k" "\<forall>x\<in>{a..b} - k. g differentiable (at x within {a..b})" and cg: "continuous_on {a..b} g"
-    using assms by (auto simp: piecewise_differentiable_on_def)
-  have cfg: "continuous_on {a..b} (\<lambda>x. f (g x))"
-    apply (rule continuous_on_compose [OF cg, unfolded o_def])
-    using assms
-    apply (metis field_differentiable_def field_differentiable_imp_continuous_at continuous_on_eq_continuous_within continuous_on_subset image_subset_iff)
-    done
-  { fix x::real
-    assume a: "a < x" and b: "x < b" and xk: "x \<notin> k"
-    then have "g differentiable at x within {a..b}"
-      using k by (simp add: differentiable_at_withinI)
-    then have "(g has_vector_derivative vector_derivative g (at x within {a..b})) (at x within {a..b})"
-      by (simp add: vector_derivative_works has_field_derivative_def scaleR_conv_of_real)
-    then have gdiff: "(g has_derivative (\<lambda>u. u * vector_derivative g (at x within {a..b}))) (at x within {a..b})"
-      by (simp add: has_vector_derivative_def scaleR_conv_of_real)
-    have "(f has_field_derivative (f' (g x))) (at (g x) within g ` {a..b})"
-      using assms by (metis a atLeastAtMost_iff b DERIV_subset image_subset_iff less_eq_real_def)
-    then have fdiff: "(f has_derivative (*) (f' (g x))) (at (g x) within g ` {a..b})"
-      by (simp add: has_field_derivative_def)
-    have "((\<lambda>x. f (g x)) has_vector_derivative f' (g x) * vector_derivative g (at x within {a..b})) (at x within {a..b})"
-      using diff_chain_within [OF gdiff fdiff]
-      by (simp add: has_vector_derivative_def scaleR_conv_of_real o_def mult_ac)
-  } note * = this
-  show ?thesis
-    apply (rule fundamental_theorem_of_calculus_interior_strong)
-    using k assms cfg *
-    apply (auto simp: at_within_Icc_at)
-    done
-qed
-
-lemma contour_integral_primitive:
-  assumes "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
-      and "valid_path g" "path_image g \<subseteq> s"
-    shows "(f' has_contour_integral (f(pathfinish g) - f(pathstart g))) g"
-  using assms
-  apply (simp add: valid_path_def path_image_def pathfinish_def pathstart_def has_contour_integral_def)
-  apply (auto intro!: piecewise_C1_imp_differentiable contour_integral_primitive_lemma [of 0 1 s])
-  done
-
-corollary Cauchy_theorem_primitive:
-  assumes "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
-      and "valid_path g"  "path_image g \<subseteq> s" "pathfinish g = pathstart g"
-    shows "(f' has_contour_integral 0) g"
-  using assms
-  by (metis diff_self contour_integral_primitive)
-
-text\<open>Existence of path integral for continuous function\<close>
-lemma contour_integrable_continuous_linepath:
-  assumes "continuous_on (closed_segment a b) f"
-  shows "f contour_integrable_on (linepath a b)"
-proof -
-  have "continuous_on {0..1} ((\<lambda>x. f x * (b - a)) \<circ> linepath a b)"
-    apply (rule continuous_on_compose [OF continuous_on_linepath], simp add: linepath_image_01)
-    apply (rule continuous_intros | simp add: assms)+
-    done
-  then show ?thesis
-    apply (simp add: contour_integrable_on_def has_contour_integral_def integrable_on_def [symmetric])
-    apply (rule integrable_continuous [of 0 "1::real", simplified])
-    apply (rule continuous_on_eq [where f = "\<lambda>x. f(linepath a b x)*(b - a)"])
-    apply (auto simp: vector_derivative_linepath_within)
-    done
-qed
-
-lemma has_field_der_id: "((\<lambda>x. x\<^sup>2 / 2) has_field_derivative x) (at x)"
-  by (rule has_derivative_imp_has_field_derivative)
-     (rule derivative_intros | simp)+
-
-lemma contour_integral_id [simp]: "contour_integral (linepath a b) (\<lambda>y. y) = (b^2 - a^2)/2"
-  apply (rule contour_integral_unique)
-  using contour_integral_primitive [of UNIV "\<lambda>x. x^2/2" "\<lambda>x. x" "linepath a b"]
-  apply (auto simp: field_simps has_field_der_id)
-  done
-
-lemma contour_integrable_on_const [iff]: "(\<lambda>x. c) contour_integrable_on (linepath a b)"
-  by (simp add: contour_integrable_continuous_linepath)
-
-lemma contour_integrable_on_id [iff]: "(\<lambda>x. x) contour_integrable_on (linepath a b)"
-  by (simp add: contour_integrable_continuous_linepath)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetical combining theorems\<close>
-
-lemma has_contour_integral_neg:
-    "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. -(f x)) has_contour_integral (-i)) g"
-  by (simp add: has_integral_neg has_contour_integral_def)
-
-lemma has_contour_integral_add:
-    "\<lbrakk>(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g\<rbrakk>
-     \<Longrightarrow> ((\<lambda>x. f1 x + f2 x) has_contour_integral (i1 + i2)) g"
-  by (simp add: has_integral_add has_contour_integral_def algebra_simps)
-
-lemma has_contour_integral_diff:
-  "\<lbrakk>(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g\<rbrakk>
-         \<Longrightarrow> ((\<lambda>x. f1 x - f2 x) has_contour_integral (i1 - i2)) g"
-  by (simp add: has_integral_diff has_contour_integral_def algebra_simps)
-
-lemma has_contour_integral_lmul:
-  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. c * (f x)) has_contour_integral (c*i)) g"
-apply (simp add: has_contour_integral_def)
-apply (drule has_integral_mult_right)
-apply (simp add: algebra_simps)
-done
-
-lemma has_contour_integral_rmul:
-  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. (f x) * c) has_contour_integral (i*c)) g"
-apply (drule has_contour_integral_lmul)
-apply (simp add: mult.commute)
-done
-
-lemma has_contour_integral_div:
-  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. f x/c) has_contour_integral (i/c)) g"
-  by (simp add: field_class.field_divide_inverse) (metis has_contour_integral_rmul)
-
-lemma has_contour_integral_eq:
-    "\<lbrakk>(f has_contour_integral y) p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> (g has_contour_integral y) p"
-apply (simp add: path_image_def has_contour_integral_def)
-by (metis (no_types, lifting) image_eqI has_integral_eq)
-
-lemma has_contour_integral_bound_linepath:
-  assumes "(f has_contour_integral i) (linepath a b)"
-          "0 \<le> B" "\<And>x. x \<in> closed_segment a b \<Longrightarrow> norm(f x) \<le> B"
-    shows "norm i \<le> B * norm(b - a)"
-proof -
-  { fix x::real
-    assume x: "0 \<le> x" "x \<le> 1"
-  have "norm (f (linepath a b x)) *
-        norm (vector_derivative (linepath a b) (at x within {0..1})) \<le> B * norm (b - a)"
-    by (auto intro: mult_mono simp: assms linepath_in_path of_real_linepath vector_derivative_linepath_within x)
-  } note * = this
-  have "norm i \<le> (B * norm (b - a)) * content (cbox 0 (1::real))"
-    apply (rule has_integral_bound
-       [of _ "\<lambda>x. f (linepath a b x) * vector_derivative (linepath a b) (at x within {0..1})"])
-    using assms * unfolding has_contour_integral_def
-    apply (auto simp: norm_mult)
-    done
-  then show ?thesis
-    by (auto simp: content_real)
-qed
-
-(*UNUSED
-lemma has_contour_integral_bound_linepath_strong:
-  fixes a :: real and f :: "complex \<Rightarrow> real"
-  assumes "(f has_contour_integral i) (linepath a b)"
-          "finite k"
-          "0 \<le> B" "\<And>x::real. x \<in> closed_segment a b - k \<Longrightarrow> norm(f x) \<le> B"
-    shows "norm i \<le> B*norm(b - a)"
-*)
-
-lemma has_contour_integral_const_linepath: "((\<lambda>x. c) has_contour_integral c*(b - a))(linepath a b)"
-  unfolding has_contour_integral_linepath
-  by (metis content_real diff_0_right has_integral_const_real lambda_one of_real_1 scaleR_conv_of_real zero_le_one)
-
-lemma has_contour_integral_0: "((\<lambda>x. 0) has_contour_integral 0) g"
-  by (simp add: has_contour_integral_def)
-
-lemma has_contour_integral_is_0:
-    "(\<And>z. z \<in> path_image g \<Longrightarrow> f z = 0) \<Longrightarrow> (f has_contour_integral 0) g"
-  by (rule has_contour_integral_eq [OF has_contour_integral_0]) auto
-
-lemma has_contour_integral_sum:
-    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a has_contour_integral i a) p\<rbrakk>
-     \<Longrightarrow> ((\<lambda>x. sum (\<lambda>a. f a x) s) has_contour_integral sum i s) p"
-  by (induction s rule: finite_induct) (auto simp: has_contour_integral_0 has_contour_integral_add)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Operations on path integrals\<close>
-
-lemma contour_integral_const_linepath [simp]: "contour_integral (linepath a b) (\<lambda>x. c) = c*(b - a)"
-  by (rule contour_integral_unique [OF has_contour_integral_const_linepath])
-
-lemma contour_integral_neg:
-    "f contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. -(f x)) = -(contour_integral g f)"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_neg)
-
-lemma contour_integral_add:
-    "f1 contour_integrable_on g \<Longrightarrow> f2 contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. f1 x + f2 x) =
-                contour_integral g f1 + contour_integral g f2"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_add)
-
-lemma contour_integral_diff:
-    "f1 contour_integrable_on g \<Longrightarrow> f2 contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. f1 x - f2 x) =
-                contour_integral g f1 - contour_integral g f2"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_diff)
-
-lemma contour_integral_lmul:
-  shows "f contour_integrable_on g
-           \<Longrightarrow> contour_integral g (\<lambda>x. c * f x) = c*contour_integral g f"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_lmul)
-
-lemma contour_integral_rmul:
-  shows "f contour_integrable_on g
-        \<Longrightarrow> contour_integral g (\<lambda>x. f x * c) = contour_integral g f * c"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_rmul)
-
-lemma contour_integral_div:
-  shows "f contour_integrable_on g
-        \<Longrightarrow> contour_integral g (\<lambda>x. f x / c) = contour_integral g f / c"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_div)
-
-lemma contour_integral_eq:
-    "(\<And>x. x \<in> path_image p \<Longrightarrow> f x = g x) \<Longrightarrow> contour_integral p f = contour_integral p g"
-  apply (simp add: contour_integral_def)
-  using has_contour_integral_eq
-  by (metis contour_integral_unique has_contour_integral_integrable has_contour_integral_integral)
-
-lemma contour_integral_eq_0:
-    "(\<And>z. z \<in> path_image g \<Longrightarrow> f z = 0) \<Longrightarrow> contour_integral g f = 0"
-  by (simp add: has_contour_integral_is_0 contour_integral_unique)
-
-lemma contour_integral_bound_linepath:
-  shows
-    "\<lbrakk>f contour_integrable_on (linepath a b);
-      0 \<le> B; \<And>x. x \<in> closed_segment a b \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-     \<Longrightarrow> norm(contour_integral (linepath a b) f) \<le> B*norm(b - a)"
-  apply (rule has_contour_integral_bound_linepath [of f])
-  apply (auto simp: has_contour_integral_integral)
-  done
-
-lemma contour_integral_0 [simp]: "contour_integral g (\<lambda>x. 0) = 0"
-  by (simp add: contour_integral_unique has_contour_integral_0)
-
-lemma contour_integral_sum:
-    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
-     \<Longrightarrow> contour_integral p (\<lambda>x. sum (\<lambda>a. f a x) s) = sum (\<lambda>a. contour_integral p (f a)) s"
-  by (auto simp: contour_integral_unique has_contour_integral_sum has_contour_integral_integral)
-
-lemma contour_integrable_eq:
-    "\<lbrakk>f contour_integrable_on p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g contour_integrable_on p"
-  unfolding contour_integrable_on_def
-  by (metis has_contour_integral_eq)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetic theorems for path integrability\<close>
-
-lemma contour_integrable_neg:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. -(f x)) contour_integrable_on g"
-  using has_contour_integral_neg contour_integrable_on_def by blast
-
-lemma contour_integrable_add:
-    "\<lbrakk>f1 contour_integrable_on g; f2 contour_integrable_on g\<rbrakk> \<Longrightarrow> (\<lambda>x. f1 x + f2 x) contour_integrable_on g"
-  using has_contour_integral_add contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_diff:
-    "\<lbrakk>f1 contour_integrable_on g; f2 contour_integrable_on g\<rbrakk> \<Longrightarrow> (\<lambda>x. f1 x - f2 x) contour_integrable_on g"
-  using has_contour_integral_diff contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_lmul:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. c * f x) contour_integrable_on g"
-  using has_contour_integral_lmul contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_rmul:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. f x * c) contour_integrable_on g"
-  using has_contour_integral_rmul contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_div:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. f x / c) contour_integrable_on g"
-  using has_contour_integral_div contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_sum:
-    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. sum (\<lambda>a. f a x) s) contour_integrable_on p"
-   unfolding contour_integrable_on_def
-   by (metis has_contour_integral_sum)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Reversing a path integral\<close>
-
-lemma has_contour_integral_reverse_linepath:
-    "(f has_contour_integral i) (linepath a b)
-     \<Longrightarrow> (f has_contour_integral (-i)) (linepath b a)"
-  using has_contour_integral_reversepath valid_path_linepath by fastforce
-
-lemma contour_integral_reverse_linepath:
-    "continuous_on (closed_segment a b) f
-     \<Longrightarrow> contour_integral (linepath a b) f = - (contour_integral(linepath b a) f)"
-apply (rule contour_integral_unique)
-apply (rule has_contour_integral_reverse_linepath)
-by (simp add: closed_segment_commute contour_integrable_continuous_linepath has_contour_integral_integral)
-
-
-(* Splitting a path integral in a flat way.*)
-
-lemma has_contour_integral_split:
-  assumes f: "(f has_contour_integral i) (linepath a c)" "(f has_contour_integral j) (linepath c b)"
-      and k: "0 \<le> k" "k \<le> 1"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "(f has_contour_integral (i + j)) (linepath a b)"
-proof (cases "k = 0 \<or> k = 1")
-  case True
-  then show ?thesis
-    using assms by auto
-next
-  case False
-  then have k: "0 < k" "k < 1" "complex_of_real k \<noteq> 1"
-    using assms by auto
-  have c': "c = k *\<^sub>R (b - a) + a"
-    by (metis diff_add_cancel c)
-  have bc: "(b - c) = (1 - k) *\<^sub>R (b - a)"
-    by (simp add: algebra_simps c')
-  { assume *: "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R c) * (c - a)) has_integral i) {0..1}"
-    have **: "\<And>x. ((k - x) / k) *\<^sub>R a + (x / k) *\<^sub>R c = (1 - x) *\<^sub>R a + x *\<^sub>R b"
-      using False apply (simp add: c' algebra_simps)
-      apply (simp add: real_vector.scale_left_distrib [symmetric] field_split_simps)
-      done
-    have "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R b) * (b - a)) has_integral i) {0..k}"
-      using k has_integral_affinity01 [OF *, of "inverse k" "0"]
-      apply (simp add: divide_simps mult.commute [of _ "k"] image_affinity_atLeastAtMost ** c)
-      apply (auto dest: has_integral_cmul [where c = "inverse k"])
-      done
-  } note fi = this
-  { assume *: "((\<lambda>x. f ((1 - x) *\<^sub>R c + x *\<^sub>R b) * (b - c)) has_integral j) {0..1}"
-    have **: "\<And>x. (((1 - x) / (1 - k)) *\<^sub>R c + ((x - k) / (1 - k)) *\<^sub>R b) = ((1 - x) *\<^sub>R a + x *\<^sub>R b)"
-      using k
-      apply (simp add: c' field_simps)
-      apply (simp add: scaleR_conv_of_real divide_simps)
-      apply (simp add: field_simps)
-      done
-    have "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R b) * (b - a)) has_integral j) {k..1}"
-      using k has_integral_affinity01 [OF *, of "inverse(1 - k)" "-(k/(1 - k))"]
-      apply (simp add: divide_simps mult.commute [of _ "1-k"] image_affinity_atLeastAtMost ** bc)
-      apply (auto dest: has_integral_cmul [where k = "(1 - k) *\<^sub>R j" and c = "inverse (1 - k)"])
-      done
-  } note fj = this
-  show ?thesis
-    using f k
-    apply (simp add: has_contour_integral_linepath)
-    apply (simp add: linepath_def)
-    apply (rule has_integral_combine [OF _ _ fi fj], simp_all)
-    done
-qed
-
-lemma continuous_on_closed_segment_transform:
-  assumes f: "continuous_on (closed_segment a b) f"
-      and k: "0 \<le> k" "k \<le> 1"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "continuous_on (closed_segment a c) f"
-proof -
-  have c': "c = (1 - k) *\<^sub>R a + k *\<^sub>R b"
-    using c by (simp add: algebra_simps)
-  have "closed_segment a c \<subseteq> closed_segment a b"
-    by (metis c' ends_in_segment(1) in_segment(1) k subset_closed_segment)
-  then show "continuous_on (closed_segment a c) f"
-    by (rule continuous_on_subset [OF f])
-qed
-
-lemma contour_integral_split:
-  assumes f: "continuous_on (closed_segment a b) f"
-      and k: "0 \<le> k" "k \<le> 1"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "contour_integral(linepath a b) f = contour_integral(linepath a c) f + contour_integral(linepath c b) f"
-proof -
-  have c': "c = (1 - k) *\<^sub>R a + k *\<^sub>R b"
-    using c by (simp add: algebra_simps)
-  have "closed_segment a c \<subseteq> closed_segment a b"
-    by (metis c' ends_in_segment(1) in_segment(1) k subset_closed_segment)
-  moreover have "closed_segment c b \<subseteq> closed_segment a b"
-    by (metis c' ends_in_segment(2) in_segment(1) k subset_closed_segment)
-  ultimately
-  have *: "continuous_on (closed_segment a c) f" "continuous_on (closed_segment c b) f"
-    by (auto intro: continuous_on_subset [OF f])
-  show ?thesis
-    by (rule contour_integral_unique) (meson "*" c contour_integrable_continuous_linepath has_contour_integral_integral has_contour_integral_split k)
-qed
-
-lemma contour_integral_split_linepath:
-  assumes f: "continuous_on (closed_segment a b) f"
-      and c: "c \<in> closed_segment a b"
-    shows "contour_integral(linepath a b) f = contour_integral(linepath a c) f + contour_integral(linepath c b) f"
-  using c by (auto simp: closed_segment_def algebra_simps intro!: contour_integral_split [OF f])
-
-text\<open>The special case of midpoints used in the main quadrisection\<close>
-
-lemma has_contour_integral_midpoint:
-  assumes "(f has_contour_integral i) (linepath a (midpoint a b))"
-          "(f has_contour_integral j) (linepath (midpoint a b) b)"
-    shows "(f has_contour_integral (i + j)) (linepath a b)"
-  apply (rule has_contour_integral_split [where c = "midpoint a b" and k = "1/2"])
-  using assms
-  apply (auto simp: midpoint_def algebra_simps scaleR_conv_of_real)
-  done
-
-lemma contour_integral_midpoint:
-   "continuous_on (closed_segment a b) f
-    \<Longrightarrow> contour_integral (linepath a b) f =
-        contour_integral (linepath a (midpoint a b)) f + contour_integral (linepath (midpoint a b) b) f"
-  apply (rule contour_integral_split [where c = "midpoint a b" and k = "1/2"])
-  apply (auto simp: midpoint_def algebra_simps scaleR_conv_of_real)
-  done
-
-
-text\<open>A couple of special case lemmas that are useful below\<close>
-
-lemma triangle_linear_has_chain_integral:
-    "((\<lambda>x. m*x + d) has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-  apply (rule Cauchy_theorem_primitive [of UNIV "\<lambda>x. m/2 * x^2 + d*x"])
-  apply (auto intro!: derivative_eq_intros)
-  done
-
-lemma has_chain_integral_chain_integral3:
-     "(f has_contour_integral i) (linepath a b +++ linepath b c +++ linepath c d)
-      \<Longrightarrow> contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c d) f = i"
-  apply (subst contour_integral_unique [symmetric], assumption)
-  apply (drule has_contour_integral_integrable)
-  apply (simp add: valid_path_join)
-  done
-
-lemma has_chain_integral_chain_integral4:
-     "(f has_contour_integral i) (linepath a b +++ linepath b c +++ linepath c d +++ linepath d e)
-      \<Longrightarrow> contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c d) f + contour_integral (linepath d e) f = i"
-  apply (subst contour_integral_unique [symmetric], assumption)
-  apply (drule has_contour_integral_integrable)
-  apply (simp add: valid_path_join)
-  done
-
-subsection\<open>Reversing the order in a double path integral\<close>
-
-text\<open>The condition is stronger than needed but it's often true in typical situations\<close>
-
-lemma fst_im_cbox [simp]: "cbox c d \<noteq> {} \<Longrightarrow> (fst ` cbox (a,c) (b,d)) = cbox a b"
-  by (auto simp: cbox_Pair_eq)
-
-lemma snd_im_cbox [simp]: "cbox a b \<noteq> {} \<Longrightarrow> (snd ` cbox (a,c) (b,d)) = cbox c d"
-  by (auto simp: cbox_Pair_eq)
-
-proposition contour_integral_swap:
-  assumes fcon:  "continuous_on (path_image g \<times> path_image h) (\<lambda>(y1,y2). f y1 y2)"
-      and vp:    "valid_path g" "valid_path h"
-      and gvcon: "continuous_on {0..1} (\<lambda>t. vector_derivative g (at t))"
-      and hvcon: "continuous_on {0..1} (\<lambda>t. vector_derivative h (at t))"
-  shows "contour_integral g (\<lambda>w. contour_integral h (f w)) =
-         contour_integral h (\<lambda>z. contour_integral g (\<lambda>w. f w z))"
-proof -
-  have gcon: "continuous_on {0..1} g" and hcon: "continuous_on {0..1} h"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  have fgh1: "\<And>x. (\<lambda>t. f (g x) (h t)) = (\<lambda>(y1,y2). f y1 y2) \<circ> (\<lambda>t. (g x, h t))"
-    by (rule ext) simp
-  have fgh2: "\<And>x. (\<lambda>t. f (g t) (h x)) = (\<lambda>(y1,y2). f y1 y2) \<circ> (\<lambda>t. (g t, h x))"
-    by (rule ext) simp
-  have fcon_im1: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> continuous_on ((\<lambda>t. (g x, h t)) ` {0..1}) (\<lambda>(x, y). f x y)"
-    by (rule continuous_on_subset [OF fcon]) (auto simp: path_image_def)
-  have fcon_im2: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> continuous_on ((\<lambda>t. (g t, h x)) ` {0..1}) (\<lambda>(x, y). f x y)"
-    by (rule continuous_on_subset [OF fcon]) (auto simp: path_image_def)
-  have "\<And>y. y \<in> {0..1} \<Longrightarrow> continuous_on {0..1} (\<lambda>x. f (g x) (h y))"
-    by (subst fgh2) (rule fcon_im2 gcon continuous_intros | simp)+
-  then have vdg: "\<And>y. y \<in> {0..1} \<Longrightarrow> (\<lambda>x. f (g x) (h y) * vector_derivative g (at x)) integrable_on {0..1}"
-    using continuous_on_mult gvcon integrable_continuous_real by blast
-  have "(\<lambda>z. vector_derivative g (at (fst z))) = (\<lambda>x. vector_derivative g (at x)) \<circ> fst"
-    by auto
-  then have gvcon': "continuous_on (cbox (0, 0) (1, 1::real)) (\<lambda>x. vector_derivative g (at (fst x)))"
-    apply (rule ssubst)
-    apply (rule continuous_intros | simp add: gvcon)+
-    done
-  have "(\<lambda>z. vector_derivative h (at (snd z))) = (\<lambda>x. vector_derivative h (at x)) \<circ> snd"
-    by auto
-  then have hvcon': "continuous_on (cbox (0, 0) (1::real, 1)) (\<lambda>x. vector_derivative h (at (snd x)))"
-    apply (rule ssubst)
-    apply (rule continuous_intros | simp add: hvcon)+
-    done
-  have "(\<lambda>x. f (g (fst x)) (h (snd x))) = (\<lambda>(y1,y2). f y1 y2) \<circ> (\<lambda>w. ((g \<circ> fst) w, (h \<circ> snd) w))"
-    by auto
-  then have fgh: "continuous_on (cbox (0, 0) (1, 1)) (\<lambda>x. f (g (fst x)) (h (snd x)))"
-    apply (rule ssubst)
-    apply (rule gcon hcon continuous_intros | simp)+
-    apply (auto simp: path_image_def intro: continuous_on_subset [OF fcon])
-    done
-  have "integral {0..1} (\<lambda>x. contour_integral h (f (g x)) * vector_derivative g (at x)) =
-        integral {0..1} (\<lambda>x. contour_integral h (\<lambda>y. f (g x) y * vector_derivative g (at x)))"
-  proof (rule integral_cong [OF contour_integral_rmul [symmetric]])
-    show "\<And>x. x \<in> {0..1} \<Longrightarrow> f (g x) contour_integrable_on h"
-      unfolding contour_integrable_on
-    apply (rule integrable_continuous_real)
-    apply (rule continuous_on_mult [OF _ hvcon])
-    apply (subst fgh1)
-    apply (rule fcon_im1 hcon continuous_intros | simp)+
-      done
-  qed
-  also have "\<dots> = integral {0..1}
-                     (\<lambda>y. contour_integral g (\<lambda>x. f x (h y) * vector_derivative h (at y)))"
-    unfolding contour_integral_integral
-    apply (subst integral_swap_continuous [where 'a = real and 'b = real, of 0 0 1 1, simplified])
-     apply (rule fgh gvcon' hvcon' continuous_intros | simp add: split_def)+
-    unfolding integral_mult_left [symmetric]
-    apply (simp only: mult_ac)
-    done
-  also have "\<dots> = contour_integral h (\<lambda>z. contour_integral g (\<lambda>w. f w z))"
-    unfolding contour_integral_integral
-    apply (rule integral_cong)
-    unfolding integral_mult_left [symmetric]
-    apply (simp add: algebra_simps)
-    done
-  finally show ?thesis
-    by (simp add: contour_integral_integral)
-qed
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>The key quadrisection step\<close>
-
-lemma norm_sum_half:
-  assumes "norm(a + b) \<ge> e"
-    shows "norm a \<ge> e/2 \<or> norm b \<ge> e/2"
-proof -
-  have "e \<le> norm (- a - b)"
-    by (simp add: add.commute assms norm_minus_commute)
-  thus ?thesis
-    using norm_triangle_ineq4 order_trans by fastforce
-qed
-
-lemma norm_sum_lemma:
-  assumes "e \<le> norm (a + b + c + d)"
-    shows "e / 4 \<le> norm a \<or> e / 4 \<le> norm b \<or> e / 4 \<le> norm c \<or> e / 4 \<le> norm d"
-proof -
-  have "e \<le> norm ((a + b) + (c + d))" using assms
-    by (simp add: algebra_simps)
-  then show ?thesis
-    by (auto dest!: norm_sum_half)
-qed
-
-lemma Cauchy_theorem_quadrisection:
-  assumes f: "continuous_on (convex hull {a,b,c}) f"
-      and dist: "dist a b \<le> K" "dist b c \<le> K" "dist c a \<le> K"
-      and e: "e * K^2 \<le>
-              norm (contour_integral(linepath a b) f + contour_integral(linepath b c) f + contour_integral(linepath c a) f)"
-  shows "\<exists>a' b' c'.
-           a' \<in> convex hull {a,b,c} \<and> b' \<in> convex hull {a,b,c} \<and> c' \<in> convex hull {a,b,c} \<and>
-           dist a' b' \<le> K/2  \<and>  dist b' c' \<le> K/2  \<and>  dist c' a' \<le> K/2  \<and>
-           e * (K/2)^2 \<le> norm(contour_integral(linepath a' b') f + contour_integral(linepath b' c') f + contour_integral(linepath c' a') f)"
-         (is "\<exists>x y z. ?\<Phi> x y z")
-proof -
-  note divide_le_eq_numeral1 [simp del]
-  define a' where "a' = midpoint b c"
-  define b' where "b' = midpoint c a"
-  define c' where "c' = midpoint a b"
-  have fabc: "continuous_on (closed_segment a b) f" "continuous_on (closed_segment b c) f" "continuous_on (closed_segment c a) f"
-    using f continuous_on_subset segments_subset_convex_hull by metis+
-  have fcont': "continuous_on (closed_segment c' b') f"
-               "continuous_on (closed_segment a' c') f"
-               "continuous_on (closed_segment b' a') f"
-    unfolding a'_def b'_def c'_def
-    by (rule continuous_on_subset [OF f],
-           metis midpoints_in_convex_hull convex_hull_subset hull_subset insert_subset segment_convex_hull)+
-  let ?pathint = "\<lambda>x y. contour_integral(linepath x y) f"
-  have *: "?pathint a b + ?pathint b c + ?pathint c a =
-          (?pathint a c' + ?pathint c' b' + ?pathint b' a) +
-          (?pathint a' c' + ?pathint c' b + ?pathint b a') +
-          (?pathint a' c + ?pathint c b' + ?pathint b' a') +
-          (?pathint a' b' + ?pathint b' c' + ?pathint c' a')"
-    by (simp add: fcont' contour_integral_reverse_linepath) (simp add: a'_def b'_def c'_def contour_integral_midpoint fabc)
-  have [simp]: "\<And>x y. cmod (x * 2 - y * 2) = cmod (x - y) * 2"
-    by (metis left_diff_distrib mult.commute norm_mult_numeral1)
-  have [simp]: "\<And>x y. cmod (x - y) = cmod (y - x)"
-    by (simp add: norm_minus_commute)
-  consider "e * K\<^sup>2 / 4 \<le> cmod (?pathint a c' + ?pathint c' b' + ?pathint b' a)" |
-           "e * K\<^sup>2 / 4 \<le> cmod (?pathint a' c' + ?pathint c' b + ?pathint b a')" |
-           "e * K\<^sup>2 / 4 \<le> cmod (?pathint a' c + ?pathint c b' + ?pathint b' a')" |
-           "e * K\<^sup>2 / 4 \<le> cmod (?pathint a' b' + ?pathint b' c' + ?pathint c' a')"
-    using assms unfolding * by (blast intro: that dest!: norm_sum_lemma)
-  then show ?thesis
-  proof cases
-    case 1 then have "?\<Phi> a c' b'"
-      using assms
-      apply (clarsimp simp: c'_def b'_def midpoints_in_convex_hull hull_subset [THEN subsetD])
-      apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)
-      done
-    then show ?thesis by blast
-  next
-    case 2 then  have "?\<Phi> a' c' b"
-      using assms
-      apply (clarsimp simp: a'_def c'_def midpoints_in_convex_hull hull_subset [THEN subsetD])
-      apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)
-      done
-    then show ?thesis by blast
-  next
-    case 3 then have "?\<Phi> a' c b'"
-      using assms
-      apply (clarsimp simp: a'_def b'_def midpoints_in_convex_hull hull_subset [THEN subsetD])
-      apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)
-      done
-    then show ?thesis by blast
-  next
-    case 4 then have "?\<Phi> a' b' c'"
-      using assms
-      apply (clarsimp simp: a'_def c'_def b'_def midpoints_in_convex_hull hull_subset [THEN subsetD])
-      apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)
-      done
-    then show ?thesis by blast
-  qed
-qed
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Cauchy's theorem for triangles\<close>
-
-lemma triangle_points_closer:
-  fixes a::complex
-  shows "\<lbrakk>x \<in> convex hull {a,b,c};  y \<in> convex hull {a,b,c}\<rbrakk>
-         \<Longrightarrow> norm(x - y) \<le> norm(a - b) \<or>
-             norm(x - y) \<le> norm(b - c) \<or>
-             norm(x - y) \<le> norm(c - a)"
-  using simplex_extremal_le [of "{a,b,c}"]
-  by (auto simp: norm_minus_commute)
-
-lemma holomorphic_point_small_triangle:
-  assumes x: "x \<in> S"
-      and f: "continuous_on S f"
-      and cd: "f field_differentiable (at x within S)"
-      and e: "0 < e"
-    shows "\<exists>k>0. \<forall>a b c. dist a b \<le> k \<and> dist b c \<le> k \<and> dist c a \<le> k \<and>
-              x \<in> convex hull {a,b,c} \<and> convex hull {a,b,c} \<subseteq> S
-              \<longrightarrow> norm(contour_integral(linepath a b) f + contour_integral(linepath b c) f +
-                       contour_integral(linepath c a) f)
-                  \<le> e*(dist a b + dist b c + dist c a)^2"
-           (is "\<exists>k>0. \<forall>a b c. _ \<longrightarrow> ?normle a b c")
-proof -
-  have le_of_3: "\<And>a x y z. \<lbrakk>0 \<le> x*y; 0 \<le> x*z; 0 \<le> y*z; a \<le> (e*(x + y + z))*x + (e*(x + y + z))*y + (e*(x + y + z))*z\<rbrakk>
-                     \<Longrightarrow> a \<le> e*(x + y + z)^2"
-    by (simp add: algebra_simps power2_eq_square)
-  have disj_le: "\<lbrakk>x \<le> a \<or> x \<le> b \<or> x \<le> c; 0 \<le> a; 0 \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> x \<le> a + b + c"
-             for x::real and a b c
-    by linarith
-  have fabc: "f contour_integrable_on linepath a b" "f contour_integrable_on linepath b c" "f contour_integrable_on linepath c a"
-              if "convex hull {a, b, c} \<subseteq> S" for a b c
-    using segments_subset_convex_hull that
-    by (metis continuous_on_subset f contour_integrable_continuous_linepath)+
-  note path_bound = has_contour_integral_bound_linepath [simplified norm_minus_commute, OF has_contour_integral_integral]
-  { fix f' a b c d
-    assume d: "0 < d"
-       and f': "\<And>y. \<lbrakk>cmod (y - x) \<le> d; y \<in> S\<rbrakk> \<Longrightarrow> cmod (f y - f x - f' * (y - x)) \<le> e * cmod (y - x)"
-       and le: "cmod (a - b) \<le> d" "cmod (b - c) \<le> d" "cmod (c - a) \<le> d"
-       and xc: "x \<in> convex hull {a, b, c}"
-       and S: "convex hull {a, b, c} \<subseteq> S"
-    have pa: "contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f =
-              contour_integral (linepath a b) (\<lambda>y. f y - f x - f'*(y - x)) +
-              contour_integral (linepath b c) (\<lambda>y. f y - f x - f'*(y - x)) +
-              contour_integral (linepath c a) (\<lambda>y. f y - f x - f'*(y - x))"
-      apply (simp add: contour_integral_diff contour_integral_lmul contour_integrable_lmul contour_integrable_diff fabc [OF S])
-      apply (simp add: field_simps)
-      done
-    { fix y
-      assume yc: "y \<in> convex hull {a,b,c}"
-      have "cmod (f y - f x - f' * (y - x)) \<le> e*norm(y - x)"
-      proof (rule f')
-        show "cmod (y - x) \<le> d"
-          by (metis triangle_points_closer [OF xc yc] le norm_minus_commute order_trans)
-      qed (use S yc in blast)
-      also have "\<dots> \<le> e * (cmod (a - b) + cmod (b - c) + cmod (c - a))"
-        by (simp add: yc e xc disj_le [OF triangle_points_closer])
-      finally have "cmod (f y - f x - f' * (y - x)) \<le> e * (cmod (a - b) + cmod (b - c) + cmod (c - a))" .
-    } note cm_le = this
-    have "?normle a b c"
-      unfolding dist_norm pa
-      apply (rule le_of_3)
-      using f' xc S e
-      apply simp_all
-      apply (intro norm_triangle_le add_mono path_bound)
-      apply (simp_all add: contour_integral_diff contour_integral_lmul contour_integrable_lmul contour_integrable_diff fabc)
-      apply (blast intro: cm_le elim: dest: segments_subset_convex_hull [THEN subsetD])+
-      done
-  } note * = this
-  show ?thesis
-    using cd e
-    apply (simp add: field_differentiable_def has_field_derivative_def has_derivative_within_alt approachable_lt_le2 Ball_def)
-    apply (clarify dest!: spec mp)
-    using * unfolding dist_norm
-    apply blast
-    done
-qed
-
-
-text\<open>Hence the most basic theorem for a triangle.\<close>
-
-locale Chain =
-  fixes x0 At Follows
-  assumes At0: "At x0 0"
-      and AtSuc: "\<And>x n. At x n \<Longrightarrow> \<exists>x'. At x' (Suc n) \<and> Follows x' x"
-begin
-  primrec f where
-    "f 0 = x0"
-  | "f (Suc n) = (SOME x. At x (Suc n) \<and> Follows x (f n))"
-
-  lemma At: "At (f n) n"
-  proof (induct n)
-    case 0 show ?case
-      by (simp add: At0)
-  next
-    case (Suc n) show ?case
-      by (metis (no_types, lifting) AtSuc [OF Suc] f.simps(2) someI_ex)
-  qed
-
-  lemma Follows: "Follows (f(Suc n)) (f n)"
-    by (metis (no_types, lifting) AtSuc [OF At [of n]] f.simps(2) someI_ex)
-
-  declare f.simps(2) [simp del]
-end
-
-lemma Chain3:
-  assumes At0: "At x0 y0 z0 0"
-      and AtSuc: "\<And>x y z n. At x y z n \<Longrightarrow> \<exists>x' y' z'. At x' y' z' (Suc n) \<and> Follows x' y' z' x y z"
-  obtains f g h where
-    "f 0 = x0" "g 0 = y0" "h 0 = z0"
-                      "\<And>n. At (f n) (g n) (h n) n"
-                       "\<And>n. Follows (f(Suc n)) (g(Suc n)) (h(Suc n)) (f n) (g n) (h n)"
-proof -
-  interpret three: Chain "(x0,y0,z0)" "\<lambda>(x,y,z). At x y z" "\<lambda>(x',y',z'). \<lambda>(x,y,z). Follows x' y' z' x y z"
-    apply unfold_locales
-    using At0 AtSuc by auto
-  show ?thesis
-  apply (rule that [of "\<lambda>n. fst (three.f n)"  "\<lambda>n. fst (snd (three.f n))" "\<lambda>n. snd (snd (three.f n))"])
-  using three.At three.Follows
-  apply simp_all
-  apply (simp_all add: split_beta')
-  done
-qed
-
-proposition\<^marker>\<open>tag unimportant\<close> Cauchy_theorem_triangle:
-  assumes "f holomorphic_on (convex hull {a,b,c})"
-    shows "(f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-proof -
-  have contf: "continuous_on (convex hull {a,b,c}) f"
-    by (metis assms holomorphic_on_imp_continuous_on)
-  let ?pathint = "\<lambda>x y. contour_integral(linepath x y) f"
-  { fix y::complex
-    assume fy: "(f has_contour_integral y) (linepath a b +++ linepath b c +++ linepath c a)"
-       and ynz: "y \<noteq> 0"
-    define K where "K = 1 + max (dist a b) (max (dist b c) (dist c a))"
-    define e where "e = norm y / K^2"
-    have K1: "K \<ge> 1"  by (simp add: K_def max.coboundedI1)
-    then have K: "K > 0" by linarith
-    have [iff]: "dist a b \<le> K" "dist b c \<le> K" "dist c a \<le> K"
-      by (simp_all add: K_def)
-    have e: "e > 0"
-      unfolding e_def using ynz K1 by simp
-    define At where "At x y z n \<longleftrightarrow>
-        convex hull {x,y,z} \<subseteq> convex hull {a,b,c} \<and>
-        dist x y \<le> K/2^n \<and> dist y z \<le> K/2^n \<and> dist z x \<le> K/2^n \<and>
-        norm(?pathint x y + ?pathint y z + ?pathint z x) \<ge> e*(K/2^n)^2"
-      for x y z n
-    have At0: "At a b c 0"
-      using fy
-      by (simp add: At_def e_def has_chain_integral_chain_integral3)
-    { fix x y z n
-      assume At: "At x y z n"
-      then have contf': "continuous_on (convex hull {x,y,z}) f"
-        using contf At_def continuous_on_subset by metis
-      have "\<exists>x' y' z'. At x' y' z' (Suc n) \<and> convex hull {x',y',z'} \<subseteq> convex hull {x,y,z}"
-        using At Cauchy_theorem_quadrisection [OF contf', of "K/2^n" e]
-        apply (simp add: At_def algebra_simps)
-        apply (meson convex_hull_subset empty_subsetI insert_subset subsetCE)
-        done
-    } note AtSuc = this
-    obtain fa fb fc
-      where f0 [simp]: "fa 0 = a" "fb 0 = b" "fc 0 = c"
-        and cosb: "\<And>n. convex hull {fa n, fb n, fc n} \<subseteq> convex hull {a,b,c}"
-        and dist: "\<And>n. dist (fa n) (fb n) \<le> K/2^n"
-                  "\<And>n. dist (fb n) (fc n) \<le> K/2^n"
-                  "\<And>n. dist (fc n) (fa n) \<le> K/2^n"
-        and no: "\<And>n. norm(?pathint (fa n) (fb n) +
-                           ?pathint (fb n) (fc n) +
-                           ?pathint (fc n) (fa n)) \<ge> e * (K/2^n)^2"
-        and conv_le: "\<And>n. convex hull {fa(Suc n), fb(Suc n), fc(Suc n)} \<subseteq> convex hull {fa n, fb n, fc n}"
-      apply (rule Chain3 [of At, OF At0 AtSuc])
-      apply (auto simp: At_def)
-      done
-    obtain x where x: "\<And>n. x \<in> convex hull {fa n, fb n, fc n}"
-    proof (rule bounded_closed_nest)
-      show "\<And>n. closed (convex hull {fa n, fb n, fc n})"
-        by (simp add: compact_imp_closed finite_imp_compact_convex_hull)
-      show "\<And>m n. m \<le> n \<Longrightarrow> convex hull {fa n, fb n, fc n} \<subseteq> convex hull {fa m, fb m, fc m}"
-        by (erule transitive_stepwise_le) (auto simp: conv_le)
-    qed (fastforce intro: finite_imp_bounded_convex_hull)+
-    then have xin: "x \<in> convex hull {a,b,c}"
-      using assms f0 by blast
-    then have fx: "f field_differentiable at x within (convex hull {a,b,c})"
-      using assms holomorphic_on_def by blast
-    { fix k n
-      assume k: "0 < k"
-         and le:
-            "\<And>x' y' z'.
-               \<lbrakk>dist x' y' \<le> k; dist y' z' \<le> k; dist z' x' \<le> k;
-                x \<in> convex hull {x',y',z'};
-                convex hull {x',y',z'} \<subseteq> convex hull {a,b,c}\<rbrakk>
-               \<Longrightarrow>
-               cmod (?pathint x' y' + ?pathint y' z' + ?pathint z' x') * 10
-                     \<le> e * (dist x' y' + dist y' z' + dist z' x')\<^sup>2"
-         and Kk: "K / k < 2 ^ n"
-      have "K / 2 ^ n < k" using Kk k
-        by (auto simp: field_simps)
-      then have DD: "dist (fa n) (fb n) \<le> k" "dist (fb n) (fc n) \<le> k" "dist (fc n) (fa n) \<le> k"
-        using dist [of n]  k
-        by linarith+
-      have dle: "(dist (fa n) (fb n) + dist (fb n) (fc n) + dist (fc n) (fa n))\<^sup>2
-               \<le> (3 * K / 2 ^ n)\<^sup>2"
-        using dist [of n] e K
-        by (simp add: abs_le_square_iff [symmetric])
-      have less10: "\<And>x y::real. 0 < x \<Longrightarrow> y \<le> 9*x \<Longrightarrow> y < x*10"
-        by linarith
-      have "e * (dist (fa n) (fb n) + dist (fb n) (fc n) + dist (fc n) (fa n))\<^sup>2 \<le> e * (3 * K / 2 ^ n)\<^sup>2"
-        using ynz dle e mult_le_cancel_left_pos by blast
-      also have "\<dots> <
-          cmod (?pathint (fa n) (fb n) + ?pathint (fb n) (fc n) + ?pathint (fc n) (fa n)) * 10"
-        using no [of n] e K
-        apply (simp add: e_def field_simps)
-        apply (simp only: zero_less_norm_iff [symmetric])
-        done
-      finally have False
-        using le [OF DD x cosb] by auto
-    } then
-    have ?thesis
-      using holomorphic_point_small_triangle [OF xin contf fx, of "e/10"] e
-      apply clarsimp
-      apply (rule_tac y1="K/k" in exE [OF real_arch_pow[of 2]], force+)
-      done
-  }
-  moreover have "f contour_integrable_on (linepath a b +++ linepath b c +++ linepath c a)"
-    by simp (meson contf continuous_on_subset contour_integrable_continuous_linepath segments_subset_convex_hull(1)
-                   segments_subset_convex_hull(3) segments_subset_convex_hull(5))
-  ultimately show ?thesis
-    using has_contour_integral_integral by fastforce
-qed
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Version needing function holomorphic in interior only\<close>
-
-lemma Cauchy_theorem_flat_lemma:
-  assumes f: "continuous_on (convex hull {a,b,c}) f"
-      and c: "c - a = k *\<^sub>R (b - a)"
-      and k: "0 \<le> k"
-    shows "contour_integral (linepath a b) f + contour_integral (linepath b c) f +
-          contour_integral (linepath c a) f = 0"
-proof -
-  have fabc: "continuous_on (closed_segment a b) f" "continuous_on (closed_segment b c) f" "continuous_on (closed_segment c a) f"
-    using f continuous_on_subset segments_subset_convex_hull by metis+
-  show ?thesis
-  proof (cases "k \<le> 1")
-    case True show ?thesis
-      by (simp add: contour_integral_split [OF fabc(1) k True c] contour_integral_reverse_linepath fabc)
-  next
-    case False then show ?thesis
-      using fabc c
-      apply (subst contour_integral_split [of a c f "1/k" b, symmetric])
-      apply (metis closed_segment_commute fabc(3))
-      apply (auto simp: k contour_integral_reverse_linepath)
-      done
-  qed
-qed
-
-lemma Cauchy_theorem_flat:
-  assumes f: "continuous_on (convex hull {a,b,c}) f"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "contour_integral (linepath a b) f +
-           contour_integral (linepath b c) f +
-           contour_integral (linepath c a) f = 0"
-proof (cases "0 \<le> k")
-  case True with assms show ?thesis
-    by (blast intro: Cauchy_theorem_flat_lemma)
-next
-  case False
-  have "continuous_on (closed_segment a b) f" "continuous_on (closed_segment b c) f" "continuous_on (closed_segment c a) f"
-    using f continuous_on_subset segments_subset_convex_hull by metis+
-  moreover have "contour_integral (linepath b a) f + contour_integral (linepath a c) f +
-        contour_integral (linepath c b) f = 0"
-    apply (rule Cauchy_theorem_flat_lemma [of b a c f "1-k"])
-    using False c
-    apply (auto simp: f insert_commute scaleR_conv_of_real algebra_simps)
-    done
-  ultimately show ?thesis
-    apply (auto simp: contour_integral_reverse_linepath)
-    using add_eq_0_iff by force
-qed
-
-lemma Cauchy_theorem_triangle_interior:
-  assumes contf: "continuous_on (convex hull {a,b,c}) f"
-      and holf:  "f holomorphic_on interior (convex hull {a,b,c})"
-     shows "(f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-proof -
-  have fabc: "continuous_on (closed_segment a b) f" "continuous_on (closed_segment b c) f" "continuous_on (closed_segment c a) f"
-    using contf continuous_on_subset segments_subset_convex_hull by metis+
-  have "bounded (f ` (convex hull {a,b,c}))"
-    by (simp add: compact_continuous_image compact_convex_hull compact_imp_bounded contf)
-  then obtain B where "0 < B" and Bnf: "\<And>x. x \<in> convex hull {a,b,c} \<Longrightarrow> norm (f x) \<le> B"
-     by (auto simp: dest!: bounded_pos [THEN iffD1])
-  have "bounded (convex hull {a,b,c})"
-    by (simp add: bounded_convex_hull)
-  then obtain C where C: "0 < C" and Cno: "\<And>y. y \<in> convex hull {a,b,c} \<Longrightarrow> norm y < C"
-    using bounded_pos_less by blast
-  then have diff_2C: "norm(x - y) \<le> 2*C"
-           if x: "x \<in> convex hull {a, b, c}" and y: "y \<in> convex hull {a, b, c}" for x y
-  proof -
-    have "cmod x \<le> C"
-      using x by (meson Cno not_le not_less_iff_gr_or_eq)
-    hence "cmod (x - y) \<le> C + C"
-      using y by (meson Cno add_mono_thms_linordered_field(4) less_eq_real_def norm_triangle_ineq4 order_trans)
-    thus "cmod (x - y) \<le> 2 * C"
-      by (metis mult_2)
-  qed
-  have contf': "continuous_on (convex hull {b,a,c}) f"
-    using contf by (simp add: insert_commute)
-  { fix y::complex
-    assume fy: "(f has_contour_integral y) (linepath a b +++ linepath b c +++ linepath c a)"
-       and ynz: "y \<noteq> 0"
-    have pi_eq_y: "contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = y"
-      by (rule has_chain_integral_chain_integral3 [OF fy])
-    have ?thesis
-    proof (cases "c=a \<or> a=b \<or> b=c")
-      case True then show ?thesis
-        using Cauchy_theorem_flat [OF contf, of 0]
-        using has_chain_integral_chain_integral3 [OF fy] ynz
-        by (force simp: fabc contour_integral_reverse_linepath)
-    next
-      case False
-      then have car3: "card {a, b, c} = Suc (DIM(complex))"
-        by auto
-      { assume "interior(convex hull {a,b,c}) = {}"
-        then have "collinear{a,b,c}"
-          using interior_convex_hull_eq_empty [OF car3]
-          by (simp add: collinear_3_eq_affine_dependent)
-        with False obtain d where "c \<noteq> a" "a \<noteq> b" "b \<noteq> c" "c - b = d *\<^sub>R (a - b)"
-          by (auto simp: collinear_3 collinear_lemma)
-        then have "False"
-          using False Cauchy_theorem_flat [OF contf'] pi_eq_y ynz
-          by (simp add: fabc add_eq_0_iff contour_integral_reverse_linepath)
-      }
-      then obtain d where d: "d \<in> interior (convex hull {a, b, c})"
-        by blast
-      { fix d1
-        assume d1_pos: "0 < d1"
-           and d1: "\<And>x x'. \<lbrakk>x\<in>convex hull {a, b, c}; x'\<in>convex hull {a, b, c}; cmod (x' - x) < d1\<rbrakk>
-                           \<Longrightarrow> cmod (f x' - f x) < cmod y / (24 * C)"
-        define e where "e = min 1 (min (d1/(4*C)) ((norm y / 24 / C) / B))"
-        define shrink where "shrink x = x - e *\<^sub>R (x - d)" for x
-        let ?pathint = "\<lambda>x y. contour_integral(linepath x y) f"
-        have e: "0 < e" "e \<le> 1" "e \<le> d1 / (4 * C)" "e \<le> cmod y / 24 / C / B"
-          using d1_pos \<open>C>0\<close> \<open>B>0\<close> ynz by (simp_all add: e_def)
-        then have eCB: "24 * e * C * B \<le> cmod y"
-          using \<open>C>0\<close> \<open>B>0\<close>  by (simp add: field_simps)
-        have e_le_d1: "e * (4 * C) \<le> d1"
-          using e \<open>C>0\<close> by (simp add: field_simps)
-        have "shrink a \<in> interior(convex hull {a,b,c})"
-             "shrink b \<in> interior(convex hull {a,b,c})"
-             "shrink c \<in> interior(convex hull {a,b,c})"
-          using d e by (auto simp: hull_inc mem_interior_convex_shrink shrink_def)
-        then have fhp0: "(f has_contour_integral 0)
-                (linepath (shrink a) (shrink b) +++ linepath (shrink b) (shrink c) +++ linepath (shrink c) (shrink a))"
-          by (simp add: Cauchy_theorem_triangle holomorphic_on_subset [OF holf] hull_minimal)
-        then have f_0_shrink: "?pathint (shrink a) (shrink b) + ?pathint (shrink b) (shrink c) + ?pathint (shrink c) (shrink a) = 0"
-          by (simp add: has_chain_integral_chain_integral3)
-        have fpi_abc: "f contour_integrable_on linepath (shrink a) (shrink b)"
-                      "f contour_integrable_on linepath (shrink b) (shrink c)"
-                      "f contour_integrable_on linepath (shrink c) (shrink a)"
-          using fhp0  by (auto simp: valid_path_join dest: has_contour_integral_integrable)
-        have cmod_shr: "\<And>x y. cmod (shrink y - shrink x - (y - x)) = e * cmod (x - y)"
-          using e by (simp add: shrink_def real_vector.scale_right_diff_distrib [symmetric])
-        have sh_eq: "\<And>a b d::complex. (b - e *\<^sub>R (b - d)) - (a - e *\<^sub>R (a - d)) - (b - a) = e *\<^sub>R (a - b)"
-          by (simp add: algebra_simps)
-        have "cmod y / (24 * C) \<le> cmod y / cmod (b - a) / 12"
-          using False \<open>C>0\<close> diff_2C [of b a] ynz
-          by (auto simp: field_split_simps hull_inc)
-        have less_C: "\<lbrakk>u \<in> convex hull {a, b, c}; 0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> x * cmod u < C" for x u
-          apply (cases "x=0", simp add: \<open>0<C\<close>)
-          using Cno [of u] mult_left_le_one_le [of "cmod u" x] le_less_trans norm_ge_zero by blast
-        { fix u v
-          assume uv: "u \<in> convex hull {a, b, c}" "v \<in> convex hull {a, b, c}" "u\<noteq>v"
-             and fpi_uv: "f contour_integrable_on linepath (shrink u) (shrink v)"
-          have shr_uv: "shrink u \<in> interior(convex hull {a,b,c})"
-                       "shrink v \<in> interior(convex hull {a,b,c})"
-            using d e uv
-            by (auto simp: hull_inc mem_interior_convex_shrink shrink_def)
-          have cmod_fuv: "\<And>x. 0\<le>x \<Longrightarrow> x\<le>1 \<Longrightarrow> cmod (f (linepath (shrink u) (shrink v) x)) \<le> B"
-            using shr_uv by (blast intro: Bnf linepath_in_convex_hull interior_subset [THEN subsetD])
-          have By_uv: "B * (12 * (e * cmod (u - v))) \<le> cmod y"
-            apply (rule order_trans [OF _ eCB])
-            using e \<open>B>0\<close> diff_2C [of u v] uv
-            by (auto simp: field_simps)
-          { fix x::real   assume x: "0\<le>x" "x\<le>1"
-            have cmod_less_4C: "cmod ((1 - x) *\<^sub>R u - (1 - x) *\<^sub>R d) + cmod (x *\<^sub>R v - x *\<^sub>R d) < (C+C) + (C+C)"
-              apply (rule add_strict_mono; rule norm_triangle_half_l [of _ 0])
-              using uv x d interior_subset
-              apply (auto simp: hull_inc intro!: less_C)
-              done
-            have ll: "linepath (shrink u) (shrink v) x - linepath u v x = -e * ((1 - x) *\<^sub>R (u - d) + x *\<^sub>R (v - d))"
-              by (simp add: linepath_def shrink_def algebra_simps scaleR_conv_of_real)
-            have cmod_less_dt: "cmod (linepath (shrink u) (shrink v) x - linepath u v x) < d1"
-              apply (simp only: ll norm_mult scaleR_diff_right)
-              using \<open>e>0\<close> cmod_less_4C apply (force intro: norm_triangle_lt less_le_trans [OF _ e_le_d1])
-              done
-            have "cmod (f (linepath (shrink u) (shrink v) x) - f (linepath u v x)) < cmod y / (24 * C)"
-              using x uv shr_uv cmod_less_dt
-              by (auto simp: hull_inc intro: d1 interior_subset [THEN subsetD] linepath_in_convex_hull)
-            also have "\<dots> \<le> cmod y / cmod (v - u) / 12"
-              using False uv \<open>C>0\<close> diff_2C [of v u] ynz
-              by (auto simp: field_split_simps hull_inc)
-            finally have "cmod (f (linepath (shrink u) (shrink v) x) - f (linepath u v x)) \<le> cmod y / cmod (v - u) / 12"
-              by simp
-            then have cmod_12_le: "cmod (v - u) * cmod (f (linepath (shrink u) (shrink v) x) - f (linepath u v x)) * 12 \<le> cmod y"
-              using uv False by (auto simp: field_simps)
-            have "cmod (f (linepath (shrink u) (shrink v) x)) * cmod (shrink v - shrink u - (v - u)) +
-                          cmod (v - u) * cmod (f (linepath (shrink u) (shrink v) x) - f (linepath u v x))
-                          \<le> B * (cmod y / 24 / C / B * 2 * C) + 2 * C * (cmod y / 24 / C)"
-              apply (rule add_mono [OF mult_mono])
-              using By_uv e \<open>0 < B\<close> \<open>0 < C\<close> x apply (simp_all add: cmod_fuv cmod_shr cmod_12_le)
-              apply (simp add: field_simps)
-              done
-            also have "\<dots> \<le> cmod y / 6"
-              by simp
-            finally have "cmod (f (linepath (shrink u) (shrink v) x)) * cmod (shrink v - shrink u - (v - u)) +
-                          cmod (v - u) * cmod (f (linepath (shrink u) (shrink v) x) - f (linepath u v x))
-                          \<le> cmod y / 6" .
-          } note cmod_diff_le = this
-          have f_uv: "continuous_on (closed_segment u v) f"
-            by (blast intro: uv continuous_on_subset [OF contf closed_segment_subset_convex_hull])
-          have **: "\<And>f' x' f x::complex. f'*x' - f*x = f'*(x' - x) + x*(f' - f)"
-            by (simp add: algebra_simps)
-          have "norm (?pathint (shrink u) (shrink v) - ?pathint u v)
-                \<le> (B*(norm y /24/C/B)*2*C + (2*C)*(norm y/24/C)) * content (cbox 0 (1::real))"
-            apply (rule has_integral_bound
-                    [of _ "\<lambda>x. f(linepath (shrink u) (shrink v) x) * (shrink v - shrink u) - f(linepath u v x)*(v - u)"
-                        _ 0 1])
-            using ynz \<open>0 < B\<close> \<open>0 < C\<close>
-              apply (simp_all del: le_divide_eq_numeral1)
-            apply (simp add: has_integral_diff has_contour_integral_linepath [symmetric] has_contour_integral_integral
-                fpi_uv f_uv contour_integrable_continuous_linepath)
-            apply (auto simp: ** norm_triangle_le norm_mult cmod_diff_le simp del: le_divide_eq_numeral1)
-            done
-          also have "\<dots> \<le> norm y / 6"
-            by simp
-          finally have "norm (?pathint (shrink u) (shrink v) - ?pathint u v) \<le> norm y / 6" .
-          } note * = this
-          have "norm (?pathint (shrink a) (shrink b) - ?pathint a b) \<le> norm y / 6"
-            using False fpi_abc by (rule_tac *) (auto simp: hull_inc)
-          moreover
-          have "norm (?pathint (shrink b) (shrink c) - ?pathint b c) \<le> norm y / 6"
-            using False fpi_abc by (rule_tac *) (auto simp: hull_inc)
-          moreover
-          have "norm (?pathint (shrink c) (shrink a) - ?pathint c a) \<le> norm y / 6"
-            using False fpi_abc by (rule_tac *) (auto simp: hull_inc)
-          ultimately
-          have "norm((?pathint (shrink a) (shrink b) - ?pathint a b) +
-                     (?pathint (shrink b) (shrink c) - ?pathint b c) + (?pathint (shrink c) (shrink a) - ?pathint c a))
-                \<le> norm y / 6 + norm y / 6 + norm y / 6"
-            by (metis norm_triangle_le add_mono)
-          also have "\<dots> = norm y / 2"
-            by simp
-          finally have "norm((?pathint (shrink a) (shrink b) + ?pathint (shrink b) (shrink c) + ?pathint (shrink c) (shrink a)) -
-                          (?pathint a b + ?pathint b c + ?pathint c a))
-                \<le> norm y / 2"
-            by (simp add: algebra_simps)
-          then
-          have "norm(?pathint a b + ?pathint b c + ?pathint c a) \<le> norm y / 2"
-            by (simp add: f_0_shrink) (metis (mono_tags) add.commute minus_add_distrib norm_minus_cancel uminus_add_conv_diff)
-          then have "False"
-            using pi_eq_y ynz by auto
-        }
-        moreover have "uniformly_continuous_on (convex hull {a,b,c}) f"
-          by (simp add: contf compact_convex_hull compact_uniformly_continuous)
-        ultimately have "False"
-          unfolding uniformly_continuous_on_def
-          by (force simp: ynz \<open>0 < C\<close> dist_norm)
-        then show ?thesis ..
-      qed
-  }
-  moreover have "f contour_integrable_on (linepath a b +++ linepath b c +++ linepath c a)"
-    using fabc contour_integrable_continuous_linepath by auto
-  ultimately show ?thesis
-    using has_contour_integral_integral by fastforce
-qed
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Version allowing finite number of exceptional points\<close>
-
-proposition\<^marker>\<open>tag unimportant\<close> Cauchy_theorem_triangle_cofinite:
-  assumes "continuous_on (convex hull {a,b,c}) f"
-      and "finite S"
-      and "(\<And>x. x \<in> interior(convex hull {a,b,c}) - S \<Longrightarrow> f field_differentiable (at x))"
-     shows "(f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-using assms
-proof (induction "card S" arbitrary: a b c S rule: less_induct)
-  case (less S a b c)
-  show ?case
-  proof (cases "S={}")
-    case True with less show ?thesis
-      by (fastforce simp: holomorphic_on_def field_differentiable_at_within Cauchy_theorem_triangle_interior)
-  next
-    case False
-    then obtain d S' where d: "S = insert d S'" "d \<notin> S'"
-      by (meson Set.set_insert all_not_in_conv)
-    then show ?thesis
-    proof (cases "d \<in> convex hull {a,b,c}")
-      case False
-      show "(f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-      proof (rule less.hyps)
-        show "\<And>x. x \<in> interior (convex hull {a, b, c}) - S' \<Longrightarrow> f field_differentiable at x"
-        using False d interior_subset by (auto intro!: less.prems)
-    qed (use d less.prems in auto)
-    next
-      case True
-      have *: "convex hull {a, b, d} \<subseteq> convex hull {a, b, c}"
-        by (meson True hull_subset insert_subset convex_hull_subset)
-      have abd: "(f has_contour_integral 0) (linepath a b +++ linepath b d +++ linepath d a)"
-      proof (rule less.hyps)
-        show "\<And>x. x \<in> interior (convex hull {a, b, d}) - S' \<Longrightarrow> f field_differentiable at x"
-          using d not_in_interior_convex_hull_3
-          by (clarsimp intro!: less.prems) (metis * insert_absorb insert_subset interior_mono)
-      qed (use d continuous_on_subset [OF  _ *] less.prems in auto)
-      have *: "convex hull {b, c, d} \<subseteq> convex hull {a, b, c}"
-        by (meson True hull_subset insert_subset convex_hull_subset)
-      have bcd: "(f has_contour_integral 0) (linepath b c +++ linepath c d +++ linepath d b)"
-      proof (rule less.hyps)
-        show "\<And>x. x \<in> interior (convex hull {b, c, d}) - S' \<Longrightarrow> f field_differentiable at x"
-          using d not_in_interior_convex_hull_3
-          by (clarsimp intro!: less.prems) (metis * insert_absorb insert_subset interior_mono)
-      qed (use d continuous_on_subset [OF  _ *] less.prems in auto)
-      have *: "convex hull {c, a, d} \<subseteq> convex hull {a, b, c}"
-        by (meson True hull_subset insert_subset convex_hull_subset)
-      have cad: "(f has_contour_integral 0) (linepath c a +++ linepath a d +++ linepath d c)"
-      proof (rule less.hyps)
-        show "\<And>x. x \<in> interior (convex hull {c, a, d}) - S' \<Longrightarrow> f field_differentiable at x"
-          using d not_in_interior_convex_hull_3
-          by (clarsimp intro!: less.prems) (metis * insert_absorb insert_subset interior_mono)
-      qed (use d continuous_on_subset [OF  _ *] less.prems in auto)
-      have "f contour_integrable_on linepath a b"
-        using less.prems abd contour_integrable_joinD1 contour_integrable_on_def by blast
-      moreover have "f contour_integrable_on linepath b c"
-        using less.prems bcd contour_integrable_joinD1 contour_integrable_on_def by blast
-      moreover have "f contour_integrable_on linepath c a"
-        using less.prems cad contour_integrable_joinD1 contour_integrable_on_def by blast
-      ultimately have fpi: "f contour_integrable_on (linepath a b +++ linepath b c +++ linepath c a)"
-        by auto
-      { fix y::complex
-        assume fy: "(f has_contour_integral y) (linepath a b +++ linepath b c +++ linepath c a)"
-           and ynz: "y \<noteq> 0"
-        have cont_ad: "continuous_on (closed_segment a d) f"
-          by (meson "*" continuous_on_subset less.prems(1) segments_subset_convex_hull(3))
-        have cont_bd: "continuous_on (closed_segment b d) f"
-          by (meson True closed_segment_subset_convex_hull continuous_on_subset hull_subset insert_subset less.prems(1))
-        have cont_cd: "continuous_on (closed_segment c d) f"
-          by (meson "*" continuous_on_subset less.prems(1) segments_subset_convex_hull(2))
-        have "contour_integral  (linepath a b) f = - (contour_integral (linepath b d) f + (contour_integral (linepath d a) f))"
-             "contour_integral  (linepath b c) f = - (contour_integral (linepath c d) f + (contour_integral (linepath d b) f))"
-             "contour_integral  (linepath c a) f = - (contour_integral (linepath a d) f + contour_integral (linepath d c) f)"
-            using has_chain_integral_chain_integral3 [OF abd]
-                  has_chain_integral_chain_integral3 [OF bcd]
-                  has_chain_integral_chain_integral3 [OF cad]
-            by (simp_all add: algebra_simps add_eq_0_iff)
-        then have ?thesis
-          using cont_ad cont_bd cont_cd fy has_chain_integral_chain_integral3 contour_integral_reverse_linepath by fastforce
-      }
-      then show ?thesis
-        using fpi contour_integrable_on_def by blast
-    qed
-  qed
-qed
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Cauchy's theorem for an open starlike set\<close>
-
-lemma starlike_convex_subset:
-  assumes S: "a \<in> S" "closed_segment b c \<subseteq> S" and subs: "\<And>x. x \<in> S \<Longrightarrow> closed_segment a x \<subseteq> S"
-    shows "convex hull {a,b,c} \<subseteq> S"
-      using S
-      apply (clarsimp simp add: convex_hull_insert [of "{b,c}" a] segment_convex_hull)
-      apply (meson subs convexD convex_closed_segment ends_in_segment(1) ends_in_segment(2) subsetCE)
-      done
-
-lemma triangle_contour_integrals_starlike_primitive:
-  assumes contf: "continuous_on S f"
-      and S: "a \<in> S" "open S"
-      and x: "x \<in> S"
-      and subs: "\<And>y. y \<in> S \<Longrightarrow> closed_segment a y \<subseteq> S"
-      and zer: "\<And>b c. closed_segment b c \<subseteq> S
-                   \<Longrightarrow> contour_integral (linepath a b) f + contour_integral (linepath b c) f +
-                       contour_integral (linepath c a) f = 0"
-    shows "((\<lambda>x. contour_integral(linepath a x) f) has_field_derivative f x) (at x)"
-proof -
-  let ?pathint = "\<lambda>x y. contour_integral(linepath x y) f"
-  { fix e y
-    assume e: "0 < e" and bxe: "ball x e \<subseteq> S" and close: "cmod (y - x) < e"
-    have y: "y \<in> S"
-      using bxe close  by (force simp: dist_norm norm_minus_commute)
-    have cont_ayf: "continuous_on (closed_segment a y) f"
-      using contf continuous_on_subset subs y by blast
-    have xys: "closed_segment x y \<subseteq> S"
-      apply (rule order_trans [OF _ bxe])
-      using close
-      by (auto simp: dist_norm ball_def norm_minus_commute dest: segment_bound)
-    have "?pathint a y - ?pathint a x = ?pathint x y"
-      using zer [OF xys]  contour_integral_reverse_linepath [OF cont_ayf]  add_eq_0_iff by force
-  } note [simp] = this
-  { fix e::real
-    assume e: "0 < e"
-    have cont_atx: "continuous (at x) f"
-      using x S contf continuous_on_eq_continuous_at by blast
-    then obtain d1 where d1: "d1>0" and d1_less: "\<And>y. cmod (y - x) < d1 \<Longrightarrow> cmod (f y - f x) < e/2"
-      unfolding continuous_at Lim_at dist_norm  using e
-      by (drule_tac x="e/2" in spec) force
-    obtain d2 where d2: "d2>0" "ball x d2 \<subseteq> S" using  \<open>open S\<close> x
-      by (auto simp: open_contains_ball)
-    have dpos: "min d1 d2 > 0" using d1 d2 by simp
-    { fix y
-      assume yx: "y \<noteq> x" and close: "cmod (y - x) < min d1 d2"
-      have y: "y \<in> S"
-        using d2 close  by (force simp: dist_norm norm_minus_commute)
-      have "closed_segment x y \<subseteq> S"
-        using close d2  by (auto simp: dist_norm norm_minus_commute dest!: segment_bound(1))
-      then have fxy: "f contour_integrable_on linepath x y"
-        by (metis contour_integrable_continuous_linepath continuous_on_subset [OF contf])
-      then obtain i where i: "(f has_contour_integral i) (linepath x y)"
-        by (auto simp: contour_integrable_on_def)
-      then have "((\<lambda>w. f w - f x) has_contour_integral (i - f x * (y - x))) (linepath x y)"
-        by (rule has_contour_integral_diff [OF _ has_contour_integral_const_linepath])
-      then have "cmod (i - f x * (y - x)) \<le> e / 2 * cmod (y - x)"
-      proof (rule has_contour_integral_bound_linepath)
-        show "\<And>u. u \<in> closed_segment x y \<Longrightarrow> cmod (f u - f x) \<le> e / 2"
-          by (meson close d1_less le_less_trans less_imp_le min.strict_boundedE segment_bound1)
-      qed (use e in simp)
-      also have "\<dots> < e * cmod (y - x)"
-        by (simp add: e yx)
-      finally have "cmod (?pathint x y - f x * (y-x)) / cmod (y-x) < e"
-        using i yx  by (simp add: contour_integral_unique divide_less_eq)
-    }
-    then have "\<exists>d>0. \<forall>y. y \<noteq> x \<and> cmod (y-x) < d \<longrightarrow> cmod (?pathint x y - f x * (y-x)) / cmod (y-x) < e"
-      using dpos by blast
-  }
-  then have *: "(\<lambda>y. (?pathint x y - f x * (y - x)) /\<^sub>R cmod (y - x)) \<midarrow>x\<rightarrow> 0"
-    by (simp add: Lim_at dist_norm inverse_eq_divide)
-  show ?thesis
-    apply (simp add: has_field_derivative_def has_derivative_at2 bounded_linear_mult_right)
-    apply (rule Lim_transform [OF * tendsto_eventually])
-    using \<open>open S\<close> x apply (force simp: dist_norm open_contains_ball inverse_eq_divide [symmetric] eventually_at)
-    done
-qed
-
-(** Existence of a primitive.*)
-lemma holomorphic_starlike_primitive:
-  fixes f :: "complex \<Rightarrow> complex"
-  assumes contf: "continuous_on S f"
-      and S: "starlike S" and os: "open S"
-      and k: "finite k"
-      and fcd: "\<And>x. x \<in> S - k \<Longrightarrow> f field_differentiable at x"
-    shows "\<exists>g. \<forall>x \<in> S. (g has_field_derivative f x) (at x)"
-proof -
-  obtain a where a: "a\<in>S" and a_cs: "\<And>x. x\<in>S \<Longrightarrow> closed_segment a x \<subseteq> S"
-    using S by (auto simp: starlike_def)
-  { fix x b c
-    assume "x \<in> S" "closed_segment b c \<subseteq> S"
-    then have abcs: "convex hull {a, b, c} \<subseteq> S"
-      by (simp add: a a_cs starlike_convex_subset)
-    then have "continuous_on (convex hull {a, b, c}) f"
-      by (simp add: continuous_on_subset [OF contf])
-    then have "(f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-      using abcs interior_subset by (force intro: fcd Cauchy_theorem_triangle_cofinite [OF _ k])
-  } note 0 = this
-  show ?thesis
-    apply (intro exI ballI)
-    apply (rule triangle_contour_integrals_starlike_primitive [OF contf a os], assumption)
-    apply (metis a_cs)
-    apply (metis has_chain_integral_chain_integral3 0)
-    done
-qed
-
-lemma Cauchy_theorem_starlike:
- "\<lbrakk>open S; starlike S; finite k; continuous_on S f;
-   \<And>x. x \<in> S - k \<Longrightarrow> f field_differentiable at x;
-   valid_path g; path_image g \<subseteq> S; pathfinish g = pathstart g\<rbrakk>
-   \<Longrightarrow> (f has_contour_integral 0)  g"
-  by (metis holomorphic_starlike_primitive Cauchy_theorem_primitive at_within_open)
-
-lemma Cauchy_theorem_starlike_simple:
-  "\<lbrakk>open S; starlike S; f holomorphic_on S; valid_path g; path_image g \<subseteq> S; pathfinish g = pathstart g\<rbrakk>
-   \<Longrightarrow> (f has_contour_integral 0) g"
-apply (rule Cauchy_theorem_starlike [OF _ _ finite.emptyI])
-apply (simp_all add: holomorphic_on_imp_continuous_on)
-apply (metis at_within_open holomorphic_on_def)
-done
-
-subsection\<open>Cauchy's theorem for a convex set\<close>
-
-text\<open>For a convex set we can avoid assuming openness and boundary analyticity\<close>
-
-lemma triangle_contour_integrals_convex_primitive:
-  assumes contf: "continuous_on S f"
-      and S: "a \<in> S" "convex S"
-      and x: "x \<in> S"
-      and zer: "\<And>b c. \<lbrakk>b \<in> S; c \<in> S\<rbrakk>
-                   \<Longrightarrow> contour_integral (linepath a b) f + contour_integral (linepath b c) f +
-                       contour_integral (linepath c a) f = 0"
-    shows "((\<lambda>x. contour_integral(linepath a x) f) has_field_derivative f x) (at x within S)"
-proof -
-  let ?pathint = "\<lambda>x y. contour_integral(linepath x y) f"
-  { fix y
-    assume y: "y \<in> S"
-    have cont_ayf: "continuous_on (closed_segment a y) f"
-      using S y  by (meson contf continuous_on_subset convex_contains_segment)
-    have xys: "closed_segment x y \<subseteq> S"  (*?*)
-      using convex_contains_segment S x y by auto
-    have "?pathint a y - ?pathint a x = ?pathint x y"
-      using zer [OF x y]  contour_integral_reverse_linepath [OF cont_ayf]  add_eq_0_iff by force
-  } note [simp] = this
-  { fix e::real
-    assume e: "0 < e"
-    have cont_atx: "continuous (at x within S) f"
-      using x S contf  by (simp add: continuous_on_eq_continuous_within)
-    then obtain d1 where d1: "d1>0" and d1_less: "\<And>y. \<lbrakk>y \<in> S; cmod (y - x) < d1\<rbrakk> \<Longrightarrow> cmod (f y - f x) < e/2"
-      unfolding continuous_within Lim_within dist_norm using e
-      by (drule_tac x="e/2" in spec) force
-    { fix y
-      assume yx: "y \<noteq> x" and close: "cmod (y - x) < d1" and y: "y \<in> S"
-      have fxy: "f contour_integrable_on linepath x y"
-        using convex_contains_segment S x y
-        by (blast intro!: contour_integrable_continuous_linepath continuous_on_subset [OF contf])
-      then obtain i where i: "(f has_contour_integral i) (linepath x y)"
-        by (auto simp: contour_integrable_on_def)
-      then have "((\<lambda>w. f w - f x) has_contour_integral (i - f x * (y - x))) (linepath x y)"
-        by (rule has_contour_integral_diff [OF _ has_contour_integral_const_linepath])
-      then have "cmod (i - f x * (y - x)) \<le> e / 2 * cmod (y - x)"
-      proof (rule has_contour_integral_bound_linepath)
-        show "\<And>u. u \<in> closed_segment x y \<Longrightarrow> cmod (f u - f x) \<le> e / 2"
-          by (meson assms(3) close convex_contains_segment d1_less le_less_trans less_imp_le segment_bound1 subset_iff x y)
-      qed (use e in simp)
-      also have "\<dots> < e * cmod (y - x)"
-        by (simp add: e yx)
-      finally have "cmod (?pathint x y - f x * (y-x)) / cmod (y-x) < e"
-        using i yx  by (simp add: contour_integral_unique divide_less_eq)
-    }
-    then have "\<exists>d>0. \<forall>y\<in>S. y \<noteq> x \<and> cmod (y-x) < d \<longrightarrow> cmod (?pathint x y - f x * (y-x)) / cmod (y-x) < e"
-      using d1 by blast
-  }
-  then have *: "((\<lambda>y. (contour_integral (linepath x y) f - f x * (y - x)) /\<^sub>R cmod (y - x)) \<longlongrightarrow> 0) (at x within S)"
-    by (simp add: Lim_within dist_norm inverse_eq_divide)
-  show ?thesis
-    apply (simp add: has_field_derivative_def has_derivative_within bounded_linear_mult_right)
-    apply (rule Lim_transform [OF * tendsto_eventually])
-    using linordered_field_no_ub
-    apply (force simp: inverse_eq_divide [symmetric] eventually_at)
-    done
-qed
-
-lemma contour_integral_convex_primitive:
-  assumes "convex S" "continuous_on S f"
-          "\<And>a b c. \<lbrakk>a \<in> S; b \<in> S; c \<in> S\<rbrakk> \<Longrightarrow> (f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath c a)"
-  obtains g where "\<And>x. x \<in> S \<Longrightarrow> (g has_field_derivative f x) (at x within S)"
-proof (cases "S={}")
-  case False
-  with assms that show ?thesis
-    by (blast intro: triangle_contour_integrals_convex_primitive has_chain_integral_chain_integral3)
-qed auto
-
-lemma holomorphic_convex_primitive:
-  fixes f :: "complex \<Rightarrow> complex"
-  assumes "convex S" "finite K" and contf: "continuous_on S f"
-    and fd: "\<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x"
-  obtains g where "\<And>x. x \<in> S \<Longrightarrow> (g has_field_derivative f x) (at x within S)"
-proof (rule contour_integral_convex_primitive [OF \<open>convex S\<close> contf Cauchy_theorem_triangle_cofinite])
-  have *: "convex hull {a, b, c} \<subseteq> S" if "a \<in> S" "b \<in> S" "c \<in> S" for a b c
-    by (simp add: \<open>convex S\<close> hull_minimal that)
-  show "continuous_on (convex hull {a, b, c}) f" if "a \<in> S" "b \<in> S" "c \<in> S" for a b c
-    by (meson "*" contf continuous_on_subset that)
-  show "f field_differentiable at x" if "a \<in> S" "b \<in> S" "c \<in> S" "x \<in> interior (convex hull {a, b, c}) - K" for a b c x
-    by (metis "*" DiffD1 DiffD2 DiffI fd interior_mono subsetCE that)
-qed (use assms in \<open>force+\<close>)
-
-lemma holomorphic_convex_primitive':
-  fixes f :: "complex \<Rightarrow> complex"
-  assumes "convex S" and "open S" and "f holomorphic_on S"
-  obtains g where "\<And>x. x \<in> S \<Longrightarrow> (g has_field_derivative f x) (at x within S)"
-proof (rule holomorphic_convex_primitive)
-  fix x assume "x \<in> interior S - {}"
-  with assms show "f field_differentiable at x"
-    by (auto intro!: holomorphic_on_imp_differentiable_at simp: interior_open)
-qed (use assms in \<open>auto intro: holomorphic_on_imp_continuous_on\<close>)
-
-corollary\<^marker>\<open>tag unimportant\<close> Cauchy_theorem_convex:
-    "\<lbrakk>continuous_on S f; convex S; finite K;
-      \<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x;
-      valid_path g; path_image g \<subseteq> S; pathfinish g = pathstart g\<rbrakk>
-     \<Longrightarrow> (f has_contour_integral 0) g"
-  by (metis holomorphic_convex_primitive Cauchy_theorem_primitive)
-
-corollary Cauchy_theorem_convex_simple:
-    "\<lbrakk>f holomorphic_on S; convex S;
-     valid_path g; path_image g \<subseteq> S;
-     pathfinish g = pathstart g\<rbrakk> \<Longrightarrow> (f has_contour_integral 0) g"
-  apply (rule Cauchy_theorem_convex [where K = "{}"])
-  apply (simp_all add: holomorphic_on_imp_continuous_on)
-  using at_within_interior holomorphic_on_def interior_subset by fastforce
-
-text\<open>In particular for a disc\<close>
-corollary\<^marker>\<open>tag unimportant\<close> Cauchy_theorem_disc:
-    "\<lbrakk>finite K; continuous_on (cball a e) f;
-      \<And>x. x \<in> ball a e - K \<Longrightarrow> f field_differentiable at x;
-     valid_path g; path_image g \<subseteq> cball a e;
-     pathfinish g = pathstart g\<rbrakk> \<Longrightarrow> (f has_contour_integral 0) g"
-  by (auto intro: Cauchy_theorem_convex)
-
-corollary\<^marker>\<open>tag unimportant\<close> Cauchy_theorem_disc_simple:
-    "\<lbrakk>f holomorphic_on (ball a e); valid_path g; path_image g \<subseteq> ball a e;
-     pathfinish g = pathstart g\<rbrakk> \<Longrightarrow> (f has_contour_integral 0) g"
-by (simp add: Cauchy_theorem_convex_simple)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Generalize integrability to local primitives\<close>
-
-lemma contour_integral_local_primitive_lemma:
-  fixes f :: "complex\<Rightarrow>complex"
-  shows
-    "\<lbrakk>g piecewise_differentiable_on {a..b};
-      \<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s);
-      \<And>x. x \<in> {a..b} \<Longrightarrow> g x \<in> s\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. f' (g x) * vector_derivative g (at x within {a..b}))
-            integrable_on {a..b}"
-  apply (cases "cbox a b = {}", force)
-  apply (simp add: integrable_on_def)
-  apply (rule exI)
-  apply (rule contour_integral_primitive_lemma, assumption+)
-  using atLeastAtMost_iff by blast
-
-lemma contour_integral_local_primitive_any:
-  fixes f :: "complex \<Rightarrow> complex"
-  assumes gpd: "g piecewise_differentiable_on {a..b}"
-      and dh: "\<And>x. x \<in> s
-               \<Longrightarrow> \<exists>d h. 0 < d \<and>
-                         (\<forall>y. norm(y - x) < d \<longrightarrow> (h has_field_derivative f y) (at y within s))"
-      and gs: "\<And>x. x \<in> {a..b} \<Longrightarrow> g x \<in> s"
-  shows "(\<lambda>x. f(g x) * vector_derivative g (at x)) integrable_on {a..b}"
-proof -
-  { fix x
-    assume x: "a \<le> x" "x \<le> b"
-    obtain d h where d: "0 < d"
-               and h: "(\<And>y. norm(y - g x) < d \<Longrightarrow> (h has_field_derivative f y) (at y within s))"
-      using x gs dh by (metis atLeastAtMost_iff)
-    have "continuous_on {a..b} g" using gpd piecewise_differentiable_on_def by blast
-    then obtain e where e: "e>0" and lessd: "\<And>x'. x' \<in> {a..b} \<Longrightarrow> \<bar>x' - x\<bar> < e \<Longrightarrow> cmod (g x' - g x) < d"
-      using x d
-      apply (auto simp: dist_norm continuous_on_iff)
-      apply (drule_tac x=x in bspec)
-      using x apply simp
-      apply (drule_tac x=d in spec, auto)
-      done
-    have "\<exists>d>0. \<forall>u v. u \<le> x \<and> x \<le> v \<and> {u..v} \<subseteq> ball x d \<and> (u \<le> v \<longrightarrow> a \<le> u \<and> v \<le> b) \<longrightarrow>
-                          (\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on {u..v}"
-      apply (rule_tac x=e in exI)
-      using e
-      apply (simp add: integrable_on_localized_vector_derivative [symmetric], clarify)
-      apply (rule_tac f = h and s = "g ` {u..v}" in contour_integral_local_primitive_lemma)
-        apply (meson atLeastatMost_subset_iff gpd piecewise_differentiable_on_subset)
-       apply (force simp: ball_def dist_norm intro: lessd gs DERIV_subset [OF h], force)
-      done
-  } then
-  show ?thesis
-    by (force simp: intro!: integrable_on_little_subintervals [of a b, simplified])
-qed
-
-lemma contour_integral_local_primitive:
-  fixes f :: "complex \<Rightarrow> complex"
-  assumes g: "valid_path g" "path_image g \<subseteq> s"
-      and dh: "\<And>x. x \<in> s
-               \<Longrightarrow> \<exists>d h. 0 < d \<and>
-                         (\<forall>y. norm(y - x) < d \<longrightarrow> (h has_field_derivative f y) (at y within s))"
-  shows "f contour_integrable_on g"
-  using g
-  apply (simp add: valid_path_def path_image_def contour_integrable_on_def has_contour_integral_def
-            has_integral_localized_vector_derivative integrable_on_def [symmetric])
-  using contour_integral_local_primitive_any [OF _ dh]
-  by (meson image_subset_iff piecewise_C1_imp_differentiable)
-
-
-text\<open>In particular if a function is holomorphic\<close>
-
-lemma contour_integrable_holomorphic:
-  assumes contf: "continuous_on s f"
-      and os: "open s"
-      and k: "finite k"
-      and g: "valid_path g" "path_image g \<subseteq> s"
-      and fcd: "\<And>x. x \<in> s - k \<Longrightarrow> f field_differentiable at x"
-    shows "f contour_integrable_on g"
-proof -
-  { fix z
-    assume z: "z \<in> s"
-    obtain d where "d>0" and d: "ball z d \<subseteq> s" using  \<open>open s\<close> z
-      by (auto simp: open_contains_ball)
-    then have contfb: "continuous_on (ball z d) f"
-      using contf continuous_on_subset by blast
-    obtain h where "\<forall>y\<in>ball z d. (h has_field_derivative f y) (at y within ball z d)"
-      by (metis holomorphic_convex_primitive [OF convex_ball k contfb fcd] d interior_subset Diff_iff subsetD)
-    then have "\<forall>y\<in>ball z d. (h has_field_derivative f y) (at y within s)"
-      by (metis open_ball at_within_open d os subsetCE)
-    then have "\<exists>h. (\<forall>y. cmod (y - z) < d \<longrightarrow> (h has_field_derivative f y) (at y within s))"
-      by (force simp: dist_norm norm_minus_commute)
-    then have "\<exists>d h. 0 < d \<and> (\<forall>y. cmod (y - z) < d \<longrightarrow> (h has_field_derivative f y) (at y within s))"
-      using \<open>0 < d\<close> by blast
-  }
-  then show ?thesis
-    by (rule contour_integral_local_primitive [OF g])
-qed
-
-lemma contour_integrable_holomorphic_simple:
-  assumes fh: "f holomorphic_on S"
-      and os: "open S"
-      and g: "valid_path g" "path_image g \<subseteq> S"
-    shows "f contour_integrable_on g"
-  apply (rule contour_integrable_holomorphic [OF _ os Finite_Set.finite.emptyI g])
-  apply (simp add: fh holomorphic_on_imp_continuous_on)
-  using fh  by (simp add: field_differentiable_def holomorphic_on_open os)
-
-lemma continuous_on_inversediff:
-  fixes z:: "'a::real_normed_field" shows "z \<notin> S \<Longrightarrow> continuous_on S (\<lambda>w. 1 / (w - z))"
-  by (rule continuous_intros | force)+
-
-lemma contour_integrable_inversediff:
-    "\<lbrakk>valid_path g; z \<notin> path_image g\<rbrakk> \<Longrightarrow> (\<lambda>w. 1 / (w-z)) contour_integrable_on g"
-apply (rule contour_integrable_holomorphic_simple [of _ "UNIV-{z}"])
-apply (auto simp: holomorphic_on_open open_delete intro!: derivative_eq_intros)
-done
-
-text\<open>Key fact that path integral is the same for a "nearby" path. This is the
- main lemma for the homotopy form of Cauchy's theorem and is also useful
- if we want "without loss of generality" to assume some nice properties of a
- path (e.g. smoothness). It can also be used to define the integrals of
- analytic functions over arbitrary continuous paths. This is just done for
- winding numbers now.
-\<close>
-
-text\<open>A technical definition to avoid duplication of similar proofs,
-     for paths joined at the ends versus looping paths\<close>
-definition linked_paths :: "bool \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"
-  where "linked_paths atends g h ==
-        (if atends then pathstart h = pathstart g \<and> pathfinish h = pathfinish g
-                   else pathfinish g = pathstart g \<and> pathfinish h = pathstart h)"
-
-text\<open>This formulation covers two cases: \<^term>\<open>g\<close> and \<^term>\<open>h\<close> share their
-      start and end points; \<^term>\<open>g\<close> and \<^term>\<open>h\<close> both loop upon themselves.\<close>
-lemma contour_integral_nearby:
-  assumes os: "open S" and p: "path p" "path_image p \<subseteq> S"
-  shows "\<exists>d. 0 < d \<and>
-            (\<forall>g h. valid_path g \<and> valid_path h \<and>
-                  (\<forall>t \<in> {0..1}. norm(g t - p t) < d \<and> norm(h t - p t) < d) \<and>
-                  linked_paths atends g h
-                  \<longrightarrow> path_image g \<subseteq> S \<and> path_image h \<subseteq> S \<and>
-                      (\<forall>f. f holomorphic_on S \<longrightarrow> contour_integral h f = contour_integral g f))"
-proof -
-  have "\<forall>z. \<exists>e. z \<in> path_image p \<longrightarrow> 0 < e \<and> ball z e \<subseteq> S"
-    using open_contains_ball os p(2) by blast
-  then obtain ee where ee: "\<And>z. z \<in> path_image p \<Longrightarrow> 0 < ee z \<and> ball z (ee z) \<subseteq> S"
-    by metis
-  define cover where "cover = (\<lambda>z. ball z (ee z/3)) ` (path_image p)"
-  have "compact (path_image p)"
-    by (metis p(1) compact_path_image)
-  moreover have "path_image p \<subseteq> (\<Union>c\<in>path_image p. ball c (ee c / 3))"
-    using ee by auto
-  ultimately have "\<exists>D \<subseteq> cover. finite D \<and> path_image p \<subseteq> \<Union>D"
-    by (simp add: compact_eq_Heine_Borel cover_def)
-  then obtain D where D: "D \<subseteq> cover" "finite D" "path_image p \<subseteq> \<Union>D"
-    by blast
-  then obtain k where k: "k \<subseteq> {0..1}" "finite k" and D_eq: "D = ((\<lambda>z. ball z (ee z / 3)) \<circ> p) ` k"
-    apply (simp add: cover_def path_image_def image_comp)
-    apply (blast dest!: finite_subset_image [OF \<open>finite D\<close>])
-    done
-  then have kne: "k \<noteq> {}"
-    using D by auto
-  have pi: "\<And>i. i \<in> k \<Longrightarrow> p i \<in> path_image p"
-    using k  by (auto simp: path_image_def)
-  then have eepi: "\<And>i. i \<in> k \<Longrightarrow> 0 < ee((p i))"
-    by (metis ee)
-  define e where "e = Min((ee \<circ> p) ` k)"
-  have fin_eep: "finite ((ee \<circ> p) ` k)"
-    using k  by blast
-  have "0 < e"
-    using ee k  by (simp add: kne e_def Min_gr_iff [OF fin_eep] eepi)
-  have "uniformly_continuous_on {0..1} p"
-    using p  by (simp add: path_def compact_uniformly_continuous)
-  then obtain d::real where d: "d>0"
-          and de: "\<And>x x'. \<bar>x' - x\<bar> < d \<Longrightarrow> x\<in>{0..1} \<Longrightarrow> x'\<in>{0..1} \<Longrightarrow> cmod (p x' - p x) < e/3"
-    unfolding uniformly_continuous_on_def dist_norm real_norm_def
-    by (metis divide_pos_pos \<open>0 < e\<close> zero_less_numeral)
-  then obtain N::nat where N: "N>0" "inverse N < d"
-    using real_arch_inverse [of d]   by auto
-  show ?thesis
-  proof (intro exI conjI allI; clarify?)
-    show "e/3 > 0"
-      using \<open>0 < e\<close> by simp
-    fix g h
-    assume g: "valid_path g" and ghp: "\<forall>t\<in>{0..1}. cmod (g t - p t) < e / 3 \<and>  cmod (h t - p t) < e / 3"
-       and h: "valid_path h"
-       and joins: "linked_paths atends g h"
-    { fix t::real
-      assume t: "0 \<le> t" "t \<le> 1"
-      then obtain u where u: "u \<in> k" and ptu: "p t \<in> ball(p u) (ee(p u) / 3)"
-        using \<open>path_image p \<subseteq> \<Union>D\<close> D_eq by (force simp: path_image_def)
-      then have ele: "e \<le> ee (p u)" using fin_eep
-        by (simp add: e_def)
-      have "cmod (g t - p t) < e / 3" "cmod (h t - p t) < e / 3"
-        using ghp t by auto
-      with ele have "cmod (g t - p t) < ee (p u) / 3"
-                    "cmod (h t - p t) < ee (p u) / 3"
-        by linarith+
-      then have "g t \<in> ball(p u) (ee(p u))"  "h t \<in> ball(p u) (ee(p u))"
-        using norm_diff_triangle_ineq [of "g t" "p t" "p t" "p u"]
-              norm_diff_triangle_ineq [of "h t" "p t" "p t" "p u"] ptu eepi u
-        by (force simp: dist_norm ball_def norm_minus_commute)+
-      then have "g t \<in> S" "h t \<in> S" using ee u k
-        by (auto simp: path_image_def ball_def)
-    }
-    then have ghs: "path_image g \<subseteq> S" "path_image h \<subseteq> S"
-      by (auto simp: path_image_def)
-    moreover
-    { fix f
-      assume fhols: "f holomorphic_on S"
-      then have fpa: "f contour_integrable_on g"  "f contour_integrable_on h"
-        using g ghs h holomorphic_on_imp_continuous_on os contour_integrable_holomorphic_simple
-        by blast+
-      have contf: "continuous_on S f"
-        by (simp add: fhols holomorphic_on_imp_continuous_on)
-      { fix z
-        assume z: "z \<in> path_image p"
-        have "f holomorphic_on ball z (ee z)"
-          using fhols ee z holomorphic_on_subset by blast
-        then have "\<exists>ff. (\<forall>w \<in> ball z (ee z). (ff has_field_derivative f w) (at w))"
-          using holomorphic_convex_primitive [of "ball z (ee z)" "{}" f, simplified]
-          by (metis open_ball at_within_open holomorphic_on_def holomorphic_on_imp_continuous_on mem_ball)
-      }
-      then obtain ff where ff:
-            "\<And>z w. \<lbrakk>z \<in> path_image p; w \<in> ball z (ee z)\<rbrakk> \<Longrightarrow> (ff z has_field_derivative f w) (at w)"
-        by metis
-      { fix n
-        assume n: "n \<le> N"
-        then have "contour_integral(subpath 0 (n/N) h) f - contour_integral(subpath 0 (n/N) g) f =
-                   contour_integral(linepath (g(n/N)) (h(n/N))) f - contour_integral(linepath (g 0) (h 0)) f"
-        proof (induct n)
-          case 0 show ?case by simp
-        next
-          case (Suc n)
-          obtain t where t: "t \<in> k" and "p (n/N) \<in> ball(p t) (ee(p t) / 3)"
-            using \<open>path_image p \<subseteq> \<Union>D\<close> [THEN subsetD, where c="p (n/N)"] D_eq N Suc.prems
-            by (force simp: path_image_def)
-          then have ptu: "cmod (p t - p (n/N)) < ee (p t) / 3"
-            by (simp add: dist_norm)
-          have e3le: "e/3 \<le> ee (p t) / 3"  using fin_eep t
-            by (simp add: e_def)
-          { fix x
-            assume x: "n/N \<le> x" "x \<le> (1 + n)/N"
-            then have nN01: "0 \<le> n/N" "(1 + n)/N \<le> 1"
-              using Suc.prems by auto
-            then have x01: "0 \<le> x" "x \<le> 1"
-              using x by linarith+
-            have "cmod (p t - p x)  < ee (p t) / 3 + e/3"
-            proof (rule norm_diff_triangle_less [OF ptu de])
-              show "\<bar>real n / real N - x\<bar> < d"
-                using x N by (auto simp: field_simps)
-            qed (use x01 Suc.prems in auto)
-            then have ptx: "cmod (p t - p x) < 2*ee (p t)/3"
-              using e3le eepi [OF t] by simp
-            have "cmod (p t - g x) < 2*ee (p t)/3 + e/3 "
-              apply (rule norm_diff_triangle_less [OF ptx])
-              using ghp x01 by (simp add: norm_minus_commute)
-            also have "\<dots> \<le> ee (p t)"
-              using e3le eepi [OF t] by simp
-            finally have gg: "cmod (p t - g x) < ee (p t)" .
-            have "cmod (p t - h x) < 2*ee (p t)/3 + e/3 "
-              apply (rule norm_diff_triangle_less [OF ptx])
-              using ghp x01 by (simp add: norm_minus_commute)
-            also have "\<dots> \<le> ee (p t)"
-              using e3le eepi [OF t] by simp
-            finally have "cmod (p t - g x) < ee (p t)"
-                         "cmod (p t - h x) < ee (p t)"
-              using gg by auto
-          } note ptgh_ee = this
-          have "closed_segment (g (real n / real N)) (h (real n / real N)) = path_image (linepath (h (n/N)) (g (n/N)))"
-            by (simp add: closed_segment_commute)
-          also have pi_hgn: "\<dots> \<subseteq> ball (p t) (ee (p t))"
-            using ptgh_ee [of "n/N"] Suc.prems
-            by (auto simp: field_simps dist_norm dest: segment_furthest_le [where y="p t"])
-          finally have gh_ns: "closed_segment (g (n/N)) (h (n/N)) \<subseteq> S"
-            using ee pi t by blast
-          have pi_ghn': "path_image (linepath (g ((1 + n) / N)) (h ((1 + n) / N))) \<subseteq> ball (p t) (ee (p t))"
-            using ptgh_ee [of "(1+n)/N"] Suc.prems
-            by (auto simp: field_simps dist_norm dest: segment_furthest_le [where y="p t"])
-          then have gh_n's: "closed_segment (g ((1 + n) / N)) (h ((1 + n) / N)) \<subseteq> S"
-            using \<open>N>0\<close> Suc.prems ee pi t
-            by (auto simp: Path_Connected.path_image_join field_simps)
-          have pi_subset_ball:
-                "path_image (subpath (n/N) ((1+n) / N) g +++ linepath (g ((1+n) / N)) (h ((1+n) / N)) +++
-                             subpath ((1+n) / N) (n/N) h +++ linepath (h (n/N)) (g (n/N)))
-                 \<subseteq> ball (p t) (ee (p t))"
-            apply (intro subset_path_image_join pi_hgn pi_ghn')
-            using \<open>N>0\<close> Suc.prems
-            apply (auto simp: path_image_subpath dist_norm field_simps closed_segment_eq_real_ivl ptgh_ee)
-            done
-          have pi0: "(f has_contour_integral 0)
-                       (subpath (n/ N) ((Suc n)/N) g +++ linepath(g ((Suc n) / N)) (h((Suc n) / N)) +++
-                        subpath ((Suc n) / N) (n/N) h +++ linepath(h (n/N)) (g (n/N)))"
-            apply (rule Cauchy_theorem_primitive [of "ball(p t) (ee(p t))" "ff (p t)" "f"])
-            apply (metis ff open_ball at_within_open pi t)
-            using Suc.prems pi_subset_ball apply (simp_all add: valid_path_join valid_path_subpath g h)
-            done
-          have fpa1: "f contour_integrable_on subpath (real n / real N) (real (Suc n) / real N) g"
-            using Suc.prems by (simp add: contour_integrable_subpath g fpa)
-          have fpa2: "f contour_integrable_on linepath (g (real (Suc n) / real N)) (h (real (Suc n) / real N))"
-            using gh_n's
-            by (auto intro!: contour_integrable_continuous_linepath continuous_on_subset [OF contf])
-          have fpa3: "f contour_integrable_on linepath (h (real n / real N)) (g (real n / real N))"
-            using gh_ns
-            by (auto simp: closed_segment_commute intro!: contour_integrable_continuous_linepath continuous_on_subset [OF contf])
-          have eq0: "contour_integral (subpath (n/N) ((Suc n) / real N) g) f +
-                     contour_integral (linepath (g ((Suc n) / N)) (h ((Suc n) / N))) f +
-                     contour_integral (subpath ((Suc n) / N) (n/N) h) f +
-                     contour_integral (linepath (h (n/N)) (g (n/N))) f = 0"
-            using contour_integral_unique [OF pi0] Suc.prems
-            by (simp add: g h fpa valid_path_subpath contour_integrable_subpath
-                          fpa1 fpa2 fpa3 algebra_simps del: of_nat_Suc)
-          have *: "\<And>hn he hn' gn gd gn' hgn ghn gh0 ghn'.
-                    \<lbrakk>hn - gn = ghn - gh0;
-                     gd + ghn' + he + hgn = (0::complex);
-                     hn - he = hn'; gn + gd = gn'; hgn = -ghn\<rbrakk> \<Longrightarrow> hn' - gn' = ghn' - gh0"
-            by (auto simp: algebra_simps)
-          have "contour_integral (subpath 0 (n/N) h) f - contour_integral (subpath ((Suc n) / N) (n/N) h) f =
-                contour_integral (subpath 0 (n/N) h) f + contour_integral (subpath (n/N) ((Suc n) / N) h) f"
-            unfolding reversepath_subpath [symmetric, of "((Suc n) / N)"]
-            using Suc.prems by (simp add: h fpa contour_integral_reversepath valid_path_subpath contour_integrable_subpath)
-          also have "\<dots> = contour_integral (subpath 0 ((Suc n) / N) h) f"
-            using Suc.prems by (simp add: contour_integral_subpath_combine h fpa)
-          finally have pi0_eq:
-               "contour_integral (subpath 0 (n/N) h) f - contour_integral (subpath ((Suc n) / N) (n/N) h) f =
-                contour_integral (subpath 0 ((Suc n) / N) h) f" .
-          show ?case
-            apply (rule * [OF Suc.hyps eq0 pi0_eq])
-            using Suc.prems
-            apply (simp_all add: g h fpa contour_integral_subpath_combine
-                     contour_integral_reversepath [symmetric] contour_integrable_continuous_linepath
-                     continuous_on_subset [OF contf gh_ns])
-            done
-      qed
-      } note ind = this
-      have "contour_integral h f = contour_integral g f"
-        using ind [OF order_refl] N joins
-        by (simp add: linked_paths_def pathstart_def pathfinish_def split: if_split_asm)
-    }
-    ultimately
-    show "path_image g \<subseteq> S \<and> path_image h \<subseteq> S \<and> (\<forall>f. f holomorphic_on S \<longrightarrow> contour_integral h f = contour_integral g f)"
-      by metis
-  qed
-qed
-
-
-lemma
-  assumes "open S" "path p" "path_image p \<subseteq> S"
-    shows contour_integral_nearby_ends:
-      "\<exists>d. 0 < d \<and>
-              (\<forall>g h. valid_path g \<and> valid_path h \<and>
-                    (\<forall>t \<in> {0..1}. norm(g t - p t) < d \<and> norm(h t - p t) < d) \<and>
-                    pathstart h = pathstart g \<and> pathfinish h = pathfinish g
-                    \<longrightarrow> path_image g \<subseteq> S \<and>
-                        path_image h \<subseteq> S \<and>
-                        (\<forall>f. f holomorphic_on S
-                            \<longrightarrow> contour_integral h f = contour_integral g f))"
-    and contour_integral_nearby_loops:
-      "\<exists>d. 0 < d \<and>
-              (\<forall>g h. valid_path g \<and> valid_path h \<and>
-                    (\<forall>t \<in> {0..1}. norm(g t - p t) < d \<and> norm(h t - p t) < d) \<and>
-                    pathfinish g = pathstart g \<and> pathfinish h = pathstart h
-                    \<longrightarrow> path_image g \<subseteq> S \<and>
-                        path_image h \<subseteq> S \<and>
-                        (\<forall>f. f holomorphic_on S
-                            \<longrightarrow> contour_integral h f = contour_integral g f))"
-  using contour_integral_nearby [OF assms, where atends=True]
-  using contour_integral_nearby [OF assms, where atends=False]
-  unfolding linked_paths_def by simp_all
-
-lemma C1_differentiable_polynomial_function:
-  fixes p :: "real \<Rightarrow> 'a::euclidean_space"
-  shows "polynomial_function p \<Longrightarrow> p C1_differentiable_on S"
-  by (metis continuous_on_polymonial_function C1_differentiable_on_def  has_vector_derivative_polynomial_function)
-
-lemma valid_path_polynomial_function:
-  fixes p :: "real \<Rightarrow> 'a::euclidean_space"
-  shows "polynomial_function p \<Longrightarrow> valid_path p"
-by (force simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_polymonial_function C1_differentiable_polynomial_function)
-
-lemma valid_path_subpath_trivial [simp]:
-    fixes g :: "real \<Rightarrow> 'a::euclidean_space"
-    shows "z \<noteq> g x \<Longrightarrow> valid_path (subpath x x g)"
-  by (simp add: subpath_def valid_path_polynomial_function)
-
-lemma contour_integral_bound_exists:
-assumes S: "open S"
-    and g: "valid_path g"
-    and pag: "path_image g \<subseteq> S"
-  shows "\<exists>L. 0 < L \<and>
-             (\<forall>f B. f holomorphic_on S \<and> (\<forall>z \<in> S. norm(f z) \<le> B)
-               \<longrightarrow> norm(contour_integral g f) \<le> L*B)"
-proof -
-  have "path g" using g
-    by (simp add: valid_path_imp_path)
-  then obtain d::real and p
-    where d: "0 < d"
-      and p: "polynomial_function p" "path_image p \<subseteq> S"
-      and pi: "\<And>f. f holomorphic_on S \<Longrightarrow> contour_integral g f = contour_integral p f"
-    using contour_integral_nearby_ends [OF S \<open>path g\<close> pag]
-    apply clarify
-    apply (drule_tac x=g in spec)
-    apply (simp only: assms)
-    apply (force simp: valid_path_polynomial_function dest: path_approx_polynomial_function)
-    done
-  then obtain p' where p': "polynomial_function p'"
-    "\<And>x. (p has_vector_derivative (p' x)) (at x)"
-    by (blast intro: has_vector_derivative_polynomial_function that)
-  then have "bounded(p' ` {0..1})"
-    using continuous_on_polymonial_function
-    by (force simp: intro!: compact_imp_bounded compact_continuous_image)
-  then obtain L where L: "L>0" and nop': "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> norm (p' x) \<le> L"
-    by (force simp: bounded_pos)
-  { fix f B
-    assume f: "f holomorphic_on S" and B: "\<And>z. z\<in>S \<Longrightarrow> cmod (f z) \<le> B"
-    then have "f contour_integrable_on p \<and> valid_path p"
-      using p S
-      by (blast intro: valid_path_polynomial_function contour_integrable_holomorphic_simple holomorphic_on_imp_continuous_on)
-    moreover have "cmod (vector_derivative p (at x)) * cmod (f (p x)) \<le> L * B" if "0 \<le> x" "x \<le> 1" for x
-    proof (rule mult_mono)
-      show "cmod (vector_derivative p (at x)) \<le> L"
-        by (metis nop' p'(2) that vector_derivative_at)
-      show "cmod (f (p x)) \<le> B"
-        by (metis B atLeastAtMost_iff imageI p(2) path_defs(4) subset_eq that)
-    qed (use \<open>L>0\<close> in auto)
-    ultimately have "cmod (contour_integral g f) \<le> L * B"
-      apply (simp only: pi [OF f])
-      apply (simp only: contour_integral_integral)
-      apply (rule order_trans [OF integral_norm_bound_integral])
-         apply (auto simp: mult.commute integral_norm_bound_integral contour_integrable_on [symmetric] norm_mult)
-      done
-  } then
-  show ?thesis
-    by (force simp: L contour_integral_integral)
-qed
-
-text\<open>We can treat even non-rectifiable paths as having a "length" for bounds on analytic functions in open sets.\<close>
-
-subsection \<open>Winding Numbers\<close>
-
-definition\<^marker>\<open>tag important\<close> winding_number_prop :: "[real \<Rightarrow> complex, complex, real, real \<Rightarrow> complex, complex] \<Rightarrow> bool" where
-  "winding_number_prop \<gamma> z e p n \<equiv>
-      valid_path p \<and> z \<notin> path_image p \<and>
-      pathstart p = pathstart \<gamma> \<and>
-      pathfinish p = pathfinish \<gamma> \<and>
-      (\<forall>t \<in> {0..1}. norm(\<gamma> t - p t) < e) \<and>
-      contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
-
-definition\<^marker>\<open>tag important\<close> winding_number:: "[real \<Rightarrow> complex, complex] \<Rightarrow> complex" where
-  "winding_number \<gamma> z \<equiv> SOME n. \<forall>e > 0. \<exists>p. winding_number_prop \<gamma> z e p n"
-
-
-lemma winding_number:
-  assumes "path \<gamma>" "z \<notin> path_image \<gamma>" "0 < e"
-    shows "\<exists>p. winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
-proof -
-  have "path_image \<gamma> \<subseteq> UNIV - {z}"
-    using assms by blast
-  then obtain d
-    where d: "d>0"
-      and pi_eq: "\<And>h1 h2. valid_path h1 \<and> valid_path h2 \<and>
-                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < d \<and> cmod (h2 t - \<gamma> t) < d) \<and>
-                    pathstart h2 = pathstart h1 \<and> pathfinish h2 = pathfinish h1 \<longrightarrow>
-                      path_image h1 \<subseteq> UNIV - {z} \<and> path_image h2 \<subseteq> UNIV - {z} \<and>
-                      (\<forall>f. f holomorphic_on UNIV - {z} \<longrightarrow> contour_integral h2 f = contour_integral h1 f)"
-    using contour_integral_nearby_ends [of "UNIV - {z}" \<gamma>] assms by (auto simp: open_delete)
-  then obtain h where h: "polynomial_function h \<and> pathstart h = pathstart \<gamma> \<and> pathfinish h = pathfinish \<gamma> \<and>
-                          (\<forall>t \<in> {0..1}. norm(h t - \<gamma> t) < d/2)"
-    using path_approx_polynomial_function [OF \<open>path \<gamma>\<close>, of "d/2"] d by auto
-  define nn where "nn = 1/(2* pi*\<i>) * contour_integral h (\<lambda>w. 1/(w - z))"
-  have "\<exists>n. \<forall>e > 0. \<exists>p. winding_number_prop \<gamma> z e p n"
-    proof (rule_tac x=nn in exI, clarify)
-      fix e::real
-      assume e: "e>0"
-      obtain p where p: "polynomial_function p \<and>
-            pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma> \<and> (\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < min e (d/2))"
-        using path_approx_polynomial_function [OF \<open>path \<gamma>\<close>, of "min e (d/2)"] d \<open>0<e\<close> by auto
-      have "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
-        by (auto simp: intro!: holomorphic_intros)
-      then show "\<exists>p. winding_number_prop \<gamma> z e p nn"
-        apply (rule_tac x=p in exI)
-        using pi_eq [of h p] h p d
-        apply (auto simp: valid_path_polynomial_function norm_minus_commute nn_def winding_number_prop_def)
-        done
-    qed
-  then show ?thesis
-    unfolding winding_number_def by (rule someI2_ex) (blast intro: \<open>0<e\<close>)
-qed
-
-lemma winding_number_unique:
-  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
-      and pi: "\<And>e. e>0 \<Longrightarrow> \<exists>p. winding_number_prop \<gamma> z e p n"
-   shows "winding_number \<gamma> z = n"
-proof -
-  have "path_image \<gamma> \<subseteq> UNIV - {z}"
-    using assms by blast
-  then obtain e
-    where e: "e>0"
-      and pi_eq: "\<And>h1 h2 f. \<lbrakk>valid_path h1; valid_path h2;
-                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < e \<and> cmod (h2 t - \<gamma> t) < e);
-                    pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1; f holomorphic_on UNIV - {z}\<rbrakk> \<Longrightarrow>
-                    contour_integral h2 f = contour_integral h1 f"
-    using contour_integral_nearby_ends [of "UNIV - {z}" \<gamma>] assms  by (auto simp: open_delete)
-  obtain p where p: "winding_number_prop \<gamma> z e p n"
-    using pi [OF e] by blast
-  obtain q where q: "winding_number_prop \<gamma> z e q (winding_number \<gamma> z)"
-    using winding_number [OF \<gamma> e] by blast
-  have "2 * complex_of_real pi * \<i> * n = contour_integral p (\<lambda>w. 1 / (w - z))"
-    using p by (auto simp: winding_number_prop_def)
-  also have "\<dots> = contour_integral q (\<lambda>w. 1 / (w - z))"
-  proof (rule pi_eq)
-    show "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
-      by (auto intro!: holomorphic_intros)
-  qed (use p q in \<open>auto simp: winding_number_prop_def norm_minus_commute\<close>)
-  also have "\<dots> = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z"
-    using q by (auto simp: winding_number_prop_def)
-  finally have "2 * complex_of_real pi * \<i> * n = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z" .
-  then show ?thesis
-    by simp
-qed
-
-(*NB not winding_number_prop here due to the loop in p*)
-lemma winding_number_unique_loop:
-  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
-      and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      and pi:
-        "\<And>e. e>0 \<Longrightarrow> \<exists>p. valid_path p \<and> z \<notin> path_image p \<and>
-                           pathfinish p = pathstart p \<and>
-                           (\<forall>t \<in> {0..1}. norm (\<gamma> t - p t) < e) \<and>
-                           contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
-   shows "winding_number \<gamma> z = n"
-proof -
-  have "path_image \<gamma> \<subseteq> UNIV - {z}"
-    using assms by blast
-  then obtain e
-    where e: "e>0"
-      and pi_eq: "\<And>h1 h2 f. \<lbrakk>valid_path h1; valid_path h2;
-                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < e \<and> cmod (h2 t - \<gamma> t) < e);
-                    pathfinish h1 = pathstart h1; pathfinish h2 = pathstart h2; f holomorphic_on UNIV - {z}\<rbrakk> \<Longrightarrow>
-                    contour_integral h2 f = contour_integral h1 f"
-    using contour_integral_nearby_loops [of "UNIV - {z}" \<gamma>] assms  by (auto simp: open_delete)
-  obtain p where p:
-     "valid_path p \<and> z \<notin> path_image p \<and> pathfinish p = pathstart p \<and>
-      (\<forall>t \<in> {0..1}. norm (\<gamma> t - p t) < e) \<and>
-      contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
-    using pi [OF e] by blast
-  obtain q where q: "winding_number_prop \<gamma> z e q (winding_number \<gamma> z)"
-    using winding_number [OF \<gamma> e] by blast
-  have "2 * complex_of_real pi * \<i> * n = contour_integral p (\<lambda>w. 1 / (w - z))"
-    using p by auto
-  also have "\<dots> = contour_integral q (\<lambda>w. 1 / (w - z))"
-  proof (rule pi_eq)
-    show "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
-      by (auto intro!: holomorphic_intros)
-  qed (use p q loop in \<open>auto simp: winding_number_prop_def norm_minus_commute\<close>)
-  also have "\<dots> = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z"
-    using q by (auto simp: winding_number_prop_def)
-  finally have "2 * complex_of_real pi * \<i> * n = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z" .
-  then show ?thesis
-    by simp
-qed
-
-proposition winding_number_valid_path:
-  assumes "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-  shows "winding_number \<gamma> z = 1/(2*pi*\<i>) * contour_integral \<gamma> (\<lambda>w. 1/(w - z))"
-  by (rule winding_number_unique)
-  (use assms in \<open>auto simp: valid_path_imp_path winding_number_prop_def\<close>)
-
-proposition has_contour_integral_winding_number:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-    shows "((\<lambda>w. 1/(w - z)) has_contour_integral (2*pi*\<i>*winding_number \<gamma> z)) \<gamma>"
-by (simp add: winding_number_valid_path has_contour_integral_integral contour_integrable_inversediff assms)
-
-lemma winding_number_trivial [simp]: "z \<noteq> a \<Longrightarrow> winding_number(linepath a a) z = 0"
-  by (simp add: winding_number_valid_path)
-
-lemma winding_number_subpath_trivial [simp]: "z \<noteq> g x \<Longrightarrow> winding_number (subpath x x g) z = 0"
-  by (simp add: path_image_subpath winding_number_valid_path)
-
-lemma winding_number_join:
-  assumes \<gamma>1: "path \<gamma>1" "z \<notin> path_image \<gamma>1"
-      and \<gamma>2: "path \<gamma>2" "z \<notin> path_image \<gamma>2"
-      and "pathfinish \<gamma>1 = pathstart \<gamma>2"
-    shows "winding_number(\<gamma>1 +++ \<gamma>2) z = winding_number \<gamma>1 z + winding_number \<gamma>2 z"
-proof (rule winding_number_unique)
-  show "\<exists>p. winding_number_prop (\<gamma>1 +++ \<gamma>2) z e p
-              (winding_number \<gamma>1 z + winding_number \<gamma>2 z)" if "e > 0" for e
-  proof -
-    obtain p1 where "winding_number_prop \<gamma>1 z e p1 (winding_number \<gamma>1 z)"
-      using \<open>0 < e\<close> \<gamma>1 winding_number by blast
-    moreover
-    obtain p2 where "winding_number_prop \<gamma>2 z e p2 (winding_number \<gamma>2 z)"
-      using \<open>0 < e\<close> \<gamma>2 winding_number by blast
-    ultimately
-    have "winding_number_prop (\<gamma>1+++\<gamma>2) z e (p1+++p2) (winding_number \<gamma>1 z + winding_number \<gamma>2 z)"
-      using assms
-      apply (simp add: winding_number_prop_def not_in_path_image_join contour_integrable_inversediff algebra_simps)
-      apply (auto simp: joinpaths_def)
-      done
-    then show ?thesis
-      by blast
-  qed
-qed (use assms in \<open>auto simp: not_in_path_image_join\<close>)
-
-lemma winding_number_reversepath:
-  assumes "path \<gamma>" "z \<notin> path_image \<gamma>"
-    shows "winding_number(reversepath \<gamma>) z = - (winding_number \<gamma> z)"
-proof (rule winding_number_unique)
-  show "\<exists>p. winding_number_prop (reversepath \<gamma>) z e p (- winding_number \<gamma> z)" if "e > 0" for e
-  proof -
-    obtain p where "winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
-      using \<open>0 < e\<close> assms winding_number by blast
-    then have "winding_number_prop (reversepath \<gamma>) z e (reversepath p) (- winding_number \<gamma> z)"
-      using assms
-      apply (simp add: winding_number_prop_def contour_integral_reversepath contour_integrable_inversediff valid_path_imp_reverse)
-      apply (auto simp: reversepath_def)
-      done
-    then show ?thesis
-      by blast
-  qed
-qed (use assms in auto)
-
-lemma winding_number_shiftpath:
-  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
-      and "pathfinish \<gamma> = pathstart \<gamma>" "a \<in> {0..1}"
-    shows "winding_number(shiftpath a \<gamma>) z = winding_number \<gamma> z"
-proof (rule winding_number_unique_loop)
-  show "\<exists>p. valid_path p \<and> z \<notin> path_image p \<and> pathfinish p = pathstart p \<and>
-            (\<forall>t\<in>{0..1}. cmod (shiftpath a \<gamma> t - p t) < e) \<and>
-            contour_integral p (\<lambda>w. 1 / (w - z)) =
-            complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-    if "e > 0" for e
-  proof -
-    obtain p where "winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
-      using \<open>0 < e\<close> assms winding_number by blast
-    then show ?thesis
-      apply (rule_tac x="shiftpath a p" in exI)
-      using assms that
-      apply (auto simp: winding_number_prop_def path_image_shiftpath pathfinish_shiftpath pathstart_shiftpath contour_integral_shiftpath)
-      apply (simp add: shiftpath_def)
-      done
-  qed
-qed (use assms in \<open>auto simp: path_shiftpath path_image_shiftpath pathfinish_shiftpath pathstart_shiftpath\<close>)
-
-lemma winding_number_split_linepath:
-  assumes "c \<in> closed_segment a b" "z \<notin> closed_segment a b"
-    shows "winding_number(linepath a b) z = winding_number(linepath a c) z + winding_number(linepath c b) z"
-proof -
-  have "z \<notin> closed_segment a c" "z \<notin> closed_segment c b"
-    using assms  by (meson convex_contains_segment convex_segment ends_in_segment subsetCE)+
-  then show ?thesis
-    using assms
-    by (simp add: winding_number_valid_path contour_integral_split_linepath [symmetric] continuous_on_inversediff field_simps)
-qed
-
-lemma winding_number_cong:
-   "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> p t = q t) \<Longrightarrow> winding_number p z = winding_number q z"
-  by (simp add: winding_number_def winding_number_prop_def pathstart_def pathfinish_def)
-
-lemma winding_number_constI:
-  assumes "c\<noteq>z" "\<And>t. \<lbrakk>0\<le>t; t\<le>1\<rbrakk> \<Longrightarrow> g t = c" 
-  shows "winding_number g z = 0"
-proof -
-  have "winding_number g z = winding_number (linepath c c) z"
-    apply (rule winding_number_cong)
-    using assms unfolding linepath_def by auto
-  moreover have "winding_number (linepath c c) z =0"
-    apply (rule winding_number_trivial)
-    using assms by auto
-  ultimately show ?thesis by auto
-qed
-
-lemma winding_number_offset: "winding_number p z = winding_number (\<lambda>w. p w - z) 0"
-  unfolding winding_number_def
-proof (intro ext arg_cong [where f = Eps] arg_cong [where f = All] imp_cong refl, safe)
-  fix n e g
-  assume "0 < e" and g: "winding_number_prop p z e g n"
-  then show "\<exists>r. winding_number_prop (\<lambda>w. p w - z) 0 e r n"
-    by (rule_tac x="\<lambda>t. g t - z" in exI)
-       (force simp: winding_number_prop_def contour_integral_integral valid_path_def path_defs
-                vector_derivative_def has_vector_derivative_diff_const piecewise_C1_differentiable_diff C1_differentiable_imp_piecewise)
-next
-  fix n e g
-  assume "0 < e" and g: "winding_number_prop (\<lambda>w. p w - z) 0 e g n"
-  then show "\<exists>r. winding_number_prop p z e r n"
-    apply (rule_tac x="\<lambda>t. g t + z" in exI)
-    apply (simp add: winding_number_prop_def contour_integral_integral valid_path_def path_defs
-        piecewise_C1_differentiable_add vector_derivative_def has_vector_derivative_add_const C1_differentiable_imp_piecewise)
-    apply (force simp: algebra_simps)
-    done
-qed
-
-subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some lemmas about negating a path\<close>
-
-lemma valid_path_negatepath: "valid_path \<gamma> \<Longrightarrow> valid_path (uminus \<circ> \<gamma>)"
-   unfolding o_def using piecewise_C1_differentiable_neg valid_path_def by blast
-
-lemma has_contour_integral_negatepath:
-  assumes \<gamma>: "valid_path \<gamma>" and cint: "((\<lambda>z. f (- z)) has_contour_integral - i) \<gamma>"
-  shows "(f has_contour_integral i) (uminus \<circ> \<gamma>)"
-proof -
-  obtain S where cont: "continuous_on {0..1} \<gamma>" and "finite S" and diff: "\<gamma> C1_differentiable_on {0..1} - S"
-    using \<gamma> by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  have "((\<lambda>x. - (f (- \<gamma> x) * vector_derivative \<gamma> (at x within {0..1}))) has_integral i) {0..1}"
-    using cint by (auto simp: has_contour_integral_def dest: has_integral_neg)
-  then
-  have "((\<lambda>x. f (- \<gamma> x) * vector_derivative (uminus \<circ> \<gamma>) (at x within {0..1})) has_integral i) {0..1}"
-  proof (rule rev_iffD1 [OF _ has_integral_spike_eq])
-    show "negligible S"
-      by (simp add: \<open>finite S\<close> negligible_finite)
-    show "f (- \<gamma> x) * vector_derivative (uminus \<circ> \<gamma>) (at x within {0..1}) =
-         - (f (- \<gamma> x) * vector_derivative \<gamma> (at x within {0..1}))"
-      if "x \<in> {0..1} - S" for x
-    proof -
-      have "vector_derivative (uminus \<circ> \<gamma>) (at x within cbox 0 1) = - vector_derivative \<gamma> (at x within cbox 0 1)"
-      proof (rule vector_derivative_within_cbox)
-        show "(uminus \<circ> \<gamma> has_vector_derivative - vector_derivative \<gamma> (at x within cbox 0 1)) (at x within cbox 0 1)"
-          using that unfolding o_def
-          by (metis C1_differentiable_on_eq UNIV_I diff differentiable_subset has_vector_derivative_minus subsetI that vector_derivative_works)
-      qed (use that in auto)
-      then show ?thesis
-        by simp
-    qed
-  qed
-  then show ?thesis by (simp add: has_contour_integral_def)
-qed
-
-lemma winding_number_negatepath:
-  assumes \<gamma>: "valid_path \<gamma>" and 0: "0 \<notin> path_image \<gamma>"
-  shows "winding_number(uminus \<circ> \<gamma>) 0 = winding_number \<gamma> 0"
-proof -
-  have "(/) 1 contour_integrable_on \<gamma>"
-    using "0" \<gamma> contour_integrable_inversediff by fastforce
-  then have "((\<lambda>z. 1/z) has_contour_integral contour_integral \<gamma> ((/) 1)) \<gamma>"
-    by (rule has_contour_integral_integral)
-  then have "((\<lambda>z. 1 / - z) has_contour_integral - contour_integral \<gamma> ((/) 1)) \<gamma>"
-    using has_contour_integral_neg by auto
-  then show ?thesis
-    using assms
-    apply (simp add: winding_number_valid_path valid_path_negatepath image_def path_defs)
-    apply (simp add: contour_integral_unique has_contour_integral_negatepath)
-    done
-qed
-
-lemma contour_integrable_negatepath:
-  assumes \<gamma>: "valid_path \<gamma>" and pi: "(\<lambda>z. f (- z)) contour_integrable_on \<gamma>"
-  shows "f contour_integrable_on (uminus \<circ> \<gamma>)"
-  by (metis \<gamma> add.inverse_inverse contour_integrable_on_def has_contour_integral_negatepath pi)
-
-(* A combined theorem deducing several things piecewise.*)
-lemma winding_number_join_pos_combined:
-     "\<lbrakk>valid_path \<gamma>1; z \<notin> path_image \<gamma>1; 0 < Re(winding_number \<gamma>1 z);
-       valid_path \<gamma>2; z \<notin> path_image \<gamma>2; 0 < Re(winding_number \<gamma>2 z); pathfinish \<gamma>1 = pathstart \<gamma>2\<rbrakk>
-      \<Longrightarrow> valid_path(\<gamma>1 +++ \<gamma>2) \<and> z \<notin> path_image(\<gamma>1 +++ \<gamma>2) \<and> 0 < Re(winding_number(\<gamma>1 +++ \<gamma>2) z)"
-  by (simp add: valid_path_join path_image_join winding_number_join valid_path_imp_path)
-
-
-subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Useful sufficient conditions for the winding number to be positive\<close>
-
-lemma Re_winding_number:
-    "\<lbrakk>valid_path \<gamma>; z \<notin> path_image \<gamma>\<rbrakk>
-     \<Longrightarrow> Re(winding_number \<gamma> z) = Im(contour_integral \<gamma> (\<lambda>w. 1/(w - z))) / (2*pi)"
-by (simp add: winding_number_valid_path field_simps Re_divide power2_eq_square)
-
-lemma winding_number_pos_le:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> 0 \<le> Im (vector_derivative \<gamma> (at x) * cnj(\<gamma> x - z))"
-    shows "0 \<le> Re(winding_number \<gamma> z)"
-proof -
-  have ge0: "0 \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))" if x: "0 < x" "x < 1" for x
-    using ge by (simp add: Complex.Im_divide algebra_simps x)
-  let ?vd = "\<lambda>x. 1 / (\<gamma> x - z) * vector_derivative \<gamma> (at x)"
-  let ?int = "\<lambda>z. contour_integral \<gamma> (\<lambda>w. 1 / (w - z))"
-  have hi: "(?vd has_integral ?int z) (cbox 0 1)"
-    unfolding box_real
-    apply (subst has_contour_integral [symmetric])
-    using \<gamma> by (simp add: contour_integrable_inversediff has_contour_integral_integral)
-  have "0 \<le> Im (?int z)"
-  proof (rule has_integral_component_nonneg [of \<i>, simplified])
-    show "\<And>x. x \<in> cbox 0 1 \<Longrightarrow> 0 \<le> Im (if 0 < x \<and> x < 1 then ?vd x else 0)"
-      by (force simp: ge0)
-    show "((\<lambda>x. if 0 < x \<and> x < 1 then ?vd x else 0) has_integral ?int z) (cbox 0 1)"
-      by (rule has_integral_spike_interior [OF hi]) simp
-  qed
-  then show ?thesis
-    by (simp add: Re_winding_number [OF \<gamma>] field_simps)
-qed
-
-lemma winding_number_pos_lt_lemma:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-      and e: "0 < e"
-      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> e \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
-    shows "0 < Re(winding_number \<gamma> z)"
-proof -
-  let ?vd = "\<lambda>x. 1 / (\<gamma> x - z) * vector_derivative \<gamma> (at x)"
-  let ?int = "\<lambda>z. contour_integral \<gamma> (\<lambda>w. 1 / (w - z))"
-  have hi: "(?vd has_integral ?int z) (cbox 0 1)"
-    unfolding box_real
-    apply (subst has_contour_integral [symmetric])
-    using \<gamma> by (simp add: contour_integrable_inversediff has_contour_integral_integral)
-  have "e \<le> Im (contour_integral \<gamma> (\<lambda>w. 1 / (w - z)))"
-  proof (rule has_integral_component_le [of \<i> "\<lambda>x. \<i>*e" "\<i>*e" "{0..1}", simplified])
-    show "((\<lambda>x. if 0 < x \<and> x < 1 then ?vd x else \<i> * complex_of_real e) has_integral ?int z) {0..1}"
-      by (rule has_integral_spike_interior [OF hi, simplified box_real]) (use e in simp)
-    show "\<And>x. 0 \<le> x \<and> x \<le> 1 \<Longrightarrow>
-              e \<le> Im (if 0 < x \<and> x < 1 then ?vd x else \<i> * complex_of_real e)"
-      by (simp add: ge)
-  qed (use has_integral_const_real [of _ 0 1] in auto)
-  with e show ?thesis
-    by (simp add: Re_winding_number [OF \<gamma>] field_simps)
-qed
-
-lemma winding_number_pos_lt:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-      and e: "0 < e"
-      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> e \<le> Im (vector_derivative \<gamma> (at x) * cnj(\<gamma> x - z))"
-    shows "0 < Re (winding_number \<gamma> z)"
-proof -
-  have bm: "bounded ((\<lambda>w. w - z) ` (path_image \<gamma>))"
-    using bounded_translation [of _ "-z"] \<gamma> by (simp add: bounded_valid_path_image)
-  then obtain B where B: "B > 0" and Bno: "\<And>x. x \<in> (\<lambda>w. w - z) ` (path_image \<gamma>) \<Longrightarrow> norm x \<le> B"
-    using bounded_pos [THEN iffD1, OF bm] by blast
-  { fix x::real  assume x: "0 < x" "x < 1"
-    then have B2: "cmod (\<gamma> x - z)^2 \<le> B^2" using Bno [of "\<gamma> x - z"]
-      by (simp add: path_image_def power2_eq_square mult_mono')
-    with x have "\<gamma> x \<noteq> z" using \<gamma>
-      using path_image_def by fastforce
-    then have "e / B\<^sup>2 \<le> Im (vector_derivative \<gamma> (at x) * cnj (\<gamma> x - z)) / (cmod (\<gamma> x - z))\<^sup>2"
-      using B ge [OF x] B2 e
-      apply (rule_tac y="e / (cmod (\<gamma> x - z))\<^sup>2" in order_trans)
-      apply (auto simp: divide_left_mono divide_right_mono)
-      done
-    then have "e / B\<^sup>2 \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
-      by (simp add: complex_div_cnj [of _ "\<gamma> x - z" for x] del: complex_cnj_diff times_complex.sel)
-  } note * = this
-  show ?thesis
-    using e B by (simp add: * winding_number_pos_lt_lemma [OF \<gamma>, of "e/B^2"])
-qed
-
-subsection\<open>The winding number is an integer\<close>
-
-text\<open>Proof from the book Complex Analysis by Lars V. Ahlfors, Chapter 4, section 2.1,
-     Also on page 134 of Serge Lang's book with the name title, etc.\<close>
-
-lemma exp_fg:
-  fixes z::complex
-  assumes g: "(g has_vector_derivative g') (at x within s)"
-      and f: "(f has_vector_derivative (g' / (g x - z))) (at x within s)"
-      and z: "g x \<noteq> z"
-    shows "((\<lambda>x. exp(-f x) * (g x - z)) has_vector_derivative 0) (at x within s)"
-proof -
-  have *: "(exp \<circ> (\<lambda>x. (- f x)) has_vector_derivative - (g' / (g x - z)) * exp (- f x)) (at x within s)"
-    using assms unfolding has_vector_derivative_def scaleR_conv_of_real
-    by (auto intro!: derivative_eq_intros)
-  show ?thesis
-    apply (rule has_vector_derivative_eq_rhs)
-    using z
-    apply (auto intro!: derivative_eq_intros * [unfolded o_def] g)
-    done
-qed
-
-lemma winding_number_exp_integral:
-  fixes z::complex
-  assumes \<gamma>: "\<gamma> piecewise_C1_differentiable_on {a..b}"
-      and ab: "a \<le> b"
-      and z: "z \<notin> \<gamma> ` {a..b}"
-    shows "(\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)) integrable_on {a..b}"
-          (is "?thesis1")
-          "exp (- (integral {a..b} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))) * (\<gamma> b - z) = \<gamma> a - z"
-          (is "?thesis2")
-proof -
-  let ?D\<gamma> = "\<lambda>x. vector_derivative \<gamma> (at x)"
-  have [simp]: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<gamma> x \<noteq> z"
-    using z by force
-  have cong: "continuous_on {a..b} \<gamma>"
-    using \<gamma> by (simp add: piecewise_C1_differentiable_on_def)
-  obtain k where fink: "finite k" and g_C1_diff: "\<gamma> C1_differentiable_on ({a..b} - k)"
-    using \<gamma> by (force simp: piecewise_C1_differentiable_on_def)
-  have \<circ>: "open ({a<..<b} - k)"
-    using \<open>finite k\<close> by (simp add: finite_imp_closed open_Diff)
-  moreover have "{a<..<b} - k \<subseteq> {a..b} - k"
-    by force
-  ultimately have g_diff_at: "\<And>x. \<lbrakk>x \<notin> k; x \<in> {a<..<b}\<rbrakk> \<Longrightarrow> \<gamma> differentiable at x"
-    by (metis Diff_iff differentiable_on_subset C1_diff_imp_diff [OF g_C1_diff] differentiable_on_def at_within_open)
-  { fix w
-    assume "w \<noteq> z"
-    have "continuous_on (ball w (cmod (w - z))) (\<lambda>w. 1 / (w - z))"
-      by (auto simp: dist_norm intro!: continuous_intros)
-    moreover have "\<And>x. cmod (w - x) < cmod (w - z) \<Longrightarrow> \<exists>f'. ((\<lambda>w. 1 / (w - z)) has_field_derivative f') (at x)"
-      by (auto simp: intro!: derivative_eq_intros)
-    ultimately have "\<exists>h. \<forall>y. norm(y - w) < norm(w - z) \<longrightarrow> (h has_field_derivative 1/(y - z)) (at y)"
-      using holomorphic_convex_primitive [of "ball w (norm(w - z))" "{}" "\<lambda>w. 1/(w - z)"]
-      by (force simp: field_differentiable_def Ball_def dist_norm at_within_open_NO_MATCH norm_minus_commute)
-  }
-  then obtain h where h: "\<And>w y. w \<noteq> z \<Longrightarrow> norm(y - w) < norm(w - z) \<Longrightarrow> (h w has_field_derivative 1/(y - z)) (at y)"
-    by meson
-  have exy: "\<exists>y. ((\<lambda>x. inverse (\<gamma> x - z) * ?D\<gamma> x) has_integral y) {a..b}"
-    unfolding integrable_on_def [symmetric]
-  proof (rule contour_integral_local_primitive_any [OF piecewise_C1_imp_differentiable [OF \<gamma>]])
-    show "\<exists>d h. 0 < d \<and>
-               (\<forall>y. cmod (y - w) < d \<longrightarrow> (h has_field_derivative inverse (y - z))(at y within - {z}))"
-          if "w \<in> - {z}" for w
-      apply (rule_tac x="norm(w - z)" in exI)
-      using that inverse_eq_divide has_field_derivative_at_within h
-      by (metis Compl_insert DiffD2 insertCI right_minus_eq zero_less_norm_iff)
-  qed simp
-  have vg_int: "(\<lambda>x. ?D\<gamma> x / (\<gamma> x - z)) integrable_on {a..b}"
-    unfolding box_real [symmetric] divide_inverse_commute
-    by (auto intro!: exy integrable_subinterval simp add: integrable_on_def ab)
-  with ab show ?thesis1
-    by (simp add: divide_inverse_commute integral_def integrable_on_def)
-  { fix t
-    assume t: "t \<in> {a..b}"
-    have cball: "continuous_on (ball (\<gamma> t) (dist (\<gamma> t) z)) (\<lambda>x. inverse (x - z))"
-        using z by (auto intro!: continuous_intros simp: dist_norm)
-    have icd: "\<And>x. cmod (\<gamma> t - x) < cmod (\<gamma> t - z) \<Longrightarrow> (\<lambda>w. inverse (w - z)) field_differentiable at x"
-      unfolding field_differentiable_def by (force simp: intro!: derivative_eq_intros)
-    obtain h where h: "\<And>x. cmod (\<gamma> t - x) < cmod (\<gamma> t - z) \<Longrightarrow>
-                       (h has_field_derivative inverse (x - z)) (at x within {y. cmod (\<gamma> t - y) < cmod (\<gamma> t - z)})"
-      using holomorphic_convex_primitive [where f = "\<lambda>w. inverse(w - z)", OF convex_ball finite.emptyI cball icd]
-      by simp (auto simp: ball_def dist_norm that)
-    { fix x D
-      assume x: "x \<notin> k" "a < x" "x < b"
-      then have "x \<in> interior ({a..b} - k)"
-        using open_subset_interior [OF \<circ>] by fastforce
-      then have con: "isCont ?D\<gamma> x"
-        using g_C1_diff x by (auto simp: C1_differentiable_on_eq intro: continuous_on_interior)
-      then have con_vd: "continuous (at x within {a..b}) (\<lambda>x. ?D\<gamma> x)"
-        by (rule continuous_at_imp_continuous_within)
-      have gdx: "\<gamma> differentiable at x"
-        using x by (simp add: g_diff_at)
-      have "\<And>d. \<lbrakk>x \<notin> k; a < x; x < b;
-          (\<gamma> has_vector_derivative d) (at x); a \<le> t; t \<le> b\<rbrakk>
-         \<Longrightarrow> ((\<lambda>x. integral {a..x}
-                     (\<lambda>x. ?D\<gamma> x /
-                           (\<gamma> x - z))) has_vector_derivative
-              d / (\<gamma> x - z))
-              (at x within {a..b})"
-        apply (rule has_vector_derivative_eq_rhs)
-         apply (rule integral_has_vector_derivative_continuous_at [where S = "{}", simplified])
-        apply (rule con_vd continuous_intros cong vg_int | simp add: continuous_at_imp_continuous_within has_vector_derivative_continuous vector_derivative_at)+
-        done
-      then have "((\<lambda>c. exp (- integral {a..c} (\<lambda>x. ?D\<gamma> x / (\<gamma> x - z))) * (\<gamma> c - z)) has_derivative (\<lambda>h. 0))
-          (at x within {a..b})"
-        using x gdx t
-        apply (clarsimp simp add: differentiable_iff_scaleR)
-        apply (rule exp_fg [unfolded has_vector_derivative_def, simplified], blast intro: has_derivative_at_withinI)
-        apply (simp_all add: has_vector_derivative_def [symmetric])
-        done
-      } note * = this
-    have "exp (- (integral {a..t} (\<lambda>x. ?D\<gamma> x / (\<gamma> x - z)))) * (\<gamma> t - z) =\<gamma> a - z"
-      apply (rule has_derivative_zero_unique_strong_interval [of "{a,b} \<union> k" a b])
-      using t
-      apply (auto intro!: * continuous_intros fink cong indefinite_integral_continuous_1 [OF vg_int]  simp add: ab)+
-      done
-   }
-  with ab show ?thesis2
-    by (simp add: divide_inverse_commute integral_def)
-qed
-
-lemma winding_number_exp_2pi:
-    "\<lbrakk>path p; z \<notin> path_image p\<rbrakk>
-     \<Longrightarrow> pathfinish p - z = exp (2 * pi * \<i> * winding_number p z) * (pathstart p - z)"
-using winding_number [of p z 1] unfolding valid_path_def path_image_def pathstart_def pathfinish_def winding_number_prop_def
-  by (force dest: winding_number_exp_integral(2) [of _ 0 1 z] simp: field_simps contour_integral_integral exp_minus)
-
-lemma integer_winding_number_eq:
-  assumes \<gamma>: "path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-  shows "winding_number \<gamma> z \<in> \<int> \<longleftrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
-proof -
-  obtain p where p: "valid_path p" "z \<notin> path_image p"
-                    "pathstart p = pathstart \<gamma>" "pathfinish p = pathfinish \<gamma>"
-           and eq: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-    using winding_number [OF assms, of 1] unfolding winding_number_prop_def by auto
-  then have wneq: "winding_number \<gamma> z = winding_number p z"
-      using eq winding_number_valid_path by force
-  have iff: "(winding_number \<gamma> z \<in> \<int>) \<longleftrightarrow> (exp (contour_integral p (\<lambda>w. 1 / (w - z))) = 1)"
-    using eq by (simp add: exp_eq_1 complex_is_Int_iff)
-  have "exp (contour_integral p (\<lambda>w. 1 / (w - z))) = (\<gamma> 1 - z) / (\<gamma> 0 - z)"
-    using p winding_number_exp_integral(2) [of p 0 1 z]
-    apply (simp add: valid_path_def path_defs contour_integral_integral exp_minus field_split_simps)
-    by (metis path_image_def pathstart_def pathstart_in_path_image)
-  then have "winding_number p z \<in> \<int> \<longleftrightarrow> pathfinish p = pathstart p"
-    using p wneq iff by (auto simp: path_defs)
-  then show ?thesis using p eq
-    by (auto simp: winding_number_valid_path)
-qed
-
-theorem integer_winding_number:
-  "\<lbrakk>path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>\<rbrakk> \<Longrightarrow> winding_number \<gamma> z \<in> \<int>"
-by (metis integer_winding_number_eq)
-
-
-text\<open>If the winding number's magnitude is at least one, then the path must contain points in every direction.*)
-   We can thus bound the winding number of a path that doesn't intersect a given ray. \<close>
-
-lemma winding_number_pos_meets:
-  fixes z::complex
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and 1: "Re (winding_number \<gamma> z) \<ge> 1"
-      and w: "w \<noteq> z"
-  shows "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image \<gamma>"
-proof -
-  have [simp]: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> \<gamma> x \<noteq> z"
-    using z by (auto simp: path_image_def)
-  have [simp]: "z \<notin> \<gamma> ` {0..1}"
-    using path_image_def z by auto
-  have gpd: "\<gamma> piecewise_C1_differentiable_on {0..1}"
-    using \<gamma> valid_path_def by blast
-  define r where "r = (w - z) / (\<gamma> 0 - z)"
-  have [simp]: "r \<noteq> 0"
-    using w z by (auto simp: r_def)
-  have cont: "continuous_on {0..1}
-     (\<lambda>x. Im (integral {0..x} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z))))"
-    by (intro continuous_intros indefinite_integral_continuous_1 winding_number_exp_integral [OF gpd]; simp)
-  have "Arg2pi r \<le> 2*pi"
-    by (simp add: Arg2pi less_eq_real_def)
-  also have "\<dots> \<le> Im (integral {0..1} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))"
-    using 1
-    apply (simp add: winding_number_valid_path [OF \<gamma> z] contour_integral_integral)
-    apply (simp add: Complex.Re_divide field_simps power2_eq_square)
-    done
-  finally have "Arg2pi r \<le> Im (integral {0..1} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))" .
-  then have "\<exists>t. t \<in> {0..1} \<and> Im(integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x)/(\<gamma> x - z))) = Arg2pi r"
-    by (simp add: Arg2pi_ge_0 cont IVT')
-  then obtain t where t:     "t \<in> {0..1}"
-                  and eqArg: "Im (integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x)/(\<gamma> x - z))) = Arg2pi r"
-    by blast
-  define i where "i = integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
-  have iArg: "Arg2pi r = Im i"
-    using eqArg by (simp add: i_def)
-  have gpdt: "\<gamma> piecewise_C1_differentiable_on {0..t}"
-    by (metis atLeastAtMost_iff atLeastatMost_subset_iff order_refl piecewise_C1_differentiable_on_subset gpd t)
-  have "exp (- i) * (\<gamma> t - z) = \<gamma> 0 - z"
-    unfolding i_def
-    apply (rule winding_number_exp_integral [OF gpdt])
-    using t z unfolding path_image_def by force+
-  then have *: "\<gamma> t - z = exp i * (\<gamma> 0 - z)"
-    by (simp add: exp_minus field_simps)
-  then have "(w - z) = r * (\<gamma> 0 - z)"
-    by (simp add: r_def)
-  then have "z + complex_of_real (exp (Re i)) * (w - z) / complex_of_real (cmod r) = \<gamma> t"
-    apply simp
-    apply (subst Complex_Transcendental.Arg2pi_eq [of r])
-    apply (simp add: iArg)
-    using * apply (simp add: exp_eq_polar field_simps)
-    done
-  with t show ?thesis
-    by (rule_tac x="exp(Re i) / norm r" in exI) (auto simp: path_image_def)
-qed
-
-lemma winding_number_big_meets:
-  fixes z::complex
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "\<bar>Re (winding_number \<gamma> z)\<bar> \<ge> 1"
-      and w: "w \<noteq> z"
-  shows "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image \<gamma>"
-proof -
-  { assume "Re (winding_number \<gamma> z) \<le> - 1"
-    then have "Re (winding_number (reversepath \<gamma>) z) \<ge> 1"
-      by (simp add: \<gamma> valid_path_imp_path winding_number_reversepath z)
-    moreover have "valid_path (reversepath \<gamma>)"
-      using \<gamma> valid_path_imp_reverse by auto
-    moreover have "z \<notin> path_image (reversepath \<gamma>)"
-      by (simp add: z)
-    ultimately have "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image (reversepath \<gamma>)"
-      using winding_number_pos_meets w by blast
-    then have ?thesis
-      by simp
-  }
-  then show ?thesis
-    using assms
-    by (simp add: abs_if winding_number_pos_meets split: if_split_asm)
-qed
-
-lemma winding_number_less_1:
-  fixes z::complex
-  shows
-  "\<lbrakk>valid_path \<gamma>; z \<notin> path_image \<gamma>; w \<noteq> z;
-    \<And>a::real. 0 < a \<Longrightarrow> z + a*(w - z) \<notin> path_image \<gamma>\<rbrakk>
-   \<Longrightarrow> Re(winding_number \<gamma> z) < 1"
-   by (auto simp: not_less dest: winding_number_big_meets)
-
-text\<open>One way of proving that WN=1 for a loop.\<close>
-lemma winding_number_eq_1:
-  fixes z::complex
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      and 0: "0 < Re(winding_number \<gamma> z)" and 2: "Re(winding_number \<gamma> z) < 2"
-  shows "winding_number \<gamma> z = 1"
-proof -
-  have "winding_number \<gamma> z \<in> Ints"
-    by (simp add: \<gamma> integer_winding_number loop valid_path_imp_path z)
-  then show ?thesis
-    using 0 2 by (auto simp: Ints_def)
-qed
-
-subsection\<open>Continuity of winding number and invariance on connected sets\<close>
-
-lemma continuous_at_winding_number:
-  fixes z::complex
-  assumes \<gamma>: "path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-  shows "continuous (at z) (winding_number \<gamma>)"
-proof -
-  obtain e where "e>0" and cbg: "cball z e \<subseteq> - path_image \<gamma>"
-    using open_contains_cball [of "- path_image \<gamma>"]  z
-    by (force simp: closed_def [symmetric] closed_path_image [OF \<gamma>])
-  then have ppag: "path_image \<gamma> \<subseteq> - cball z (e/2)"
-    by (force simp: cball_def dist_norm)
-  have oc: "open (- cball z (e / 2))"
-    by (simp add: closed_def [symmetric])
-  obtain d where "d>0" and pi_eq:
-    "\<And>h1 h2. \<lbrakk>valid_path h1; valid_path h2;
-              (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < d \<and> cmod (h2 t - \<gamma> t) < d);
-              pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1\<rbrakk>
-             \<Longrightarrow>
-               path_image h1 \<subseteq> - cball z (e / 2) \<and>
-               path_image h2 \<subseteq> - cball z (e / 2) \<and>
-               (\<forall>f. f holomorphic_on - cball z (e / 2) \<longrightarrow> contour_integral h2 f = contour_integral h1 f)"
-    using contour_integral_nearby_ends [OF oc \<gamma> ppag] by metis
-  obtain p where p: "valid_path p" "z \<notin> path_image p"
-                    "pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma>"
-              and pg: "\<And>t. t\<in>{0..1} \<Longrightarrow> cmod (\<gamma> t - p t) < min d e / 2"
-              and pi: "contour_integral p (\<lambda>x. 1 / (x - z)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-    using winding_number [OF \<gamma> z, of "min d e / 2"] \<open>d>0\<close> \<open>e>0\<close> by (auto simp: winding_number_prop_def)
-  { fix w
-    assume d2: "cmod (w - z) < d/2" and e2: "cmod (w - z) < e/2"
-    then have wnotp: "w \<notin> path_image p"
-      using cbg \<open>d>0\<close> \<open>e>0\<close>
-      apply (simp add: path_image_def cball_def dist_norm, clarify)
-      apply (frule pg)
-      apply (drule_tac c="\<gamma> x" in subsetD)
-      apply (auto simp: less_eq_real_def norm_minus_commute norm_triangle_half_l)
-      done
-    have wnotg: "w \<notin> path_image \<gamma>"
-      using cbg e2 \<open>e>0\<close> by (force simp: dist_norm norm_minus_commute)
-    { fix k::real
-      assume k: "k>0"
-      then obtain q where q: "valid_path q" "w \<notin> path_image q"
-                             "pathstart q = pathstart \<gamma> \<and> pathfinish q = pathfinish \<gamma>"
-                    and qg: "\<And>t. t \<in> {0..1} \<Longrightarrow> cmod (\<gamma> t - q t) < min k (min d e) / 2"
-                    and qi: "contour_integral q (\<lambda>u. 1 / (u - w)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> w"
-        using winding_number [OF \<gamma> wnotg, of "min k (min d e) / 2"] \<open>d>0\<close> \<open>e>0\<close> k
-        by (force simp: min_divide_distrib_right winding_number_prop_def)
-      have "contour_integral p (\<lambda>u. 1 / (u - w)) = contour_integral q (\<lambda>u. 1 / (u - w))"
-        apply (rule pi_eq [OF \<open>valid_path q\<close> \<open>valid_path p\<close>, THEN conjunct2, THEN conjunct2, rule_format])
-        apply (frule pg)
-        apply (frule qg)
-        using p q \<open>d>0\<close> e2
-        apply (auto simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
-        done
-      then have "contour_integral p (\<lambda>x. 1 / (x - w)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> w"
-        by (simp add: pi qi)
-    } note pip = this
-    have "path p"
-      using p by (simp add: valid_path_imp_path)
-    then have "winding_number p w = winding_number \<gamma> w"
-      apply (rule winding_number_unique [OF _ wnotp])
-      apply (rule_tac x=p in exI)
-      apply (simp add: p wnotp min_divide_distrib_right pip winding_number_prop_def)
-      done
-  } note wnwn = this
-  obtain pe where "pe>0" and cbp: "cball z (3 / 4 * pe) \<subseteq> - path_image p"
-    using p open_contains_cball [of "- path_image p"]
-    by (force simp: closed_def [symmetric] closed_path_image [OF valid_path_imp_path])
-  obtain L
-    where "L>0"
-      and L: "\<And>f B. \<lbrakk>f holomorphic_on - cball z (3 / 4 * pe);
-                      \<forall>z \<in> - cball z (3 / 4 * pe). cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
-                      cmod (contour_integral p f) \<le> L * B"
-    using contour_integral_bound_exists [of "- cball z (3/4*pe)" p] cbp \<open>valid_path p\<close> by force
-  { fix e::real and w::complex
-    assume e: "0 < e" and w: "cmod (w - z) < pe/4" "cmod (w - z) < e * pe\<^sup>2 / (8 * L)"
-    then have [simp]: "w \<notin> path_image p"
-      using cbp p(2) \<open>0 < pe\<close>
-      by (force simp: dist_norm norm_minus_commute path_image_def cball_def)
-    have [simp]: "contour_integral p (\<lambda>x. 1/(x - w)) - contour_integral p (\<lambda>x. 1/(x - z)) =
-                  contour_integral p (\<lambda>x. 1/(x - w) - 1/(x - z))"
-      by (simp add: p contour_integrable_inversediff contour_integral_diff)
-    { fix x
-      assume pe: "3/4 * pe < cmod (z - x)"
-      have "cmod (w - x) < pe/4 + cmod (z - x)"
-        by (meson add_less_cancel_right norm_diff_triangle_le order_refl order_trans_rules(21) w(1))
-      then have wx: "cmod (w - x) < 4/3 * cmod (z - x)" using pe by simp
-      have "cmod (z - x) \<le> cmod (z - w) + cmod (w - x)"
-        using norm_diff_triangle_le by blast
-      also have "\<dots> < pe/4 + cmod (w - x)"
-        using w by (simp add: norm_minus_commute)
-      finally have "pe/2 < cmod (w - x)"
-        using pe by auto
-      then have "(pe/2)^2 < cmod (w - x) ^ 2"
-        apply (rule power_strict_mono)
-        using \<open>pe>0\<close> by auto
-      then have pe2: "pe^2 < 4 * cmod (w - x) ^ 2"
-        by (simp add: power_divide)
-      have "8 * L * cmod (w - z) < e * pe\<^sup>2"
-        using w \<open>L>0\<close> by (simp add: field_simps)
-      also have "\<dots> < e * 4 * cmod (w - x) * cmod (w - x)"
-        using pe2 \<open>e>0\<close> by (simp add: power2_eq_square)
-      also have "\<dots> < e * 4 * cmod (w - x) * (4/3 * cmod (z - x))"
-        using wx
-        apply (rule mult_strict_left_mono)
-        using pe2 e not_less_iff_gr_or_eq by fastforce
-      finally have "L * cmod (w - z) < 2/3 * e * cmod (w - x) * cmod (z - x)"
-        by simp
-      also have "\<dots> \<le> e * cmod (w - x) * cmod (z - x)"
-         using e by simp
-      finally have Lwz: "L * cmod (w - z) < e * cmod (w - x) * cmod (z - x)" .
-      have "L * cmod (1 / (x - w) - 1 / (x - z)) \<le> e"
-        apply (cases "x=z \<or> x=w")
-        using pe \<open>pe>0\<close> w \<open>L>0\<close>
-        apply (force simp: norm_minus_commute)
-        using wx w(2) \<open>L>0\<close> pe pe2 Lwz
-        apply (auto simp: divide_simps mult_less_0_iff norm_minus_commute norm_divide norm_mult power2_eq_square)
-        done
-    } note L_cmod_le = this
-    have *: "cmod (contour_integral p (\<lambda>x. 1 / (x - w) - 1 / (x - z))) \<le> L * (e * pe\<^sup>2 / L / 4 * (inverse (pe / 2))\<^sup>2)"
-      apply (rule L)
-      using \<open>pe>0\<close> w
-      apply (force simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
-      using \<open>pe>0\<close> w \<open>L>0\<close>
-      apply (auto simp: cball_def dist_norm field_simps L_cmod_le  simp del: less_divide_eq_numeral1 le_divide_eq_numeral1)
-      done
-    have "cmod (contour_integral p (\<lambda>x. 1 / (x - w)) - contour_integral p (\<lambda>x. 1 / (x - z))) < 2*e"
-      apply simp
-      apply (rule le_less_trans [OF *])
-      using \<open>L>0\<close> e
-      apply (force simp: field_simps)
-      done
-    then have "cmod (winding_number p w - winding_number p z) < e"
-      using pi_ge_two e
-      by (force simp: winding_number_valid_path p field_simps norm_divide norm_mult intro: less_le_trans)
-  } note cmod_wn_diff = this
-  then have "isCont (winding_number p) z"
-    apply (simp add: continuous_at_eps_delta, clarify)
-    apply (rule_tac x="min (pe/4) (e/2*pe^2/L/4)" in exI)
-    using \<open>pe>0\<close> \<open>L>0\<close>
-    apply (simp add: dist_norm cmod_wn_diff)
-    done
-  then show ?thesis
-    apply (rule continuous_transform_within [where d = "min d e / 2"])
-    apply (auto simp: \<open>d>0\<close> \<open>e>0\<close> dist_norm wnwn)
-    done
-qed
-
-corollary continuous_on_winding_number:
-    "path \<gamma> \<Longrightarrow> continuous_on (- path_image \<gamma>) (\<lambda>w. winding_number \<gamma> w)"
-  by (simp add: continuous_at_imp_continuous_on continuous_at_winding_number)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>The winding number is constant on a connected region\<close>
-
-lemma winding_number_constant:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and cs: "connected S" and sg: "S \<inter> path_image \<gamma> = {}"
-  shows "winding_number \<gamma> constant_on S"
-proof -
-  have *: "1 \<le> cmod (winding_number \<gamma> y - winding_number \<gamma> z)"
-      if ne: "winding_number \<gamma> y \<noteq> winding_number \<gamma> z" and "y \<in> S" "z \<in> S" for y z
-  proof -
-    have "winding_number \<gamma> y \<in> \<int>"  "winding_number \<gamma> z \<in>  \<int>"
-      using that integer_winding_number [OF \<gamma> loop] sg \<open>y \<in> S\<close> by auto
-    with ne show ?thesis
-      by (auto simp: Ints_def simp flip: of_int_diff)
-  qed
-  have cont: "continuous_on S (\<lambda>w. winding_number \<gamma> w)"
-    using continuous_on_winding_number [OF \<gamma>] sg
-    by (meson continuous_on_subset disjoint_eq_subset_Compl)
-  show ?thesis
-    using "*" zero_less_one
-    by (blast intro: continuous_discrete_range_constant [OF cs cont])
-qed
-
-lemma winding_number_eq:
-     "\<lbrakk>path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; w \<in> S; z \<in> S; connected S; S \<inter> path_image \<gamma> = {}\<rbrakk>
-      \<Longrightarrow> winding_number \<gamma> w = winding_number \<gamma> z"
-  using winding_number_constant by (metis constant_on_def)
-
-lemma open_winding_number_levelsets:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-    shows "open {z. z \<notin> path_image \<gamma> \<and> winding_number \<gamma> z = k}"
-proof -
-  have opn: "open (- path_image \<gamma>)"
-    by (simp add: closed_path_image \<gamma> open_Compl)
-  { fix z assume z: "z \<notin> path_image \<gamma>" and k: "k = winding_number \<gamma> z"
-    obtain e where e: "e>0" "ball z e \<subseteq> - path_image \<gamma>"
-      using open_contains_ball [of "- path_image \<gamma>"] opn z
-      by blast
-    have "\<exists>e>0. \<forall>y. dist y z < e \<longrightarrow> y \<notin> path_image \<gamma> \<and> winding_number \<gamma> y = winding_number \<gamma> z"
-      apply (rule_tac x=e in exI)
-      using e apply (simp add: dist_norm ball_def norm_minus_commute)
-      apply (auto simp: dist_norm norm_minus_commute intro!: winding_number_eq [OF assms, where S = "ball z e"])
-      done
-  } then
-  show ?thesis
-    by (auto simp: open_dist)
-qed
-
-subsection\<open>Winding number is zero "outside" a curve\<close>
-
-proposition winding_number_zero_in_outside:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and z: "z \<in> outside (path_image \<gamma>)"
-    shows "winding_number \<gamma> z = 0"
-proof -
-  obtain B::real where "0 < B" and B: "path_image \<gamma> \<subseteq> ball 0 B"
-    using bounded_subset_ballD [OF bounded_path_image [OF \<gamma>]] by auto
-  obtain w::complex where w: "w \<notin> ball 0 (B + 1)"
-    by (metis abs_of_nonneg le_less less_irrefl mem_ball_0 norm_of_real)
-  have "- ball 0 (B + 1) \<subseteq> outside (path_image \<gamma>)"
-    apply (rule outside_subset_convex)
-    using B subset_ball by auto
-  then have wout: "w \<in> outside (path_image \<gamma>)"
-    using w by blast
-  moreover have "winding_number \<gamma> constant_on outside (path_image \<gamma>)"
-    using winding_number_constant [OF \<gamma> loop, of "outside(path_image \<gamma>)"] connected_outside
-    by (metis DIM_complex bounded_path_image dual_order.refl \<gamma> outside_no_overlap)
-  ultimately have "winding_number \<gamma> z = winding_number \<gamma> w"
-    by (metis (no_types, hide_lams) constant_on_def z)
-  also have "\<dots> = 0"
-  proof -
-    have wnot: "w \<notin> path_image \<gamma>"  using wout by (simp add: outside_def)
-    { fix e::real assume "0<e"
-      obtain p where p: "polynomial_function p" "pathstart p = pathstart \<gamma>" "pathfinish p = pathfinish \<gamma>"
-                 and pg1: "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> cmod (p t - \<gamma> t) < 1)"
-                 and pge: "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> cmod (p t - \<gamma> t) < e)"
-        using path_approx_polynomial_function [OF \<gamma>, of "min 1 e"] \<open>e>0\<close> by force
-      have pip: "path_image p \<subseteq> ball 0 (B + 1)"
-        using B
-        apply (clarsimp simp add: path_image_def dist_norm ball_def)
-        apply (frule (1) pg1)
-        apply (fastforce dest: norm_add_less)
-        done
-      then have "w \<notin> path_image p"  using w by blast
-      then have "\<exists>p. valid_path p \<and> w \<notin> path_image p \<and>
-                     pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma> \<and>
-                     (\<forall>t\<in>{0..1}. cmod (\<gamma> t - p t) < e) \<and> contour_integral p (\<lambda>wa. 1 / (wa - w)) = 0"
-        apply (rule_tac x=p in exI)
-        apply (simp add: p valid_path_polynomial_function)
-        apply (intro conjI)
-        using pge apply (simp add: norm_minus_commute)
-        apply (rule contour_integral_unique [OF Cauchy_theorem_convex_simple [OF _ convex_ball [of 0 "B+1"]]])
-        apply (rule holomorphic_intros | simp add: dist_norm)+
-        using mem_ball_0 w apply blast
-        using p apply (simp_all add: valid_path_polynomial_function loop pip)
-        done
-    }
-    then show ?thesis
-      by (auto intro: winding_number_unique [OF \<gamma>] simp add: winding_number_prop_def wnot)
-  qed
-  finally show ?thesis .
-qed
-
-corollary\<^marker>\<open>tag unimportant\<close> winding_number_zero_const: "a \<noteq> z \<Longrightarrow> winding_number (\<lambda>t. a) z = 0"
-  by (rule winding_number_zero_in_outside)
-     (auto simp: pathfinish_def pathstart_def path_polynomial_function)
-
-corollary\<^marker>\<open>tag unimportant\<close> winding_number_zero_outside:
-    "\<lbrakk>path \<gamma>; convex s; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> s; path_image \<gamma> \<subseteq> s\<rbrakk> \<Longrightarrow> winding_number \<gamma> z = 0"
-  by (meson convex_in_outside outside_mono subsetCE winding_number_zero_in_outside)
-
-lemma winding_number_zero_at_infinity:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-    shows "\<exists>B. \<forall>z. B \<le> norm z \<longrightarrow> winding_number \<gamma> z = 0"
-proof -
-  obtain B::real where "0 < B" and B: "path_image \<gamma> \<subseteq> ball 0 B"
-    using bounded_subset_ballD [OF bounded_path_image [OF \<gamma>]] by auto
-  then show ?thesis
-    apply (rule_tac x="B+1" in exI, clarify)
-    apply (rule winding_number_zero_outside [OF \<gamma> convex_cball [of 0 B] loop])
-    apply (meson less_add_one mem_cball_0 not_le order_trans)
-    using ball_subset_cball by blast
-qed
-
-lemma winding_number_zero_point:
-    "\<lbrakk>path \<gamma>; convex s; pathfinish \<gamma> = pathstart \<gamma>; open s; path_image \<gamma> \<subseteq> s\<rbrakk>
-     \<Longrightarrow> \<exists>z. z \<in> s \<and> winding_number \<gamma> z = 0"
-  using outside_compact_in_open [of "path_image \<gamma>" s] path_image_nonempty winding_number_zero_in_outside
-  by (fastforce simp add: compact_path_image)
-
-
-text\<open>If a path winds round a set, it winds rounds its inside.\<close>
-lemma winding_number_around_inside:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      and cls: "closed s" and cos: "connected s" and s_disj: "s \<inter> path_image \<gamma> = {}"
-      and z: "z \<in> s" and wn_nz: "winding_number \<gamma> z \<noteq> 0" and w: "w \<in> s \<union> inside s"
-    shows "winding_number \<gamma> w = winding_number \<gamma> z"
-proof -
-  have ssb: "s \<subseteq> inside(path_image \<gamma>)"
-  proof
-    fix x :: complex
-    assume "x \<in> s"
-    hence "x \<notin> path_image \<gamma>"
-      by (meson disjoint_iff_not_equal s_disj)
-    thus "x \<in> inside (path_image \<gamma>)"
-      using \<open>x \<in> s\<close> by (metis (no_types) ComplI UnE cos \<gamma> loop s_disj union_with_outside winding_number_eq winding_number_zero_in_outside wn_nz z)
-qed
-  show ?thesis
-    apply (rule winding_number_eq [OF \<gamma> loop w])
-    using z apply blast
-    apply (simp add: cls connected_with_inside cos)
-    apply (simp add: Int_Un_distrib2 s_disj, safe)
-    by (meson ssb inside_inside_compact_connected [OF cls, of "path_image \<gamma>"] compact_path_image connected_path_image contra_subsetD disjoint_iff_not_equal \<gamma> inside_no_overlap)
- qed
-
-
-text\<open>Bounding a WN by 1/2 for a path and point in opposite halfspaces.\<close>
-lemma winding_number_subpath_continuous:
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-    shows "continuous_on {0..1} (\<lambda>x. winding_number(subpath 0 x \<gamma>) z)"
-proof -
-  have *: "integral {0..x} (\<lambda>t. vector_derivative \<gamma> (at t) / (\<gamma> t - z)) / (2 * of_real pi * \<i>) =
-         winding_number (subpath 0 x \<gamma>) z"
-         if x: "0 \<le> x" "x \<le> 1" for x
-  proof -
-    have "integral {0..x} (\<lambda>t. vector_derivative \<gamma> (at t) / (\<gamma> t - z)) / (2 * of_real pi * \<i>) =
-          1 / (2*pi*\<i>) * contour_integral (subpath 0 x \<gamma>) (\<lambda>w. 1/(w - z))"
-      using assms x
-      apply (simp add: contour_integral_subcontour_integral [OF contour_integrable_inversediff])
-      done
-    also have "\<dots> = winding_number (subpath 0 x \<gamma>) z"
-      apply (subst winding_number_valid_path)
-      using assms x
-      apply (simp_all add: path_image_subpath valid_path_subpath)
-      by (force simp: path_image_def)
-    finally show ?thesis .
-  qed
-  show ?thesis
-    apply (rule continuous_on_eq
-                 [where f = "\<lambda>x. 1 / (2*pi*\<i>) *
-                                 integral {0..x} (\<lambda>t. 1/(\<gamma> t - z) * vector_derivative \<gamma> (at t))"])
-    apply (rule continuous_intros)+
-    apply (rule indefinite_integral_continuous_1)
-    apply (rule contour_integrable_inversediff [OF assms, unfolded contour_integrable_on])
-      using assms
-    apply (simp add: *)
-    done
-qed
-
-lemma winding_number_ivt_pos:
-    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "0 \<le> w" "w \<le> Re(winding_number \<gamma> z)"
-      shows "\<exists>t \<in> {0..1}. Re(winding_number(subpath 0 t \<gamma>) z) = w"
-  apply (rule ivt_increasing_component_on_1 [of 0 1, where ?k = "1::complex", simplified complex_inner_1_right], simp)
-  apply (rule winding_number_subpath_continuous [OF \<gamma> z])
-  using assms
-  apply (auto simp: path_image_def image_def)
-  done
-
-lemma winding_number_ivt_neg:
-    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "Re(winding_number \<gamma> z) \<le> w" "w \<le> 0"
-      shows "\<exists>t \<in> {0..1}. Re(winding_number(subpath 0 t \<gamma>) z) = w"
-  apply (rule ivt_decreasing_component_on_1 [of 0 1, where ?k = "1::complex", simplified complex_inner_1_right], simp)
-  apply (rule winding_number_subpath_continuous [OF \<gamma> z])
-  using assms
-  apply (auto simp: path_image_def image_def)
-  done
-
-lemma winding_number_ivt_abs:
-    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "0 \<le> w" "w \<le> \<bar>Re(winding_number \<gamma> z)\<bar>"
-      shows "\<exists>t \<in> {0..1}. \<bar>Re (winding_number (subpath 0 t \<gamma>) z)\<bar> = w"
-  using assms winding_number_ivt_pos [of \<gamma> z w] winding_number_ivt_neg [of \<gamma> z "-w"]
-  by force
-
-lemma winding_number_lt_half_lemma:
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and az: "a \<bullet> z \<le> b" and pag: "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}"
-    shows "Re(winding_number \<gamma> z) < 1/2"
-proof -
-  { assume "Re(winding_number \<gamma> z) \<ge> 1/2"
-    then obtain t::real where t: "0 \<le> t" "t \<le> 1" and sub12: "Re (winding_number (subpath 0 t \<gamma>) z) = 1/2"
-      using winding_number_ivt_pos [OF \<gamma> z, of "1/2"] by auto
-    have gt: "\<gamma> t - z = - (of_real (exp (- (2 * pi * Im (winding_number (subpath 0 t \<gamma>) z)))) * (\<gamma> 0 - z))"
-      using winding_number_exp_2pi [of "subpath 0 t \<gamma>" z]
-      apply (simp add: t \<gamma> valid_path_imp_path)
-      using closed_segment_eq_real_ivl path_image_def t z by (fastforce simp: path_image_subpath Euler sub12)
-    have "b < a \<bullet> \<gamma> 0"
-    proof -
-      have "\<gamma> 0 \<in> {c. b < a \<bullet> c}"
-        by (metis (no_types) pag atLeastAtMost_iff image_subset_iff order_refl path_image_def zero_le_one)
-      thus ?thesis
-        by blast
-    qed
-    moreover have "b < a \<bullet> \<gamma> t"
-    proof -
-      have "\<gamma> t \<in> {c. b < a \<bullet> c}"
-        by (metis (no_types) pag atLeastAtMost_iff image_subset_iff path_image_def t)
-      thus ?thesis
-        by blast
-    qed
-    ultimately have "0 < a \<bullet> (\<gamma> 0 - z)" "0 < a \<bullet> (\<gamma> t - z)" using az
-      by (simp add: inner_diff_right)+
-    then have False
-      by (simp add: gt inner_mult_right mult_less_0_iff)
-  }
-  then show ?thesis by force
-qed
-
-lemma winding_number_lt_half:
-  assumes "valid_path \<gamma>" "a \<bullet> z \<le> b" "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}"
-    shows "\<bar>Re (winding_number \<gamma> z)\<bar> < 1/2"
-proof -
-  have "z \<notin> path_image \<gamma>" using assms by auto
-  with assms show ?thesis
-    apply (simp add: winding_number_lt_half_lemma abs_if del: less_divide_eq_numeral1)
-    apply (metis complex_inner_1_right winding_number_lt_half_lemma [OF valid_path_imp_reverse, of \<gamma> z a b]
-                 winding_number_reversepath valid_path_imp_path inner_minus_left path_image_reversepath)
-    done
-qed
-
-lemma winding_number_le_half:
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-      and anz: "a \<noteq> 0" and azb: "a \<bullet> z \<le> b" and pag: "path_image \<gamma> \<subseteq> {w. a \<bullet> w \<ge> b}"
-    shows "\<bar>Re (winding_number \<gamma> z)\<bar> \<le> 1/2"
-proof -
-  { assume wnz_12: "\<bar>Re (winding_number \<gamma> z)\<bar> > 1/2"
-    have "isCont (winding_number \<gamma>) z"
-      by (metis continuous_at_winding_number valid_path_imp_path \<gamma> z)
-    then obtain d where "d>0" and d: "\<And>x'. dist x' z < d \<Longrightarrow> dist (winding_number \<gamma> x') (winding_number \<gamma> z) < \<bar>Re(winding_number \<gamma> z)\<bar> - 1/2"
-      using continuous_at_eps_delta wnz_12 diff_gt_0_iff_gt by blast
-    define z' where "z' = z - (d / (2 * cmod a)) *\<^sub>R a"
-    have *: "a \<bullet> z' \<le> b - d / 3 * cmod a"
-      unfolding z'_def inner_mult_right' divide_inverse
-      apply (simp add: field_split_simps algebra_simps dot_square_norm power2_eq_square anz)
-      apply (metis \<open>0 < d\<close> add_increasing azb less_eq_real_def mult_nonneg_nonneg mult_right_mono norm_ge_zero norm_numeral)
-      done
-    have "cmod (winding_number \<gamma> z' - winding_number \<gamma> z) < \<bar>Re (winding_number \<gamma> z)\<bar> - 1/2"
-      using d [of z'] anz \<open>d>0\<close> by (simp add: dist_norm z'_def)
-    then have "1/2 < \<bar>Re (winding_number \<gamma> z)\<bar> - cmod (winding_number \<gamma> z' - winding_number \<gamma> z)"
-      by simp
-    then have "1/2 < \<bar>Re (winding_number \<gamma> z)\<bar> - \<bar>Re (winding_number \<gamma> z') - Re (winding_number \<gamma> z)\<bar>"
-      using abs_Re_le_cmod [of "winding_number \<gamma> z' - winding_number \<gamma> z"] by simp
-    then have wnz_12': "\<bar>Re (winding_number \<gamma> z')\<bar> > 1/2"
-      by linarith
-    moreover have "\<bar>Re (winding_number \<gamma> z')\<bar> < 1/2"
-      apply (rule winding_number_lt_half [OF \<gamma> *])
-      using azb \<open>d>0\<close> pag
-      apply (auto simp: add_strict_increasing anz field_split_simps dest!: subsetD)
-      done
-    ultimately have False
-      by simp
-  }
-  then show ?thesis by force
-qed
-
-lemma winding_number_lt_half_linepath: "z \<notin> closed_segment a b \<Longrightarrow> \<bar>Re (winding_number (linepath a b) z)\<bar> < 1/2"
-  using separating_hyperplane_closed_point [of "closed_segment a b" z]
-  apply auto
-  apply (simp add: closed_segment_def)
-  apply (drule less_imp_le)
-  apply (frule winding_number_lt_half [OF valid_path_linepath [of a b]])
-  apply (auto simp: segment)
-  done
-
-
-text\<open> Positivity of WN for a linepath.\<close>
-lemma winding_number_linepath_pos_lt:
-    assumes "0 < Im ((b - a) * cnj (b - z))"
-      shows "0 < Re(winding_number(linepath a b) z)"
-proof -
-  have z: "z \<notin> path_image (linepath a b)"
-    using assms
-    by (simp add: closed_segment_def) (force simp: algebra_simps)
-  show ?thesis
-    apply (rule winding_number_pos_lt [OF valid_path_linepath z assms])
-    apply (simp add: linepath_def algebra_simps)
-    done
-qed
-
-
-subsection\<open>Cauchy's integral formula, again for a convex enclosing set\<close>
-
-lemma Cauchy_integral_formula_weak:
-    assumes s: "convex s" and "finite k" and conf: "continuous_on s f"
-        and fcd: "(\<And>x. x \<in> interior s - k \<Longrightarrow> f field_differentiable at x)"
-        and z: "z \<in> interior s - k" and vpg: "valid_path \<gamma>"
-        and pasz: "path_image \<gamma> \<subseteq> s - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  obtain f' where f': "(f has_field_derivative f') (at z)"
-    using fcd [OF z] by (auto simp: field_differentiable_def)
-  have pas: "path_image \<gamma> \<subseteq> s" and znotin: "z \<notin> path_image \<gamma>" using pasz by blast+
-  have c: "continuous (at x within s) (\<lambda>w. if w = z then f' else (f w - f z) / (w - z))" if "x \<in> s" for x
-  proof (cases "x = z")
-    case True then show ?thesis
-      apply (simp add: continuous_within)
-      apply (rule Lim_transform_away_within [of _ "z+1" _ "\<lambda>w::complex. (f w - f z)/(w - z)"])
-      using has_field_derivative_at_within has_field_derivative_iff f'
-      apply (fastforce simp add:)+
-      done
-  next
-    case False
-    then have dxz: "dist x z > 0" by auto
-    have cf: "continuous (at x within s) f"
-      using conf continuous_on_eq_continuous_within that by blast
-    have "continuous (at x within s) (\<lambda>w. (f w - f z) / (w - z))"
-      by (rule cf continuous_intros | simp add: False)+
-    then show ?thesis
-      apply (rule continuous_transform_within [OF _ dxz that, of "\<lambda>w::complex. (f w - f z)/(w - z)"])
-      apply (force simp: dist_commute)
-      done
-  qed
-  have fink': "finite (insert z k)" using \<open>finite k\<close> by blast
-  have *: "((\<lambda>w. if w = z then f' else (f w - f z) / (w - z)) has_contour_integral 0) \<gamma>"
-    apply (rule Cauchy_theorem_convex [OF _ s fink' _ vpg pas loop])
-    using c apply (force simp: continuous_on_eq_continuous_within)
-    apply (rename_tac w)
-    apply (rule_tac d="dist w z" and f = "\<lambda>w. (f w - f z)/(w - z)" in field_differentiable_transform_within)
-    apply (simp_all add: dist_pos_lt dist_commute)
-    apply (metis less_irrefl)
-    apply (rule derivative_intros fcd | simp)+
-    done
-  show ?thesis
-    apply (rule has_contour_integral_eq)
-    using znotin has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number [OF vpg znotin], of "f z"] *]
-    apply (auto simp: ac_simps divide_simps)
-    done
-qed
-
-theorem Cauchy_integral_formula_convex_simple:
-    "\<lbrakk>convex s; f holomorphic_on s; z \<in> interior s; valid_path \<gamma>; path_image \<gamma> \<subseteq> s - {z};
-      pathfinish \<gamma> = pathstart \<gamma>\<rbrakk>
-     \<Longrightarrow> ((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-  apply (rule Cauchy_integral_formula_weak [where k = "{}"])
-  using holomorphic_on_imp_continuous_on
-  by auto (metis at_within_interior holomorphic_on_def interiorE subsetCE)
-
-subsection\<open>Homotopy forms of Cauchy's theorem\<close>
-
-lemma Cauchy_theorem_homotopic:
-    assumes hom: "if atends then homotopic_paths s g h else homotopic_loops s g h"
-        and "open s" and f: "f holomorphic_on s"
-        and vpg: "valid_path g" and vph: "valid_path h"
-    shows "contour_integral g f = contour_integral h f"
-proof -
-  have pathsf: "linked_paths atends g h"
-    using hom  by (auto simp: linked_paths_def homotopic_paths_imp_pathstart homotopic_paths_imp_pathfinish homotopic_loops_imp_loop)
-  obtain k :: "real \<times> real \<Rightarrow> complex"
-    where contk: "continuous_on ({0..1} \<times> {0..1}) k"
-      and ks: "k ` ({0..1} \<times> {0..1}) \<subseteq> s"
-      and k [simp]: "\<forall>x. k (0, x) = g x" "\<forall>x. k (1, x) = h x"
-      and ksf: "\<forall>t\<in>{0..1}. linked_paths atends g (\<lambda>x. k (t, x))"
-      using hom pathsf by (auto simp: linked_paths_def homotopic_paths_def homotopic_loops_def homotopic_with_def split: if_split_asm)
-  have ucontk: "uniformly_continuous_on ({0..1} \<times> {0..1}) k"
-    by (blast intro: compact_Times compact_uniformly_continuous [OF contk])
-  { fix t::real assume t: "t \<in> {0..1}"
-    have pak: "path (k \<circ> (\<lambda>u. (t, u)))"
-      unfolding path_def
-      apply (rule continuous_intros continuous_on_subset [OF contk])+
-      using t by force
-    have pik: "path_image (k \<circ> Pair t) \<subseteq> s"
-      using ks t by (auto simp: path_image_def)
-    obtain e where "e>0" and e:
-         "\<And>g h. \<lbrakk>valid_path g; valid_path h;
-                  \<forall>u\<in>{0..1}. cmod (g u - (k \<circ> Pair t) u) < e \<and> cmod (h u - (k \<circ> Pair t) u) < e;
-                  linked_paths atends g h\<rbrakk>
-                 \<Longrightarrow> contour_integral h f = contour_integral g f"
-      using contour_integral_nearby [OF \<open>open s\<close> pak pik, of atends] f by metis
-    obtain d where "d>0" and d:
-        "\<And>x x'. \<lbrakk>x \<in> {0..1} \<times> {0..1}; x' \<in> {0..1} \<times> {0..1}; norm (x'-x) < d\<rbrakk> \<Longrightarrow> norm (k x' - k x) < e/4"
-      by (rule uniformly_continuous_onE [OF ucontk, of "e/4"]) (auto simp: dist_norm \<open>e>0\<close>)
-    { fix t1 t2
-      assume t1: "0 \<le> t1" "t1 \<le> 1" and t2: "0 \<le> t2" "t2 \<le> 1" and ltd: "\<bar>t1 - t\<bar> < d" "\<bar>t2 - t\<bar> < d"
-      have no2: "\<And>g1 k1 kt. \<lbrakk>norm(g1 - k1) < e/4; norm(k1 - kt) < e/4\<rbrakk> \<Longrightarrow> norm(g1 - kt) < e"
-        using \<open>e > 0\<close>
-        apply (rule_tac y = k1 in norm_triangle_half_l)
-        apply (auto simp: norm_minus_commute intro: order_less_trans)
-        done
-      have "\<exists>d>0. \<forall>g1 g2. valid_path g1 \<and> valid_path g2 \<and>
-                          (\<forall>u\<in>{0..1}. cmod (g1 u - k (t1, u)) < d \<and> cmod (g2 u - k (t2, u)) < d) \<and>
-                          linked_paths atends g1 g2 \<longrightarrow>
-                          contour_integral g2 f = contour_integral g1 f"
-        apply (rule_tac x="e/4" in exI)
-        using t t1 t2 ltd \<open>e > 0\<close>
-        apply (auto intro!: e simp: d no2 simp del: less_divide_eq_numeral1)
-        done
-    }
-    then have "\<exists>e. 0 < e \<and>
-              (\<forall>t1 t2. t1 \<in> {0..1} \<and> t2 \<in> {0..1} \<and> \<bar>t1 - t\<bar> < e \<and> \<bar>t2 - t\<bar> < e
-                \<longrightarrow> (\<exists>d. 0 < d \<and>
-                     (\<forall>g1 g2. valid_path g1 \<and> valid_path g2 \<and>
-                       (\<forall>u \<in> {0..1}.
-                          norm(g1 u - k((t1,u))) < d \<and> norm(g2 u - k((t2,u))) < d) \<and>
-                          linked_paths atends g1 g2
-                          \<longrightarrow> contour_integral g2 f = contour_integral g1 f)))"
-      by (rule_tac x=d in exI) (simp add: \<open>d > 0\<close>)
-  }
-  then obtain ee where ee:
-       "\<And>t. t \<in> {0..1} \<Longrightarrow> ee t > 0 \<and>
-          (\<forall>t1 t2. t1 \<in> {0..1} \<longrightarrow> t2 \<in> {0..1} \<longrightarrow> \<bar>t1 - t\<bar> < ee t \<longrightarrow> \<bar>t2 - t\<bar> < ee t
-            \<longrightarrow> (\<exists>d. 0 < d \<and>
-                 (\<forall>g1 g2. valid_path g1 \<and> valid_path g2 \<and>
-                   (\<forall>u \<in> {0..1}.
-                      norm(g1 u - k((t1,u))) < d \<and> norm(g2 u - k((t2,u))) < d) \<and>
-                      linked_paths atends g1 g2
-                      \<longrightarrow> contour_integral g2 f = contour_integral g1 f)))"
-    by metis
-  note ee_rule = ee [THEN conjunct2, rule_format]
-  define C where "C = (\<lambda>t. ball t (ee t / 3)) ` {0..1}"
-  obtain C' where C': "C' \<subseteq> C" "finite C'" and C'01: "{0..1} \<subseteq> \<Union>C'"
-  proof (rule compactE [OF compact_interval])
-    show "{0..1} \<subseteq> \<Union>C"
-      using ee [THEN conjunct1] by (auto simp: C_def dist_norm)
-  qed (use C_def in auto)
-  define kk where "kk = {t \<in> {0..1}. ball t (ee t / 3) \<in> C'}"
-  have kk01: "kk \<subseteq> {0..1}" by (auto simp: kk_def)
-  define e where "e = Min (ee ` kk)"
-  have C'_eq: "C' = (\<lambda>t. ball t (ee t / 3)) ` kk"
-    using C' by (auto simp: kk_def C_def)
-  have ee_pos[simp]: "\<And>t. t \<in> {0..1} \<Longrightarrow> ee t > 0"
-    by (simp add: kk_def ee)
-  moreover have "finite kk"
-    using \<open>finite C'\<close> kk01 by (force simp: C'_eq inj_on_def ball_eq_ball_iff dest: ee_pos finite_imageD)
-  moreover have "kk \<noteq> {}" using \<open>{0..1} \<subseteq> \<Union>C'\<close> C'_eq by force
-  ultimately have "e > 0"
-    using finite_less_Inf_iff [of "ee ` kk" 0] kk01 by (force simp: e_def)
-  then obtain N::nat where "N > 0" and N: "1/N < e/3"
-    by (meson divide_pos_pos nat_approx_posE zero_less_Suc zero_less_numeral)
-  have e_le_ee: "\<And>i. i \<in> kk \<Longrightarrow> e \<le> ee i"
-    using \<open>finite kk\<close> by (simp add: e_def Min_le_iff [of "ee ` kk"])
-  have plus: "\<exists>t \<in> kk. x \<in> ball t (ee t / 3)" if "x \<in> {0..1}" for x
-    using C' subsetD [OF C'01 that]  unfolding C'_eq by blast
-  have [OF order_refl]:
-      "\<exists>d. 0 < d \<and> (\<forall>j. valid_path j \<and> (\<forall>u \<in> {0..1}. norm(j u - k (n/N, u)) < d) \<and> linked_paths atends g j
-                        \<longrightarrow> contour_integral j f = contour_integral g f)"
-       if "n \<le> N" for n
-  using that
-  proof (induct n)
-    case 0 show ?case using ee_rule [of 0 0 0]
-      apply clarsimp
-      apply (rule_tac x=d in exI, safe)
-      by (metis diff_self vpg norm_zero)
-  next
-    case (Suc n)
-    then have N01: "n/N \<in> {0..1}" "(Suc n)/N \<in> {0..1}"  by auto
-    then obtain t where t: "t \<in> kk" "n/N \<in> ball t (ee t / 3)"
-      using plus [of "n/N"] by blast
-    then have nN_less: "\<bar>n/N - t\<bar> < ee t"
-      by (simp add: dist_norm del: less_divide_eq_numeral1)
-    have n'N_less: "\<bar>real (Suc n) / real N - t\<bar> < ee t"
-      using t N \<open>N > 0\<close> e_le_ee [of t]
-      by (simp add: dist_norm add_divide_distrib abs_diff_less_iff del: less_divide_eq_numeral1) (simp add: field_simps)
-    have t01: "t \<in> {0..1}" using \<open>kk \<subseteq> {0..1}\<close> \<open>t \<in> kk\<close> by blast
-    obtain d1 where "d1 > 0" and d1:
-        "\<And>g1 g2. \<lbrakk>valid_path g1; valid_path g2;
-                   \<forall>u\<in>{0..1}. cmod (g1 u - k (n/N, u)) < d1 \<and> cmod (g2 u - k ((Suc n) / N, u)) < d1;
-                   linked_paths atends g1 g2\<rbrakk>
-                   \<Longrightarrow> contour_integral g2 f = contour_integral g1 f"
-      using ee [THEN conjunct2, rule_format, OF t01 N01 nN_less n'N_less] by fastforce
-    have "n \<le> N" using Suc.prems by auto
-    with Suc.hyps
-    obtain d2 where "d2 > 0"
-      and d2: "\<And>j. \<lbrakk>valid_path j; \<forall>u\<in>{0..1}. cmod (j u - k (n/N, u)) < d2; linked_paths atends g j\<rbrakk>
-                     \<Longrightarrow> contour_integral j f = contour_integral g f"
-        by auto
-    have "continuous_on {0..1} (k \<circ> (\<lambda>u. (n/N, u)))"
-      apply (rule continuous_intros continuous_on_subset [OF contk])+
-      using N01 by auto
-    then have pkn: "path (\<lambda>u. k (n/N, u))"
-      by (simp add: path_def)
-    have min12: "min d1 d2 > 0" by (simp add: \<open>0 < d1\<close> \<open>0 < d2\<close>)
-    obtain p where "polynomial_function p"
-        and psf: "pathstart p = pathstart (\<lambda>u. k (n/N, u))"
-                 "pathfinish p = pathfinish (\<lambda>u. k (n/N, u))"
-        and pk_le:  "\<And>t. t\<in>{0..1} \<Longrightarrow> cmod (p t - k (n/N, t)) < min d1 d2"
-      using path_approx_polynomial_function [OF pkn min12] by blast
-    then have vpp: "valid_path p" using valid_path_polynomial_function by blast
-    have lpa: "linked_paths atends g p"
-      by (metis (mono_tags, lifting) N01(1) ksf linked_paths_def pathfinish_def pathstart_def psf)
-    show ?case
-    proof (intro exI; safe)
-      fix j
-      assume "valid_path j" "linked_paths atends g j"
-        and "\<forall>u\<in>{0..1}. cmod (j u - k (real (Suc n) / real N, u)) < min d1 d2"
-      then have "contour_integral j f = contour_integral p f"
-        using pk_le N01(1) ksf by (force intro!: vpp d1 simp add: linked_paths_def psf)
-      also have "... = contour_integral g f"
-        using pk_le by (force intro!: vpp d2 lpa)
-      finally show "contour_integral j f = contour_integral g f" .
-    qed (simp add: \<open>0 < d1\<close> \<open>0 < d2\<close>)
-  qed
-  then obtain d where "0 < d"
-                       "\<And>j. valid_path j \<and> (\<forall>u \<in> {0..1}. norm(j u - k (1,u)) < d) \<and> linked_paths atends g j
-                            \<Longrightarrow> contour_integral j f = contour_integral g f"
-    using \<open>N>0\<close> by auto
-  then have "linked_paths atends g h \<Longrightarrow> contour_integral h f = contour_integral g f"
-    using \<open>N>0\<close> vph by fastforce
-  then show ?thesis
-    by (simp add: pathsf)
-qed
-
-proposition Cauchy_theorem_homotopic_paths:
-    assumes hom: "homotopic_paths s g h"
-        and "open s" and f: "f holomorphic_on s"
-        and vpg: "valid_path g" and vph: "valid_path h"
-    shows "contour_integral g f = contour_integral h f"
-  using Cauchy_theorem_homotopic [of True s g h] assms by simp
-
-proposition Cauchy_theorem_homotopic_loops:
-    assumes hom: "homotopic_loops s g h"
-        and "open s" and f: "f holomorphic_on s"
-        and vpg: "valid_path g" and vph: "valid_path h"
-    shows "contour_integral g f = contour_integral h f"
-  using Cauchy_theorem_homotopic [of False s g h] assms by simp
-
-lemma has_contour_integral_newpath:
-    "\<lbrakk>(f has_contour_integral y) h; f contour_integrable_on g; contour_integral g f = contour_integral h f\<rbrakk>
-     \<Longrightarrow> (f has_contour_integral y) g"
-  using has_contour_integral_integral contour_integral_unique by auto
-
-lemma Cauchy_theorem_null_homotopic:
-     "\<lbrakk>f holomorphic_on s; open s; valid_path g; homotopic_loops s g (linepath a a)\<rbrakk> \<Longrightarrow> (f has_contour_integral 0) g"
-  apply (rule has_contour_integral_newpath [where h = "linepath a a"], simp)
-  using contour_integrable_holomorphic_simple
-    apply (blast dest: holomorphic_on_imp_continuous_on homotopic_loops_imp_subset)
-  by (simp add: Cauchy_theorem_homotopic_loops)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>More winding number properties\<close>
-
-text\<open>including the fact that it's +-1 inside a simple closed curve.\<close>
-
-lemma winding_number_homotopic_paths:
-    assumes "homotopic_paths (-{z}) g h"
-      shows "winding_number g z = winding_number h z"
-proof -
-  have "path g" "path h" using homotopic_paths_imp_path [OF assms] by auto
-  moreover have pag: "z \<notin> path_image g" and pah: "z \<notin> path_image h"
-    using homotopic_paths_imp_subset [OF assms] by auto
-  ultimately obtain d e where "d > 0" "e > 0"
-      and d: "\<And>p. \<lbrakk>path p; pathstart p = pathstart g; pathfinish p = pathfinish g; \<forall>t\<in>{0..1}. norm (p t - g t) < d\<rbrakk>
-            \<Longrightarrow> homotopic_paths (-{z}) g p"
-      and e: "\<And>q. \<lbrakk>path q; pathstart q = pathstart h; pathfinish q = pathfinish h; \<forall>t\<in>{0..1}. norm (q t - h t) < e\<rbrakk>
-            \<Longrightarrow> homotopic_paths (-{z}) h q"
-    using homotopic_nearby_paths [of g "-{z}"] homotopic_nearby_paths [of h "-{z}"] by force
-  obtain p where p:
-       "valid_path p" "z \<notin> path_image p"
-       "pathstart p = pathstart g" "pathfinish p = pathfinish g"
-       and gp_less:"\<forall>t\<in>{0..1}. cmod (g t - p t) < d"
-       and pap: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number g z"
-    using winding_number [OF \<open>path g\<close> pag \<open>0 < d\<close>] unfolding winding_number_prop_def by blast
-  obtain q where q:
-       "valid_path q" "z \<notin> path_image q"
-       "pathstart q = pathstart h" "pathfinish q = pathfinish h"
-       and hq_less: "\<forall>t\<in>{0..1}. cmod (h t - q t) < e"
-       and paq:  "contour_integral q (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number h z"
-    using winding_number [OF \<open>path h\<close> pah \<open>0 < e\<close>] unfolding winding_number_prop_def by blast
-  have "homotopic_paths (- {z}) g p"
-    by (simp add: d p valid_path_imp_path norm_minus_commute gp_less)
-  moreover have "homotopic_paths (- {z}) h q"
-    by (simp add: e q valid_path_imp_path norm_minus_commute hq_less)
-  ultimately have "homotopic_paths (- {z}) p q"
-    by (blast intro: homotopic_paths_trans homotopic_paths_sym assms)
-  then have "contour_integral p (\<lambda>w. 1/(w - z)) = contour_integral q (\<lambda>w. 1/(w - z))"
-    by (rule Cauchy_theorem_homotopic_paths) (auto intro!: holomorphic_intros simp: p q)
-  then show ?thesis
-    by (simp add: pap paq)
-qed
-
-lemma winding_number_homotopic_loops:
-    assumes "homotopic_loops (-{z}) g h"
-      shows "winding_number g z = winding_number h z"
-proof -
-  have "path g" "path h" using homotopic_loops_imp_path [OF assms] by auto
-  moreover have pag: "z \<notin> path_image g" and pah: "z \<notin> path_image h"
-    using homotopic_loops_imp_subset [OF assms] by auto
-  moreover have gloop: "pathfinish g = pathstart g" and hloop: "pathfinish h = pathstart h"
-    using homotopic_loops_imp_loop [OF assms] by auto
-  ultimately obtain d e where "d > 0" "e > 0"
-      and d: "\<And>p. \<lbrakk>path p; pathfinish p = pathstart p; \<forall>t\<in>{0..1}. norm (p t - g t) < d\<rbrakk>
-            \<Longrightarrow> homotopic_loops (-{z}) g p"
-      and e: "\<And>q. \<lbrakk>path q; pathfinish q = pathstart q; \<forall>t\<in>{0..1}. norm (q t - h t) < e\<rbrakk>
-            \<Longrightarrow> homotopic_loops (-{z}) h q"
-    using homotopic_nearby_loops [of g "-{z}"] homotopic_nearby_loops [of h "-{z}"] by force
-  obtain p where p:
-       "valid_path p" "z \<notin> path_image p"
-       "pathstart p = pathstart g" "pathfinish p = pathfinish g"
-       and gp_less:"\<forall>t\<in>{0..1}. cmod (g t - p t) < d"
-       and pap: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number g z"
-    using winding_number [OF \<open>path g\<close> pag \<open>0 < d\<close>] unfolding winding_number_prop_def by blast
-  obtain q where q:
-       "valid_path q" "z \<notin> path_image q"
-       "pathstart q = pathstart h" "pathfinish q = pathfinish h"
-       and hq_less: "\<forall>t\<in>{0..1}. cmod (h t - q t) < e"
-       and paq:  "contour_integral q (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number h z"
-    using winding_number [OF \<open>path h\<close> pah \<open>0 < e\<close>] unfolding winding_number_prop_def by blast
-  have gp: "homotopic_loops (- {z}) g p"
-    by (simp add: gloop d gp_less norm_minus_commute p valid_path_imp_path)
-  have hq: "homotopic_loops (- {z}) h q"
-    by (simp add: e hloop hq_less norm_minus_commute q valid_path_imp_path)
-  have "contour_integral p (\<lambda>w. 1/(w - z)) = contour_integral q (\<lambda>w. 1/(w - z))"
-  proof (rule Cauchy_theorem_homotopic_loops)
-    show "homotopic_loops (- {z}) p q"
-      by (blast intro: homotopic_loops_trans homotopic_loops_sym gp hq assms)
-  qed (auto intro!: holomorphic_intros simp: p q)
-  then show ?thesis
-    by (simp add: pap paq)
-qed
-
-lemma winding_number_paths_linear_eq:
-  "\<lbrakk>path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
-    \<And>t. t \<in> {0..1} \<Longrightarrow> z \<notin> closed_segment (g t) (h t)\<rbrakk>
-        \<Longrightarrow> winding_number h z = winding_number g z"
-  by (blast intro: sym homotopic_paths_linear winding_number_homotopic_paths)
-
-lemma winding_number_loops_linear_eq:
-  "\<lbrakk>path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
-    \<And>t. t \<in> {0..1} \<Longrightarrow> z \<notin> closed_segment (g t) (h t)\<rbrakk>
-        \<Longrightarrow> winding_number h z = winding_number g z"
-  by (blast intro: sym homotopic_loops_linear winding_number_homotopic_loops)
-
-lemma winding_number_nearby_paths_eq:
-     "\<lbrakk>path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
-      \<And>t. t \<in> {0..1} \<Longrightarrow> norm(h t - g t) < norm(g t - z)\<rbrakk>
-      \<Longrightarrow> winding_number h z = winding_number g z"
-  by (metis segment_bound(2) norm_minus_commute not_le winding_number_paths_linear_eq)
-
-lemma winding_number_nearby_loops_eq:
-     "\<lbrakk>path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
-      \<And>t. t \<in> {0..1} \<Longrightarrow> norm(h t - g t) < norm(g t - z)\<rbrakk>
-      \<Longrightarrow> winding_number h z = winding_number g z"
-  by (metis segment_bound(2) norm_minus_commute not_le winding_number_loops_linear_eq)
-
-
-lemma winding_number_subpath_combine:
-    "\<lbrakk>path g; z \<notin> path_image g;
-      u \<in> {0..1}; v \<in> {0..1}; w \<in> {0..1}\<rbrakk>
-      \<Longrightarrow> winding_number (subpath u v g) z + winding_number (subpath v w g) z =
-          winding_number (subpath u w g) z"
-apply (rule trans [OF winding_number_join [THEN sym]
-                      winding_number_homotopic_paths [OF homotopic_join_subpaths]])
-  using path_image_subpath_subset by auto
-
-subsection\<open>Partial circle path\<close>
-
-definition\<^marker>\<open>tag important\<close> part_circlepath :: "[complex, real, real, real, real] \<Rightarrow> complex"
-  where "part_circlepath z r s t \<equiv> \<lambda>x. z + of_real r * exp (\<i> * of_real (linepath s t x))"
-
-lemma pathstart_part_circlepath [simp]:
-     "pathstart(part_circlepath z r s t) = z + r*exp(\<i> * s)"
-by (metis part_circlepath_def pathstart_def pathstart_linepath)
-
-lemma pathfinish_part_circlepath [simp]:
-     "pathfinish(part_circlepath z r s t) = z + r*exp(\<i>*t)"
-by (metis part_circlepath_def pathfinish_def pathfinish_linepath)
-
-lemma reversepath_part_circlepath[simp]:
-    "reversepath (part_circlepath z r s t) = part_circlepath z r t s"
-  unfolding part_circlepath_def reversepath_def linepath_def 
-  by (auto simp:algebra_simps)
-    
-lemma has_vector_derivative_part_circlepath [derivative_intros]:
-    "((part_circlepath z r s t) has_vector_derivative
-      (\<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)))
-     (at x within X)"
-  apply (simp add: part_circlepath_def linepath_def scaleR_conv_of_real)
-  apply (rule has_vector_derivative_real_field)
-  apply (rule derivative_eq_intros | simp)+
-  done
-
-lemma differentiable_part_circlepath:
-  "part_circlepath c r a b differentiable at x within A"
-  using has_vector_derivative_part_circlepath[of c r a b x A] differentiableI_vector by blast
-
-lemma vector_derivative_part_circlepath:
-    "vector_derivative (part_circlepath z r s t) (at x) =
-       \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
-  using has_vector_derivative_part_circlepath vector_derivative_at by blast
-
-lemma vector_derivative_part_circlepath01:
-    "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk>
-     \<Longrightarrow> vector_derivative (part_circlepath z r s t) (at x within {0..1}) =
-          \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
-  using has_vector_derivative_part_circlepath
-  by (auto simp: vector_derivative_at_within_ivl)
-
-lemma valid_path_part_circlepath [simp]: "valid_path (part_circlepath z r s t)"
-  apply (simp add: valid_path_def)
-  apply (rule C1_differentiable_imp_piecewise)
-  apply (auto simp: C1_differentiable_on_eq vector_derivative_works vector_derivative_part_circlepath has_vector_derivative_part_circlepath
-              intro!: continuous_intros)
-  done
-
-lemma path_part_circlepath [simp]: "path (part_circlepath z r s t)"
-  by (simp add: valid_path_imp_path)
-
-proposition path_image_part_circlepath:
-  assumes "s \<le> t"
-    shows "path_image (part_circlepath z r s t) = {z + r * exp(\<i> * of_real x) | x. s \<le> x \<and> x \<le> t}"
-proof -
-  { fix z::real
-    assume "0 \<le> z" "z \<le> 1"
-    with \<open>s \<le> t\<close> have "\<exists>x. (exp (\<i> * linepath s t z) = exp (\<i> * of_real x)) \<and> s \<le> x \<and> x \<le> t"
-      apply (rule_tac x="(1 - z) * s + z * t" in exI)
-      apply (simp add: linepath_def scaleR_conv_of_real algebra_simps)
-      apply (rule conjI)
-      using mult_right_mono apply blast
-      using affine_ineq  by (metis "mult.commute")
-  }
-  moreover
-  { fix z
-    assume "s \<le> z" "z \<le> t"
-    then have "z + of_real r * exp (\<i> * of_real z) \<in> (\<lambda>x. z + of_real r * exp (\<i> * linepath s t x)) ` {0..1}"
-      apply (rule_tac x="(z - s)/(t - s)" in image_eqI)
-      apply (simp add: linepath_def scaleR_conv_of_real divide_simps exp_eq)
-      apply (auto simp: field_split_simps)
-      done
-  }
-  ultimately show ?thesis
-    by (fastforce simp add: path_image_def part_circlepath_def)
-qed
-
-lemma path_image_part_circlepath':
-  "path_image (part_circlepath z r s t) = (\<lambda>x. z + r * cis x) ` closed_segment s t"
-proof -
-  have "path_image (part_circlepath z r s t) = 
-          (\<lambda>x. z + r * exp(\<i> * of_real x)) ` linepath s t ` {0..1}"
-    by (simp add: image_image path_image_def part_circlepath_def)
-  also have "linepath s t ` {0..1} = closed_segment s t"
-    by (rule linepath_image_01)
-  finally show ?thesis by (simp add: cis_conv_exp)
-qed
-
-lemma path_image_part_circlepath_subset:
-    "\<lbrakk>s \<le> t; 0 \<le> r\<rbrakk> \<Longrightarrow> path_image(part_circlepath z r s t) \<subseteq> sphere z r"
-by (auto simp: path_image_part_circlepath sphere_def dist_norm algebra_simps norm_mult)
-
-lemma in_path_image_part_circlepath:
-  assumes "w \<in> path_image(part_circlepath z r s t)" "s \<le> t" "0 \<le> r"
-    shows "norm(w - z) = r"
-proof -
-  have "w \<in> {c. dist z c = r}"
-    by (metis (no_types) path_image_part_circlepath_subset sphere_def subset_eq assms)
-  thus ?thesis
-    by (simp add: dist_norm norm_minus_commute)
-qed
-
-lemma path_image_part_circlepath_subset':
-  assumes "r \<ge> 0"
-  shows   "path_image (part_circlepath z r s t) \<subseteq> sphere z r"
-proof (cases "s \<le> t")
-  case True
-  thus ?thesis using path_image_part_circlepath_subset[of s t r z] assms by simp
-next
-  case False
-  thus ?thesis using path_image_part_circlepath_subset[of t s r z] assms
-    by (subst reversepath_part_circlepath [symmetric], subst path_image_reversepath) simp_all
-qed
-
-lemma part_circlepath_cnj: "cnj (part_circlepath c r a b x) = part_circlepath (cnj c) r (-a) (-b) x"
-  by (simp add: part_circlepath_def exp_cnj linepath_def algebra_simps)
-
-lemma contour_integral_bound_part_circlepath:
-  assumes "f contour_integrable_on part_circlepath c r a b"
-  assumes "B \<ge> 0" "r \<ge> 0" "\<And>x. x \<in> path_image (part_circlepath c r a b) \<Longrightarrow> norm (f x) \<le> B"
-  shows   "norm (contour_integral (part_circlepath c r a b) f) \<le> B * r * \<bar>b - a\<bar>"
-proof -
-  let ?I = "integral {0..1} (\<lambda>x. f (part_circlepath c r a b x) * \<i> * of_real (r * (b - a)) *
-              exp (\<i> * linepath a b x))"
-  have "norm ?I \<le> integral {0..1} (\<lambda>x::real. B * 1 * (r * \<bar>b - a\<bar>) * 1)"
-  proof (rule integral_norm_bound_integral, goal_cases)
-    case 1
-    with assms(1) show ?case
-      by (simp add: contour_integrable_on vector_derivative_part_circlepath mult_ac)
-  next
-    case (3 x)
-    with assms(2-) show ?case unfolding norm_mult norm_of_real abs_mult
-      by (intro mult_mono) (auto simp: path_image_def)
-  qed auto
-  also have "?I = contour_integral (part_circlepath c r a b) f"
-    by (simp add: contour_integral_integral vector_derivative_part_circlepath mult_ac)
-  finally show ?thesis by simp
-qed
-
-lemma has_contour_integral_part_circlepath_iff:
-  assumes "a < b"
-  shows "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
-           ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}"
-proof -
-  have "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
-          ((\<lambda>x. f (part_circlepath c r a b x) * vector_derivative (part_circlepath c r a b)
-           (at x within {0..1})) has_integral I) {0..1}"
-    unfolding has_contour_integral_def ..
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (part_circlepath c r a b x) * r * (b - a) * \<i> *
-                            cis (linepath a b x)) has_integral I) {0..1}"
-    by (intro has_integral_cong, subst vector_derivative_part_circlepath01)
-       (simp_all add: cis_conv_exp)
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (c + r * exp (\<i> * linepath (of_real a) (of_real b) x)) *
-                       r * \<i> * exp (\<i> * linepath (of_real a) (of_real b) x) *
-                       vector_derivative (linepath (of_real a) (of_real b)) 
-                         (at x within {0..1})) has_integral I) {0..1}"
-    by (intro has_integral_cong, subst vector_derivative_linepath_within)
-       (auto simp: part_circlepath_def cis_conv_exp of_real_linepath [symmetric])
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>z. f (c + r * exp (\<i> * z)) * r * \<i> * exp (\<i> * z)) has_contour_integral I)
-                      (linepath (of_real a) (of_real b))"
-    by (simp add: has_contour_integral_def)
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}" using assms
-    by (subst has_contour_integral_linepath_Reals_iff) (simp_all add: cis_conv_exp)
-  finally show ?thesis .
-qed
-
-lemma contour_integrable_part_circlepath_iff:
-  assumes "a < b"
-  shows "f contour_integrable_on (part_circlepath c r a b) \<longleftrightarrow>
-           (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}"
-  using assms by (auto simp: contour_integrable_on_def integrable_on_def 
-                             has_contour_integral_part_circlepath_iff)
-
-lemma contour_integral_part_circlepath_eq:
-  assumes "a < b"
-  shows "contour_integral (part_circlepath c r a b) f =
-           integral {a..b} (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t)"
-proof (cases "f contour_integrable_on part_circlepath c r a b")
-  case True
-  hence "(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
-    using assms by (simp add: contour_integrable_part_circlepath_iff)
-  with True show ?thesis
-    using has_contour_integral_part_circlepath_iff[OF assms]
-          contour_integral_unique has_integral_integrable_integral by blast
-next
-  case False
-  hence "\<not>(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
-    using assms by (simp add: contour_integrable_part_circlepath_iff)
-  with False show ?thesis
-    by (simp add: not_integrable_contour_integral not_integrable_integral)
-qed
-
-lemma contour_integral_part_circlepath_reverse:
-  "contour_integral (part_circlepath c r a b) f = -contour_integral (part_circlepath c r b a) f"
-  by (subst reversepath_part_circlepath [symmetric], subst contour_integral_reversepath) simp_all
-
-lemma contour_integral_part_circlepath_reverse':
-  "b < a \<Longrightarrow> contour_integral (part_circlepath c r a b) f = 
-               -contour_integral (part_circlepath c r b a) f"
-  by (rule contour_integral_part_circlepath_reverse)
-
-lemma finite_bounded_log: "finite {z::complex. norm z \<le> b \<and> exp z = w}"
-proof (cases "w = 0")
-  case True then show ?thesis by auto
-next
-  case False
-  have *: "finite {x. cmod (complex_of_real (2 * real_of_int x * pi) * \<i>) \<le> b + cmod (Ln w)}"
-    apply (simp add: norm_mult finite_int_iff_bounded_le)
-    apply (rule_tac x="\<lfloor>(b + cmod (Ln w)) / (2*pi)\<rfloor>" in exI)
-    apply (auto simp: field_split_simps le_floor_iff)
-    done
-  have [simp]: "\<And>P f. {z. P z \<and> (\<exists>n. z = f n)} = f ` {n. P (f n)}"
-    by blast
-  show ?thesis
-    apply (subst exp_Ln [OF False, symmetric])
-    apply (simp add: exp_eq)
-    using norm_add_leD apply (fastforce intro: finite_subset [OF _ *])
-    done
-qed
-
-lemma finite_bounded_log2:
-  fixes a::complex
-    assumes "a \<noteq> 0"
-    shows "finite {z. norm z \<le> b \<and> exp(a*z) = w}"
-proof -
-  have *: "finite ((\<lambda>z. z / a) ` {z. cmod z \<le> b * cmod a \<and> exp z = w})"
-    by (rule finite_imageI [OF finite_bounded_log])
-  show ?thesis
-    by (rule finite_subset [OF _ *]) (force simp: assms norm_mult)
-qed
-
-lemma has_contour_integral_bound_part_circlepath_strong:
-  assumes fi: "(f has_contour_integral i) (part_circlepath z r s t)"
-      and "finite k" and le: "0 \<le> B" "0 < r" "s \<le> t"
-      and B: "\<And>x. x \<in> path_image(part_circlepath z r s t) - k \<Longrightarrow> norm(f x) \<le> B"
-    shows "cmod i \<le> B * r * (t - s)"
-proof -
-  consider "s = t" | "s < t" using \<open>s \<le> t\<close> by linarith
-  then show ?thesis
-  proof cases
-    case 1 with fi [unfolded has_contour_integral]
-    have "i = 0"  by (simp add: vector_derivative_part_circlepath)
-    with assms show ?thesis by simp
-  next
-    case 2
-    have [simp]: "\<bar>r\<bar> = r" using \<open>r > 0\<close> by linarith
-    have [simp]: "cmod (complex_of_real t - complex_of_real s) = t-s"
-      by (metis "2" abs_of_pos diff_gt_0_iff_gt norm_of_real of_real_diff)
-    have "finite (part_circlepath z r s t -` {y} \<inter> {0..1})" if "y \<in> k" for y
-    proof -
-      define w where "w = (y - z)/of_real r / exp(\<i> * of_real s)"
-      have fin: "finite (of_real -` {z. cmod z \<le> 1 \<and> exp (\<i> * complex_of_real (t - s) * z) = w})"
-        apply (rule finite_vimageI [OF finite_bounded_log2])
-        using \<open>s < t\<close> apply (auto simp: inj_of_real)
-        done
-      show ?thesis
-        apply (simp add: part_circlepath_def linepath_def vimage_def)
-        apply (rule finite_subset [OF _ fin])
-        using le
-        apply (auto simp: w_def algebra_simps scaleR_conv_of_real exp_add exp_diff)
-        done
-    qed
-    then have fin01: "finite ((part_circlepath z r s t) -` k \<inter> {0..1})"
-      by (rule finite_finite_vimage_IntI [OF \<open>finite k\<close>])
-    have **: "((\<lambda>x. if (part_circlepath z r s t x) \<in> k then 0
-                    else f(part_circlepath z r s t x) *
-                       vector_derivative (part_circlepath z r s t) (at x)) has_integral i)  {0..1}"
-      by (rule has_integral_spike [OF negligible_finite [OF fin01]])  (use fi has_contour_integral in auto)
-    have *: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1; part_circlepath z r s t x \<notin> k\<rbrakk> \<Longrightarrow> cmod (f (part_circlepath z r s t x)) \<le> B"
-      by (auto intro!: B [unfolded path_image_def image_def, simplified])
-    show ?thesis
-      apply (rule has_integral_bound [where 'a=real, simplified, OF _ **, simplified])
-      using assms apply force
-      apply (simp add: norm_mult vector_derivative_part_circlepath)
-      using le * "2" \<open>r > 0\<close> by auto
-  qed
-qed
-
-lemma has_contour_integral_bound_part_circlepath:
-      "\<lbrakk>(f has_contour_integral i) (part_circlepath z r s t);
-        0 \<le> B; 0 < r; s \<le> t;
-        \<And>x. x \<in> path_image(part_circlepath z r s t) \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-       \<Longrightarrow> norm i \<le> B*r*(t - s)"
-  by (auto intro: has_contour_integral_bound_part_circlepath_strong)
-
-lemma contour_integrable_continuous_part_circlepath:
-     "continuous_on (path_image (part_circlepath z r s t)) f
-      \<Longrightarrow> f contour_integrable_on (part_circlepath z r s t)"
-  apply (simp add: contour_integrable_on has_contour_integral_def vector_derivative_part_circlepath path_image_def)
-  apply (rule integrable_continuous_real)
-  apply (fast intro: path_part_circlepath [unfolded path_def] continuous_intros continuous_on_compose2 [where g=f, OF _ _ order_refl])
-  done
-
-proposition winding_number_part_circlepath_pos_less:
-  assumes "s < t" and no: "norm(w - z) < r"
-    shows "0 < Re (winding_number(part_circlepath z r s t) w)"
-proof -
-  have "0 < r" by (meson no norm_not_less_zero not_le order.strict_trans2)
-  note valid_path_part_circlepath
-  moreover have " w \<notin> path_image (part_circlepath z r s t)"
-    using assms by (auto simp: path_image_def image_def part_circlepath_def norm_mult linepath_def)
-  moreover have "0 < r * (t - s) * (r - cmod (w - z))"
-    using assms by (metis \<open>0 < r\<close> diff_gt_0_iff_gt mult_pos_pos)
-  ultimately show ?thesis
-    apply (rule winding_number_pos_lt [where e = "r*(t - s)*(r - norm(w - z))"])
-    apply (simp add: vector_derivative_part_circlepath right_diff_distrib [symmetric] mult_ac)
-    apply (rule mult_left_mono)+
-    using Re_Im_le_cmod [of "w-z" "linepath s t x" for x]
-    apply (simp add: exp_Euler cos_of_real sin_of_real part_circlepath_def algebra_simps cos_squared_eq [unfolded power2_eq_square])
-    using assms \<open>0 < r\<close> by auto
-qed
-
-lemma simple_path_part_circlepath:
-    "simple_path(part_circlepath z r s t) \<longleftrightarrow> (r \<noteq> 0 \<and> s \<noteq> t \<and> \<bar>s - t\<bar> \<le> 2*pi)"
-proof (cases "r = 0 \<or> s = t")
-  case True
-  then show ?thesis
-    unfolding part_circlepath_def simple_path_def
-    by (rule disjE) (force intro: bexI [where x = "1/4"] bexI [where x = "1/3"])+
-next
-  case False then have "r \<noteq> 0" "s \<noteq> t" by auto
-  have *: "\<And>x y z s t. \<i>*((1 - x) * s + x * t) = \<i>*(((1 - y) * s + y * t)) + z  \<longleftrightarrow> \<i>*(x - y) * (t - s) = z"
-    by (simp add: algebra_simps)
-  have abs01: "\<And>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1
-                      \<Longrightarrow> (x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0 \<longleftrightarrow> \<bar>x - y\<bar> \<in> {0,1})"
-    by auto
-  have **: "\<And>x y. (\<exists>n. (complex_of_real x - of_real y) * (of_real t - of_real s) = 2 * (of_int n * of_real pi)) \<longleftrightarrow>
-                  (\<exists>n. \<bar>x - y\<bar> * (t - s) = 2 * (of_int n * pi))"
-    by (force simp: algebra_simps abs_if dest: arg_cong [where f=Re] arg_cong [where f=complex_of_real]
-                    intro: exI [where x = "-n" for n])
-  have 1: "\<bar>s - t\<bar> \<le> 2 * pi"
-    if "\<And>x. 0 \<le> x \<and> x \<le> 1 \<Longrightarrow> (\<exists>n. x * (t - s) = 2 * (real_of_int n * pi)) \<longrightarrow> x = 0 \<or> x = 1"
-  proof (rule ccontr)
-    assume "\<not> \<bar>s - t\<bar> \<le> 2 * pi"
-    then have *: "\<And>n. t - s \<noteq> of_int n * \<bar>s - t\<bar>"
-      using False that [of "2*pi / \<bar>t - s\<bar>"]
-      by (simp add: abs_minus_commute divide_simps)
-    show False
-      using * [of 1] * [of "-1"] by auto
-  qed
-  have 2: "\<bar>s - t\<bar> = \<bar>2 * (real_of_int n * pi) / x\<bar>" if "x \<noteq> 0" "x * (t - s) = 2 * (real_of_int n * pi)" for x n
-  proof -
-    have "t-s = 2 * (real_of_int n * pi)/x"
-      using that by (simp add: field_simps)
-    then show ?thesis by (metis abs_minus_commute)
-  qed
-  have abs_away: "\<And>P. (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. P \<bar>x - y\<bar>) \<longleftrightarrow> (\<forall>x::real. 0 \<le> x \<and> x \<le> 1 \<longrightarrow> P x)"
-    by force
-  show ?thesis using False
-    apply (simp add: simple_path_def)
-    apply (simp add: part_circlepath_def linepath_def exp_eq  * ** abs01  del: Set.insert_iff)
-    apply (subst abs_away)
-    apply (auto simp: 1)
-    apply (rule ccontr)
-    apply (auto simp: 2 field_split_simps abs_mult dest: of_int_leD)
-    done
-qed
-
-lemma arc_part_circlepath:
-  assumes "r \<noteq> 0" "s \<noteq> t" "\<bar>s - t\<bar> < 2*pi"
-    shows "arc (part_circlepath z r s t)"
-proof -
-  have *: "x = y" if eq: "\<i> * (linepath s t x) = \<i> * (linepath s t y) + 2 * of_int n * complex_of_real pi * \<i>"
-    and x: "x \<in> {0..1}" and y: "y \<in> {0..1}" for x y n
-  proof (rule ccontr)
-    assume "x \<noteq> y"
-    have "(linepath s t x) = (linepath s t y) + 2 * of_int n * complex_of_real pi"
-      by (metis add_divide_eq_iff complex_i_not_zero mult.commute nonzero_mult_div_cancel_left eq)
-    then have "s*y + t*x = s*x + (t*y + of_int n * (pi * 2))"
-      by (force simp: algebra_simps linepath_def dest: arg_cong [where f=Re])
-    with \<open>x \<noteq> y\<close> have st: "s-t = (of_int n * (pi * 2) / (y-x))"
-      by (force simp: field_simps)
-    have "\<bar>real_of_int n\<bar> < \<bar>y - x\<bar>"
-      using assms \<open>x \<noteq> y\<close> by (simp add: st abs_mult field_simps)
-    then show False
-      using assms x y st by (auto dest: of_int_lessD)
-  qed
-  show ?thesis
-    using assms
-    apply (simp add: arc_def)
-    apply (simp add: part_circlepath_def inj_on_def exp_eq)
-    apply (blast intro: *)
-    done
-qed
-
-subsection\<open>Special case of one complete circle\<close>
-
-definition\<^marker>\<open>tag important\<close> circlepath :: "[complex, real, real] \<Rightarrow> complex"
-  where "circlepath z r \<equiv> part_circlepath z r 0 (2*pi)"
-
-lemma circlepath: "circlepath z r = (\<lambda>x. z + r * exp(2 * of_real pi * \<i> * of_real x))"
-  by (simp add: circlepath_def part_circlepath_def linepath_def algebra_simps)
-
-lemma pathstart_circlepath [simp]: "pathstart (circlepath z r) = z + r"
-  by (simp add: circlepath_def)
-
-lemma pathfinish_circlepath [simp]: "pathfinish (circlepath z r) = z + r"
-  by (simp add: circlepath_def) (metis exp_two_pi_i mult.commute)
-
-lemma circlepath_minus: "circlepath z (-r) x = circlepath z r (x + 1/2)"
-proof -
-  have "z + of_real r * exp (2 * pi * \<i> * (x + 1/2)) =
-        z + of_real r * exp (2 * pi * \<i> * x + pi * \<i>)"
-    by (simp add: divide_simps) (simp add: algebra_simps)
-  also have "\<dots> = z - r * exp (2 * pi * \<i> * x)"
-    by (simp add: exp_add)
-  finally show ?thesis
-    by (simp add: circlepath path_image_def sphere_def dist_norm)
-qed
-
-lemma circlepath_add1: "circlepath z r (x+1) = circlepath z r x"
-  using circlepath_minus [of z r "x+1/2"] circlepath_minus [of z "-r" x]
-  by (simp add: add.commute)
-
-lemma circlepath_add_half: "circlepath z r (x + 1/2) = circlepath z r (x - 1/2)"
-  using circlepath_add1 [of z r "x-1/2"]
-  by (simp add: add.commute)
-
-lemma path_image_circlepath_minus_subset:
-     "path_image (circlepath z (-r)) \<subseteq> path_image (circlepath z r)"
-  apply (simp add: path_image_def image_def circlepath_minus, clarify)
-  apply (case_tac "xa \<le> 1/2", force)
-  apply (force simp: circlepath_add_half)+
-  done
-
-lemma path_image_circlepath_minus: "path_image (circlepath z (-r)) = path_image (circlepath z r)"
-  using path_image_circlepath_minus_subset by fastforce
-
-lemma has_vector_derivative_circlepath [derivative_intros]:
- "((circlepath z r) has_vector_derivative (2 * pi * \<i> * r * exp (2 * of_real pi * \<i> * of_real x)))
-   (at x within X)"
-  apply (simp add: circlepath_def scaleR_conv_of_real)
-  apply (rule derivative_eq_intros)
-  apply (simp add: algebra_simps)
-  done
-
-lemma vector_derivative_circlepath:
-   "vector_derivative (circlepath z r) (at x) =
-    2 * pi * \<i> * r * exp(2 * of_real pi * \<i> * x)"
-using has_vector_derivative_circlepath vector_derivative_at by blast
-
-lemma vector_derivative_circlepath01:
-    "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk>
-     \<Longrightarrow> vector_derivative (circlepath z r) (at x within {0..1}) =
-          2 * pi * \<i> * r * exp(2 * of_real pi * \<i> * x)"
-  using has_vector_derivative_circlepath
-  by (auto simp: vector_derivative_at_within_ivl)
-
-lemma valid_path_circlepath [simp]: "valid_path (circlepath z r)"
-  by (simp add: circlepath_def)
-
-lemma path_circlepath [simp]: "path (circlepath z r)"
-  by (simp add: valid_path_imp_path)
-
-lemma path_image_circlepath_nonneg:
-  assumes "0 \<le> r" shows "path_image (circlepath z r) = sphere z r"
-proof -
-  have *: "x \<in> (\<lambda>u. z + (cmod (x - z)) * exp (\<i> * (of_real u * (of_real pi * 2)))) ` {0..1}" for x
-  proof (cases "x = z")
-    case True then show ?thesis by force
-  next
-    case False
-    define w where "w = x - z"
-    then have "w \<noteq> 0" by (simp add: False)
-    have **: "\<And>t. \<lbrakk>Re w = cos t * cmod w; Im w = sin t * cmod w\<rbrakk> \<Longrightarrow> w = of_real (cmod w) * exp (\<i> * t)"
-      using cis_conv_exp complex_eq_iff by auto
-    show ?thesis
-      apply (rule sincos_total_2pi [of "Re(w/of_real(norm w))" "Im(w/of_real(norm w))"])
-      apply (simp add: divide_simps \<open>w \<noteq> 0\<close> cmod_power2 [symmetric])
-      apply (rule_tac x="t / (2*pi)" in image_eqI)
-      apply (simp add: field_simps \<open>w \<noteq> 0\<close>)
-      using False **
-      apply (auto simp: w_def)
-      done
-  qed
-  show ?thesis
-    unfolding circlepath path_image_def sphere_def dist_norm
-    by (force simp: assms algebra_simps norm_mult norm_minus_commute intro: *)
-qed
-
-lemma path_image_circlepath [simp]:
-    "path_image (circlepath z r) = sphere z \<bar>r\<bar>"
-  using path_image_circlepath_minus
-  by (force simp: path_image_circlepath_nonneg abs_if)
-
-lemma has_contour_integral_bound_circlepath_strong:
-      "\<lbrakk>(f has_contour_integral i) (circlepath z r);
-        finite k; 0 \<le> B; 0 < r;
-        \<And>x. \<lbrakk>norm(x - z) = r; x \<notin> k\<rbrakk> \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-        \<Longrightarrow> norm i \<le> B*(2*pi*r)"
-  unfolding circlepath_def
-  by (auto simp: algebra_simps in_path_image_part_circlepath dest!: has_contour_integral_bound_part_circlepath_strong)
-
-lemma has_contour_integral_bound_circlepath:
-      "\<lbrakk>(f has_contour_integral i) (circlepath z r);
-        0 \<le> B; 0 < r; \<And>x. norm(x - z) = r \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-        \<Longrightarrow> norm i \<le> B*(2*pi*r)"
-  by (auto intro: has_contour_integral_bound_circlepath_strong)
-
-lemma contour_integrable_continuous_circlepath:
-    "continuous_on (path_image (circlepath z r)) f
-     \<Longrightarrow> f contour_integrable_on (circlepath z r)"
-  by (simp add: circlepath_def contour_integrable_continuous_part_circlepath)
-
-lemma simple_path_circlepath: "simple_path(circlepath z r) \<longleftrightarrow> (r \<noteq> 0)"
-  by (simp add: circlepath_def simple_path_part_circlepath)
-
-lemma notin_path_image_circlepath [simp]: "cmod (w - z) < r \<Longrightarrow> w \<notin> path_image (circlepath z r)"
-  by (simp add: sphere_def dist_norm norm_minus_commute)
-
-lemma contour_integral_circlepath:
-  assumes "r > 0"
-  shows "contour_integral (circlepath z r) (\<lambda>w. 1 / (w - z)) = 2 * complex_of_real pi * \<i>"
-proof (rule contour_integral_unique)
-  show "((\<lambda>w. 1 / (w - z)) has_contour_integral 2 * complex_of_real pi * \<i>) (circlepath z r)"
-    unfolding has_contour_integral_def using assms
-    apply (subst has_integral_cong)
-     apply (simp add: vector_derivative_circlepath01)
-    using has_integral_const_real [of _ 0 1] apply (force simp: circlepath)
-    done
-qed
-
-lemma winding_number_circlepath_centre: "0 < r \<Longrightarrow> winding_number (circlepath z r) z = 1"
-  apply (rule winding_number_unique_loop)
-  apply (simp_all add: sphere_def valid_path_imp_path)
-  apply (rule_tac x="circlepath z r" in exI)
-  apply (simp add: sphere_def contour_integral_circlepath)
-  done
-
-proposition winding_number_circlepath:
-  assumes "norm(w - z) < r" shows "winding_number(circlepath z r) w = 1"
-proof (cases "w = z")
-  case True then show ?thesis
-    using assms winding_number_circlepath_centre by auto
-next
-  case False
-  have [simp]: "r > 0"
-    using assms le_less_trans norm_ge_zero by blast
-  define r' where "r' = norm(w - z)"
-  have "r' < r"
-    by (simp add: assms r'_def)
-  have disjo: "cball z r' \<inter> sphere z r = {}"
-    using \<open>r' < r\<close> by (force simp: cball_def sphere_def)
-  have "winding_number(circlepath z r) w = winding_number(circlepath z r) z"
-  proof (rule winding_number_around_inside [where s = "cball z r'"])
-    show "winding_number (circlepath z r) z \<noteq> 0"
-      by (simp add: winding_number_circlepath_centre)
-    show "cball z r' \<inter> path_image (circlepath z r) = {}"
-      by (simp add: disjo less_eq_real_def)
-  qed (auto simp: r'_def dist_norm norm_minus_commute)
-  also have "\<dots> = 1"
-    by (simp add: winding_number_circlepath_centre)
-  finally show ?thesis .
-qed
-
-
-text\<open> Hence the Cauchy formula for points inside a circle.\<close>
-
-theorem Cauchy_integral_circlepath:
-  assumes contf: "continuous_on (cball z r) f" and holf: "f holomorphic_on (ball z r)" and wz: "norm(w - z) < r"
-  shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w))
-         (circlepath z r)"
-proof -
-  have "r > 0"
-    using assms le_less_trans norm_ge_zero by blast
-  have "((\<lambda>u. f u / (u - w)) has_contour_integral (2 * pi) * \<i> * winding_number (circlepath z r) w * f w)
-        (circlepath z r)"
-  proof (rule Cauchy_integral_formula_weak [where s = "cball z r" and k = "{}"])
-    show "\<And>x. x \<in> interior (cball z r) - {} \<Longrightarrow>
-         f field_differentiable at x"
-      using holf holomorphic_on_imp_differentiable_at by auto
-    have "w \<notin> sphere z r"
-      by simp (metis dist_commute dist_norm not_le order_refl wz)
-    then show "path_image (circlepath z r) \<subseteq> cball z r - {w}"
-      using \<open>r > 0\<close> by (auto simp add: cball_def sphere_def)
-  qed (use wz in \<open>simp_all add: dist_norm norm_minus_commute contf\<close>)
-  then show ?thesis
-    by (simp add: winding_number_circlepath assms)
-qed
-
-corollary\<^marker>\<open>tag unimportant\<close> Cauchy_integral_circlepath_simple:
-  assumes "f holomorphic_on cball z r" "norm(w - z) < r"
-  shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w))
-         (circlepath z r)"
-using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset Cauchy_integral_circlepath)
-
-
-lemma no_bounded_connected_component_imp_winding_number_zero:
-  assumes g: "path g" "path_image g \<subseteq> s" "pathfinish g = pathstart g" "z \<notin> s"
-      and nb: "\<And>z. bounded (connected_component_set (- s) z) \<longrightarrow> z \<in> s"
-  shows "winding_number g z = 0"
-apply (rule winding_number_zero_in_outside)
-apply (simp_all add: assms)
-by (metis nb [of z] \<open>path_image g \<subseteq> s\<close> \<open>z \<notin> s\<close> contra_subsetD mem_Collect_eq outside outside_mono)
-
-lemma no_bounded_path_component_imp_winding_number_zero:
-  assumes g: "path g" "path_image g \<subseteq> s" "pathfinish g = pathstart g" "z \<notin> s"
-      and nb: "\<And>z. bounded (path_component_set (- s) z) \<longrightarrow> z \<in> s"
-  shows "winding_number g z = 0"
-apply (rule no_bounded_connected_component_imp_winding_number_zero [OF g])
-by (simp add: bounded_subset nb path_component_subset_connected_component)
-
-
-subsection\<open> Uniform convergence of path integral\<close>
-
-text\<open>Uniform convergence when the derivative of the path is bounded, and in particular for the special case of a circle.\<close>
-
-proposition contour_integral_uniform_limit:
-  assumes ev_fint: "eventually (\<lambda>n::'a. (f n) contour_integrable_on \<gamma>) F"
-      and ul_f: "uniform_limit (path_image \<gamma>) f l F"
-      and noleB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
-      and \<gamma>: "valid_path \<gamma>"
-      and [simp]: "\<not> trivial_limit F"
-  shows "l contour_integrable_on \<gamma>" "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F"
-proof -
-  have "0 \<le> B" by (meson noleB [of 0] atLeastAtMost_iff norm_ge_zero order_refl order_trans zero_le_one)
-  { fix e::real
-    assume "0 < e"
-    then have "0 < e / (\<bar>B\<bar> + 1)" by simp
-    then have "\<forall>\<^sub>F n in F. \<forall>x\<in>path_image \<gamma>. cmod (f n x - l x) < e / (\<bar>B\<bar> + 1)"
-      using ul_f [unfolded uniform_limit_iff dist_norm] by auto
-    with ev_fint
-    obtain a where fga: "\<And>x. x \<in> {0..1} \<Longrightarrow> cmod (f a (\<gamma> x) - l (\<gamma> x)) < e / (\<bar>B\<bar> + 1)"
-               and inta: "(\<lambda>t. f a (\<gamma> t) * vector_derivative \<gamma> (at t)) integrable_on {0..1}"
-      using eventually_happens [OF eventually_conj]
-      by (fastforce simp: contour_integrable_on path_image_def)
-    have Ble: "B * e / (\<bar>B\<bar> + 1) \<le> e"
-      using \<open>0 \<le> B\<close>  \<open>0 < e\<close> by (simp add: field_split_simps)
-    have "\<exists>h. (\<forall>x\<in>{0..1}. cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - h x) \<le> e) \<and> h integrable_on {0..1}"
-    proof (intro exI conjI ballI)
-      show "cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - f a (\<gamma> x) * vector_derivative \<gamma> (at x)) \<le> e"
-        if "x \<in> {0..1}" for x
-        apply (rule order_trans [OF _ Ble])
-        using noleB [OF that] fga [OF that] \<open>0 \<le> B\<close> \<open>0 < e\<close>
-        apply (simp add: norm_mult left_diff_distrib [symmetric] norm_minus_commute divide_simps)
-        apply (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le])
-        done
-    qed (rule inta)
-  }
-  then show lintg: "l contour_integrable_on \<gamma>"
-    unfolding contour_integrable_on by (metis (mono_tags, lifting)integrable_uniform_limit_real)
-  { fix e::real
-    define B' where "B' = B + 1"
-    have B': "B' > 0" "B' > B" using  \<open>0 \<le> B\<close> by (auto simp: B'_def)
-    assume "0 < e"
-    then have ev_no': "\<forall>\<^sub>F n in F. \<forall>x\<in>path_image \<gamma>. 2 * cmod (f n x - l x) < e / B'"
-      using ul_f [unfolded uniform_limit_iff dist_norm, rule_format, of "e / B' / 2"] B'
-        by (simp add: field_simps)
-    have ie: "integral {0..1::real} (\<lambda>x. e / 2) < e" using \<open>0 < e\<close> by simp
-    have *: "cmod (f x (\<gamma> t) * vector_derivative \<gamma> (at t) - l (\<gamma> t) * vector_derivative \<gamma> (at t)) \<le> e / 2"
-             if t: "t\<in>{0..1}" and leB': "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) < e / B'" for x t
-    proof -
-      have "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) * cmod (vector_derivative \<gamma> (at t)) \<le> e * (B/ B')"
-        using mult_mono [OF less_imp_le [OF leB'] noleB] B' \<open>0 < e\<close> t by auto
-      also have "\<dots> < e"
-        by (simp add: B' \<open>0 < e\<close> mult_imp_div_pos_less)
-      finally have "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) * cmod (vector_derivative \<gamma> (at t)) < e" .
-      then show ?thesis
-        by (simp add: left_diff_distrib [symmetric] norm_mult)
-    qed
-    have le_e: "\<And>x. \<lbrakk>\<forall>xa\<in>{0..1}. 2 * cmod (f x (\<gamma> xa) - l (\<gamma> xa)) < e / B'; f x contour_integrable_on \<gamma>\<rbrakk>
-         \<Longrightarrow> cmod (integral {0..1}
-                    (\<lambda>u. f x (\<gamma> u) * vector_derivative \<gamma> (at u) - l (\<gamma> u) * vector_derivative \<gamma> (at u))) < e"
-      apply (rule le_less_trans [OF integral_norm_bound_integral ie])
-        apply (simp add: lintg integrable_diff contour_integrable_on [symmetric])
-       apply (blast intro: *)+
-      done
-    have "\<forall>\<^sub>F x in F. dist (contour_integral \<gamma> (f x)) (contour_integral \<gamma> l) < e"
-      apply (rule eventually_mono [OF eventually_conj [OF ev_no' ev_fint]])
-      apply (simp add: dist_norm contour_integrable_on path_image_def contour_integral_integral)
-      apply (simp add: lintg integral_diff [symmetric] contour_integrable_on [symmetric] le_e)
-      done
-  }
-  then show "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F"
-    by (rule tendstoI)
-qed
-
-corollary\<^marker>\<open>tag unimportant\<close> contour_integral_uniform_limit_circlepath:
-  assumes "\<forall>\<^sub>F n::'a in F. (f n) contour_integrable_on (circlepath z r)"
-      and "uniform_limit (sphere z r) f l F"
-      and "\<not> trivial_limit F" "0 < r"
-    shows "l contour_integrable_on (circlepath z r)"
-          "((\<lambda>n. contour_integral (circlepath z r) (f n)) \<longlongrightarrow> contour_integral (circlepath z r) l) F"
-  using assms by (auto simp: vector_derivative_circlepath norm_mult intro!: contour_integral_uniform_limit)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>General stepping result for derivative formulas\<close>
-
-lemma Cauchy_next_derivative:
-  assumes "continuous_on (path_image \<gamma>) f'"
-      and leB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
-      and int: "\<And>w. w \<in> s - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f' u / (u - w)^k) has_contour_integral f w) \<gamma>"
-      and k: "k \<noteq> 0"
-      and "open s"
-      and \<gamma>: "valid_path \<gamma>"
-      and w: "w \<in> s - path_image \<gamma>"
-    shows "(\<lambda>u. f' u / (u - w)^(Suc k)) contour_integrable_on \<gamma>"
-      and "(f has_field_derivative (k * contour_integral \<gamma> (\<lambda>u. f' u/(u - w)^(Suc k))))
-           (at w)"  (is "?thes2")
-proof -
-  have "open (s - path_image \<gamma>)" using \<open>open s\<close> closed_valid_path_image \<gamma> by blast
-  then obtain d where "d>0" and d: "ball w d \<subseteq> s - path_image \<gamma>" using w
-    using open_contains_ball by blast
-  have [simp]: "\<And>n. cmod (1 + of_nat n) = 1 + of_nat n"
-    by (metis norm_of_nat of_nat_Suc)
-  have cint: "\<And>x. \<lbrakk>x \<noteq> w; cmod (x - w) < d\<rbrakk>
-         \<Longrightarrow> (\<lambda>z. (f' z / (z - x) ^ k - f' z / (z - w) ^ k) / (x * k - w * k)) contour_integrable_on \<gamma>"
-    apply (rule contour_integrable_div [OF contour_integrable_diff])
-    using int w d
-    by (force simp: dist_norm norm_minus_commute intro!: has_contour_integral_integrable)+
-  have 1: "\<forall>\<^sub>F n in at w. (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k)
-                         contour_integrable_on \<gamma>"
-    unfolding eventually_at
-    apply (rule_tac x=d in exI)
-    apply (simp add: \<open>d > 0\<close> dist_norm field_simps cint)
-    done
-  have bim_g: "bounded (image f' (path_image \<gamma>))"
-    by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image assms)
-  then obtain C where "C > 0" and C: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cmod (f' (\<gamma> x)) \<le> C"
-    by (force simp: bounded_pos path_image_def)
-  have twom: "\<forall>\<^sub>F n in at w.
-               \<forall>x\<in>path_image \<gamma>.
-                cmod ((inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k - inverse (x - w) ^ Suc k) < e"
-         if "0 < e" for e
-  proof -
-    have *: "cmod ((inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k) - inverse (x - w) ^ Suc k)   < e"
-            if x: "x \<in> path_image \<gamma>" and "u \<noteq> w" and uwd: "cmod (u - w) < d/2"
-                and uw_less: "cmod (u - w) < e * (d/2) ^ (k+2) / (1 + real k)"
-            for u x
-    proof -
-      define ff where [abs_def]:
-        "ff n w =
-          (if n = 0 then inverse(x - w)^k
-           else if n = 1 then k / (x - w)^(Suc k)
-           else (k * of_real(Suc k)) / (x - w)^(k + 2))" for n :: nat and w
-      have km1: "\<And>z::complex. z \<noteq> 0 \<Longrightarrow> z ^ (k - Suc 0) = z ^ k / z"
-        by (simp add: field_simps) (metis Suc_pred \<open>k \<noteq> 0\<close> neq0_conv power_Suc)
-      have ff1: "(ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))"
-              if "z \<in> ball w (d/2)" "i \<le> 1" for i z
-      proof -
-        have "z \<notin> path_image \<gamma>"
-          using \<open>x \<in> path_image \<gamma>\<close> d that ball_divide_subset_numeral by blast
-        then have xz[simp]: "x \<noteq> z" using \<open>x \<in> path_image \<gamma>\<close> by blast
-        then have neq: "x * x + z * z \<noteq> x * (z * 2)"
-          by (blast intro: dest!: sum_sqs_eq)
-        with xz have "\<And>v. v \<noteq> 0 \<Longrightarrow> (x * x + z * z) * v \<noteq> (x * (z * 2) * v)" by auto
-        then have neqq: "\<And>v. v \<noteq> 0 \<Longrightarrow> x * (x * v) + z * (z * v) \<noteq> x * (z * (2 * v))"
-          by (simp add: algebra_simps)
-        show ?thesis using \<open>i \<le> 1\<close>
-          apply (simp add: ff_def dist_norm Nat.le_Suc_eq km1, safe)
-          apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps neq neqq)+
-          done
-      qed
-      { fix a::real and b::real assume ab: "a > 0" "b > 0"
-        then have "k * (1 + real k) * (1 / a) \<le> k * (1 + real k) * (4 / b) \<longleftrightarrow> b \<le> 4 * a"
-          by (subst mult_le_cancel_left_pos)
-            (use \<open>k \<noteq> 0\<close> in \<open>auto simp: divide_simps\<close>)
-        with ab have "real k * (1 + real k) / a \<le> (real k * 4 + real k * real k * 4) / b \<longleftrightarrow> b \<le> 4 * a"
-          by (simp add: field_simps)
-      } note canc = this
-      have ff2: "cmod (ff (Suc 1) v) \<le> real (k * (k + 1)) / (d/2) ^ (k + 2)"
-                if "v \<in> ball w (d/2)" for v
-      proof -
-        have lessd: "\<And>z. cmod (\<gamma> z - v) < d/2 \<Longrightarrow> cmod (w - \<gamma> z) < d"
-          by (metis that norm_minus_commute norm_triangle_half_r dist_norm mem_ball)
-        have "d/2 \<le> cmod (x - v)" using d x that
-          using lessd d x
-          by (auto simp add: dist_norm path_image_def ball_def not_less [symmetric] del: divide_const_simps)
-        then have "d \<le> cmod (x - v) * 2"
-          by (simp add: field_split_simps)
-        then have dpow_le: "d ^ (k+2) \<le> (cmod (x - v) * 2) ^ (k+2)"
-          using \<open>0 < d\<close> order_less_imp_le power_mono by blast
-        have "x \<noteq> v" using that
-          using \<open>x \<in> path_image \<gamma>\<close> ball_divide_subset_numeral d by fastforce
-        then show ?thesis
-        using \<open>d > 0\<close> apply (simp add: ff_def norm_mult norm_divide norm_power dist_norm canc)
-        using dpow_le apply (simp add: field_split_simps)
-        done
-      qed
-      have ub: "u \<in> ball w (d/2)"
-        using uwd by (simp add: dist_commute dist_norm)
-      have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
-                  \<le> (real k * 4 + real k * real k * 4) * (cmod (u - w) * cmod (u - w)) / (d * (d * (d/2) ^ k))"
-        using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified]
-        by (simp add: ff_def \<open>0 < d\<close>)
-      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
-                  \<le> (cmod (u - w) * real k) * (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
-        by (simp add: field_simps)
-      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
-                 / (cmod (u - w) * real k)
-                  \<le> (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
-        using \<open>k \<noteq> 0\<close> \<open>u \<noteq> w\<close> by (simp add: mult_ac zero_less_mult_iff pos_divide_le_eq)
-      also have "\<dots> < e"
-        using uw_less \<open>0 < d\<close> by (simp add: mult_ac divide_simps)
-      finally have e: "cmod (inverse (x-u)^k - (inverse (x-w)^k + of_nat k * (u-w) / ((x-w) * (x-w)^k)))
-                        / cmod ((u - w) * real k)   <   e"
-        by (simp add: norm_mult)
-      have "x \<noteq> u"
-        using uwd \<open>0 < d\<close> x d by (force simp: dist_norm ball_def norm_minus_commute)
-      show ?thesis
-        apply (rule le_less_trans [OF _ e])
-        using \<open>k \<noteq> 0\<close> \<open>x \<noteq> u\<close> \<open>u \<noteq> w\<close>
-        apply (simp add: field_simps norm_divide [symmetric])
-        done
-    qed
-    show ?thesis
-      unfolding eventually_at
-      apply (rule_tac x = "min (d/2) ((e*(d/2)^(k + 2))/(Suc k))" in exI)
-      apply (force simp: \<open>d > 0\<close> dist_norm that simp del: power_Suc intro: *)
-      done
-  qed
-  have 2: "uniform_limit (path_image \<gamma>) (\<lambda>n x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k) (\<lambda>x. f' x / (x - w) ^ Suc k) (at w)"
-    unfolding uniform_limit_iff dist_norm
-  proof clarify
-    fix e::real
-    assume "0 < e"
-    have *: "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                        f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) < e"
-              if ec: "cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                      inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k) < e / C"
-                 and x: "0 \<le> x" "x \<le> 1"
-              for u x
-    proof (cases "(f' (\<gamma> x)) = 0")
-      case True then show ?thesis by (simp add: \<open>0 < e\<close>)
-    next
-      case False
-      have "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                        f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) =
-            cmod (f' (\<gamma> x) * ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                             inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k))"
-        by (simp add: field_simps)
-      also have "\<dots> = cmod (f' (\<gamma> x)) *
-                       cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                             inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k)"
-        by (simp add: norm_mult)
-      also have "\<dots> < cmod (f' (\<gamma> x)) * (e/C)"
-        using False mult_strict_left_mono [OF ec] by force
-      also have "\<dots> \<le> e" using C
-        by (metis False \<open>0 < e\<close> frac_le less_eq_real_def mult.commute pos_le_divide_eq x zero_less_norm_iff)
-      finally show ?thesis .
-    qed
-    show "\<forall>\<^sub>F n in at w.
-              \<forall>x\<in>path_image \<gamma>.
-               cmod (f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k - f' x / (x - w) ^ Suc k) < e"
-      using twom [OF divide_pos_pos [OF \<open>0 < e\<close> \<open>C > 0\<close>]]   unfolding path_image_def
-      by (force intro: * elim: eventually_mono)
-  qed
-  show "(\<lambda>u. f' u / (u - w) ^ (Suc k)) contour_integrable_on \<gamma>"
-    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
-  have *: "(\<lambda>n. contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k))
-           \<midarrow>w\<rightarrow> contour_integral \<gamma> (\<lambda>u. f' u / (u - w) ^ (Suc k))"
-    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
-  have **: "contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k)) =
-              (f u - f w) / (u - w) / k"
-    if "dist u w < d" for u
-  proof -
-    have u: "u \<in> s - path_image \<gamma>"
-      by (metis subsetD d dist_commute mem_ball that)
-    show ?thesis
-      apply (rule contour_integral_unique)
-      apply (simp add: diff_divide_distrib algebra_simps)
-      apply (intro has_contour_integral_diff has_contour_integral_div)
-      using u w apply (simp_all add: field_simps int)
-      done
-  qed
-  show ?thes2
-    apply (simp add: has_field_derivative_iff del: power_Suc)
-    apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close> ])
-    apply (simp add: \<open>k \<noteq> 0\<close> **)
-    done
-qed
-
-lemma Cauchy_next_derivative_circlepath:
-  assumes contf: "continuous_on (path_image (circlepath z r)) f"
-      and int: "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>u. f u / (u - w)^k) has_contour_integral g w) (circlepath z r)"
-      and k: "k \<noteq> 0"
-      and w: "w \<in> ball z r"
-    shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
-           (is "?thes1")
-      and "(g has_field_derivative (k * contour_integral (circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)))) (at w)"
-           (is "?thes2")
-proof -
-  have "r > 0" using w
-    using ball_eq_empty by fastforce
-  have wim: "w \<in> ball z r - path_image (circlepath z r)"
-    using w by (auto simp: dist_norm)
-  show ?thes1 ?thes2
-    by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath wim, where B = "2 * pi * \<bar>r\<bar>"];
-        auto simp: vector_derivative_circlepath norm_mult)+
-qed
-
-
-text\<open> In particular, the first derivative formula.\<close>
-
-lemma Cauchy_derivative_integral_circlepath:
-  assumes contf: "continuous_on (cball z r) f"
-      and holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "(\<lambda>u. f u/(u - w)^2) contour_integrable_on (circlepath z r)"
-           (is "?thes1")
-      and "(f has_field_derivative (1 / (2 * of_real pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u / (u - w)^2))) (at w)"
-           (is "?thes2")
-proof -
-  have [simp]: "r \<ge> 0" using w
-    using ball_eq_empty by fastforce
-  have f: "continuous_on (path_image (circlepath z r)) f"
-    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def)
-  have int: "\<And>w. dist z w < r \<Longrightarrow>
-                 ((\<lambda>u. f u / (u - w)) has_contour_integral (\<lambda>x. 2 * of_real pi * \<i> * f x) w) (circlepath z r)"
-    by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute)
-  show ?thes1
-    apply (simp add: power2_eq_square)
-    apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1, simplified])
-    apply (blast intro: int)
-    done
-  have "((\<lambda>x. 2 * of_real pi * \<i> * f x) has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2)) (at w)"
-    apply (simp add: power2_eq_square)
-    apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x", simplified])
-    apply (blast intro: int)
-    done
-  then have fder: "(f has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2) / (2 * of_real pi * \<i>)) (at w)"
-    by (rule DERIV_cdivide [where f = "\<lambda>x. 2 * of_real pi * \<i> * f x" and c = "2 * of_real pi * \<i>", simplified])
-  show ?thes2
-    by simp (rule fder)
-qed
-
-subsection\<open>Existence of all higher derivatives\<close>
-
-proposition derivative_is_holomorphic:
-  assumes "open S"
-      and fder: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z)"
-    shows "f' holomorphic_on S"
-proof -
-  have *: "\<exists>h. (f' has_field_derivative h) (at z)" if "z \<in> S" for z
-  proof -
-    obtain r where "r > 0" and r: "cball z r \<subseteq> S"
-      using open_contains_cball \<open>z \<in> S\<close> \<open>open S\<close> by blast
-    then have holf_cball: "f holomorphic_on cball z r"
-      apply (simp add: holomorphic_on_def)
-      using field_differentiable_at_within field_differentiable_def fder by blast
-    then have "continuous_on (path_image (circlepath z r)) f"
-      using \<open>r > 0\<close> by (force elim: holomorphic_on_subset [THEN holomorphic_on_imp_continuous_on])
-    then have contfpi: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1/(2 * of_real pi*\<i>) * f x)"
-      by (auto intro: continuous_intros)+
-    have contf_cball: "continuous_on (cball z r) f" using holf_cball
-      by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset)
-    have holf_ball: "f holomorphic_on ball z r" using holf_cball
-      using ball_subset_cball holomorphic_on_subset by blast
-    { fix w  assume w: "w \<in> ball z r"
-      have intf: "(\<lambda>u. f u / (u - w)\<^sup>2) contour_integrable_on circlepath z r"
-        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
-      have fder': "(f has_field_derivative 1 / (2 * of_real pi * \<i>) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2))
-                  (at w)"
-        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
-      have f'_eq: "f' w = contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>)"
-        using fder' ball_subset_cball r w by (force intro: DERIV_unique [OF fder])
-      have "((\<lambda>u. f u / (u - w)\<^sup>2 / (2 * of_real pi * \<i>)) has_contour_integral
-                contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>))
-                (circlepath z r)"
-        by (rule has_contour_integral_div [OF has_contour_integral_integral [OF intf]])
-      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral
-                contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>))
-                (circlepath z r)"
-        by (simp add: algebra_simps)
-      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral f' w) (circlepath z r)"
-        by (simp add: f'_eq)
-    } note * = this
-    show ?thesis
-      apply (rule exI)
-      apply (rule Cauchy_next_derivative_circlepath [OF contfpi, of 2 f', simplified])
-      apply (simp_all add: \<open>0 < r\<close> * dist_norm)
-      done
-  qed
-  show ?thesis
-    by (simp add: holomorphic_on_open [OF \<open>open S\<close>] *)
-qed
-
-lemma holomorphic_deriv [holomorphic_intros]:
-    "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv f) holomorphic_on S"
-by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic holomorphic_on_def)
-
-lemma analytic_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv f) analytic_on S"
-  using analytic_on_holomorphic holomorphic_deriv by auto
-
-lemma holomorphic_higher_deriv [holomorphic_intros]: "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv ^^ n) f holomorphic_on S"
-  by (induction n) (auto simp: holomorphic_deriv)
-
-lemma analytic_higher_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv ^^ n) f analytic_on S"
-  unfolding analytic_on_def using holomorphic_higher_deriv by blast
-
-lemma has_field_derivative_higher_deriv:
-     "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
-      \<Longrightarrow> ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)"
-by (metis (no_types, hide_lams) DERIV_deriv_iff_field_differentiable at_within_open comp_apply
-         funpow.simps(2) holomorphic_higher_deriv holomorphic_on_def)
-
-lemma valid_path_compose_holomorphic:
-  assumes "valid_path g" and holo:"f holomorphic_on S" and "open S" "path_image g \<subseteq> S"
-  shows "valid_path (f \<circ> g)"
-proof (rule valid_path_compose[OF \<open>valid_path g\<close>])
-  fix x assume "x \<in> path_image g"
-  then show "f field_differentiable at x"
-    using analytic_on_imp_differentiable_at analytic_on_open assms holo by blast
-next
-  have "deriv f holomorphic_on S"
-    using holomorphic_deriv holo \<open>open S\<close> by auto
-  then show "continuous_on (path_image g) (deriv f)"
-    using assms(4) holomorphic_on_imp_continuous_on holomorphic_on_subset by auto
-qed
-
-
-subsection\<open>Morera's theorem\<close>
-
-lemma Morera_local_triangle_ball:
-  assumes "\<And>z. z \<in> S
-          \<Longrightarrow> \<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
-                    (\<forall>b c. closed_segment b c \<subseteq> ball a e
-                           \<longrightarrow> contour_integral (linepath a b) f +
-                               contour_integral (linepath b c) f +
-                               contour_integral (linepath c a) f = 0)"
-  shows "f analytic_on S"
-proof -
-  { fix z  assume "z \<in> S"
-    with assms obtain e a where
-            "0 < e" and z: "z \<in> ball a e" and contf: "continuous_on (ball a e) f"
-        and 0: "\<And>b c. closed_segment b c \<subseteq> ball a e
-                      \<Longrightarrow> contour_integral (linepath a b) f +
-                          contour_integral (linepath b c) f +
-                          contour_integral (linepath c a) f = 0"
-      by fastforce
-    have az: "dist a z < e" using mem_ball z by blast
-    have sb_ball: "ball z (e - dist a z) \<subseteq> ball a e"
-      by (simp add: dist_commute ball_subset_ball_iff)
-    have "\<exists>e>0. f holomorphic_on ball z e"
-    proof (intro exI conjI)
-      have sub_ball: "\<And>y. dist a y < e \<Longrightarrow> closed_segment a y \<subseteq> ball a e"
-        by (meson \<open>0 < e\<close> centre_in_ball convex_ball convex_contains_segment mem_ball)
-      show "f holomorphic_on ball z (e - dist a z)"
-        apply (rule holomorphic_on_subset [OF _ sb_ball])
-        apply (rule derivative_is_holomorphic[OF open_ball])
-        apply (rule triangle_contour_integrals_starlike_primitive [OF contf _ open_ball, of a])
-           apply (simp_all add: 0 \<open>0 < e\<close> sub_ball)
-        done
-    qed (simp add: az)
-  }
-  then show ?thesis
-    by (simp add: analytic_on_def)
-qed
-
-lemma Morera_local_triangle:
-  assumes "\<And>z. z \<in> S
-          \<Longrightarrow> \<exists>t. open t \<and> z \<in> t \<and> continuous_on t f \<and>
-                  (\<forall>a b c. convex hull {a,b,c} \<subseteq> t
-                              \<longrightarrow> contour_integral (linepath a b) f +
-                                  contour_integral (linepath b c) f +
-                                  contour_integral (linepath c a) f = 0)"
-  shows "f analytic_on S"
-proof -
-  { fix z  assume "z \<in> S"
-    with assms obtain t where
-            "open t" and z: "z \<in> t" and contf: "continuous_on t f"
-        and 0: "\<And>a b c. convex hull {a,b,c} \<subseteq> t
-                      \<Longrightarrow> contour_integral (linepath a b) f +
-                          contour_integral (linepath b c) f +
-                          contour_integral (linepath c a) f = 0"
-      by force
-    then obtain e where "e>0" and e: "ball z e \<subseteq> t"
-      using open_contains_ball by blast
-    have [simp]: "continuous_on (ball z e) f" using contf
-      using continuous_on_subset e by blast
-    have eq0: "\<And>b c. closed_segment b c \<subseteq> ball z e \<Longrightarrow>
-                         contour_integral (linepath z b) f +
-                         contour_integral (linepath b c) f +
-                         contour_integral (linepath c z) f = 0"
-      by (meson 0 z \<open>0 < e\<close> centre_in_ball closed_segment_subset convex_ball dual_order.trans e starlike_convex_subset)
-    have "\<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
-                (\<forall>b c. closed_segment b c \<subseteq> ball a e \<longrightarrow>
-                       contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0)"
-      using \<open>e > 0\<close> eq0 by force
-  }
-  then show ?thesis
-    by (simp add: Morera_local_triangle_ball)
-qed
-
-proposition Morera_triangle:
-    "\<lbrakk>continuous_on S f; open S;
-      \<And>a b c. convex hull {a,b,c} \<subseteq> S
-              \<longrightarrow> contour_integral (linepath a b) f +
-                  contour_integral (linepath b c) f +
-                  contour_integral (linepath c a) f = 0\<rbrakk>
-     \<Longrightarrow> f analytic_on S"
-  using Morera_local_triangle by blast
-
-subsection\<open>Combining theorems for higher derivatives including Leibniz rule\<close>
-
-lemma higher_deriv_linear [simp]:
-    "(deriv ^^ n) (\<lambda>w. c*w) = (\<lambda>z. if n = 0 then c*z else if n = 1 then c else 0)"
-  by (induction n) auto
-
-lemma higher_deriv_const [simp]: "(deriv ^^ n) (\<lambda>w. c) = (\<lambda>w. if n=0 then c else 0)"
-  by (induction n) auto
-
-lemma higher_deriv_ident [simp]:
-     "(deriv ^^ n) (\<lambda>w. w) z = (if n = 0 then z else if n = 1 then 1 else 0)"
-  apply (induction n, simp)
-  apply (metis higher_deriv_linear lambda_one)
-  done
-
-lemma higher_deriv_id [simp]:
-     "(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)"
-  by (simp add: id_def)
-
-lemma has_complex_derivative_funpow_1:
-     "\<lbrakk>(f has_field_derivative 1) (at z); f z = z\<rbrakk> \<Longrightarrow> (f^^n has_field_derivative 1) (at z)"
-  apply (induction n, auto)
-  apply (simp add: id_def)
-  by (metis DERIV_chain comp_funpow comp_id funpow_swap1 mult.right_neutral)
-
-lemma higher_deriv_uminus:
-  assumes "f holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  have "((deriv ^^ n) (\<lambda>w. - f w) has_field_derivative - deriv ((deriv ^^ n) f) z) (at z)"
-    apply (rule has_field_derivative_transform_within_open [of "\<lambda>w. -((deriv ^^ n) f w)"])
-       apply (rule derivative_eq_intros | rule * refl assms)+
-     apply (auto simp add: Suc)
-    done
-  then show ?case
-    by (simp add: DERIV_imp_deriv)
-qed
-
-lemma higher_deriv_add:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
-          "((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  have "((deriv ^^ n) (\<lambda>w. f w + g w) has_field_derivative
-        deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)"
-    apply (rule has_field_derivative_transform_within_open [of "\<lambda>w. (deriv ^^ n) f w + (deriv ^^ n) g w"])
-       apply (rule derivative_eq_intros | rule * refl assms)+
-     apply (auto simp add: Suc)
-    done
-  then show ?case
-    by (simp add: DERIV_imp_deriv)
-qed
-
-lemma higher_deriv_diff:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
-  apply (simp only: Groups.group_add_class.diff_conv_add_uminus higher_deriv_add)
-  apply (subst higher_deriv_add)
-  using assms holomorphic_on_minus apply (auto simp: higher_deriv_uminus)
-  done
-
-lemma bb: "Suc n choose k = (n choose k) + (if k = 0 then 0 else (n choose (k - 1)))"
-  by (cases k) simp_all
-
-lemma higher_deriv_mult:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
-           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have *: "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
-          "\<And>n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  have sumeq: "(\<Sum>i = 0..n.
-               of_nat (n choose i) * (deriv ((deriv ^^ i) f) z * (deriv ^^ (n - i)) g z + deriv ((deriv ^^ (n - i)) g) z * (deriv ^^ i) f z)) =
-            g z * deriv ((deriv ^^ n) f) z + (\<Sum>i = 0..n. (deriv ^^ i) f z * (of_nat (Suc n choose i) * (deriv ^^ (Suc n - i)) g z))"
-    apply (simp add: bb algebra_simps sum.distrib)
-    apply (subst (4) sum_Suc_reindex)
-    apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong)
-    done
-  have "((deriv ^^ n) (\<lambda>w. f w * g w) has_field_derivative
-         (\<Sum>i = 0..Suc n. (Suc n choose i) * (deriv ^^ i) f z * (deriv ^^ (Suc n - i)) g z))
-        (at z)"
-    apply (rule has_field_derivative_transform_within_open
-        [of "\<lambda>w. (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f w * (deriv ^^ (n - i)) g w)"])
-       apply (simp add: algebra_simps)
-       apply (rule DERIV_cong [OF DERIV_sum])
-        apply (rule DERIV_cmult)
-        apply (auto intro: DERIV_mult * sumeq \<open>open S\<close> Suc.prems Suc.IH [symmetric])
-    done
-  then show ?case
-    unfolding funpow.simps o_apply
-    by (simp add: DERIV_imp_deriv)
-qed
-
-lemma higher_deriv_transform_within_open:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-      and fg: "\<And>w. w \<in> S \<Longrightarrow> f w = g w"
-    shows "(deriv ^^ i) f z = (deriv ^^ i) g z"
-using z
-by (induction i arbitrary: z)
-   (auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv assms)
-
-lemma higher_deriv_compose_linear:
-  fixes z::complex
-  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
-      and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w \<in> T"
-    shows "(deriv ^^ n) (\<lambda>w. f (u * w)) z = u^n * (deriv ^^ n) f (u * z)"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have holo0: "f holomorphic_on (*) u ` S"
-    by (meson fg f holomorphic_on_subset image_subset_iff)
-  have holo2: "(deriv ^^ n) f holomorphic_on (*) u ` S"
-    by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
-  have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z)) holomorphic_on S"
-    by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
-  have holo1: "(\<lambda>w. f (u * w)) holomorphic_on S"
-    apply (rule holomorphic_on_compose [where g=f, unfolded o_def])
-    apply (rule holo0 holomorphic_intros)+
-    done
-  have "deriv ((deriv ^^ n) (\<lambda>w. f (u * w))) z = deriv (\<lambda>z. u^n * (deriv ^^ n) f (u*z)) z"
-    apply (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])
-    apply (rule holomorphic_higher_deriv [OF holo1 S])
-    apply (simp add: Suc.IH)
-    done
-  also have "\<dots> = u^n * deriv (\<lambda>z. (deriv ^^ n) f (u * z)) z"
-    apply (rule deriv_cmult)
-    apply (rule analytic_on_imp_differentiable_at [OF _ Suc.prems])
-    apply (rule analytic_on_compose_gen [where g="(deriv ^^ n) f" and T=T, unfolded o_def])
-      apply (simp)
-     apply (simp add: analytic_on_open f holomorphic_higher_deriv T)
-    apply (blast intro: fg)
-    done
-  also have "\<dots> = u * u ^ n * deriv ((deriv ^^ n) f) (u * z)"
-      apply (subst complex_derivative_chain [where g = "(deriv ^^ n) f" and f = "(*) u", unfolded o_def])
-      apply (rule derivative_intros)
-      using Suc.prems field_differentiable_def f fg has_field_derivative_higher_deriv T apply blast
-      apply (simp)
-      done
-  finally show ?case
-    by simp
-qed
-
-lemma higher_deriv_add_at:
-  assumes "f analytic_on {z}" "g analytic_on {z}"
-    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
-proof -
-  have "f analytic_on {z} \<and> g analytic_on {z}"
-    using assms by blast
-  with higher_deriv_add show ?thesis
-    by (auto simp: analytic_at_two)
-qed
-
-lemma higher_deriv_diff_at:
-  assumes "f analytic_on {z}" "g analytic_on {z}"
-    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
-proof -
-  have "f analytic_on {z} \<and> g analytic_on {z}"
-    using assms by blast
-  with higher_deriv_diff show ?thesis
-    by (auto simp: analytic_at_two)
-qed
-
-lemma higher_deriv_uminus_at:
-   "f analytic_on {z}  \<Longrightarrow> (deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
-  using higher_deriv_uminus
-    by (auto simp: analytic_at)
-
-lemma higher_deriv_mult_at:
-  assumes "f analytic_on {z}" "g analytic_on {z}"
-    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
-           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
-proof -
-  have "f analytic_on {z} \<and> g analytic_on {z}"
-    using assms by blast
-  with higher_deriv_mult show ?thesis
-    by (auto simp: analytic_at_two)
-qed
-
-
-text\<open> Nonexistence of isolated singularities and a stronger integral formula.\<close>
-
-proposition no_isolated_singularity:
-  fixes z::complex
-  assumes f: "continuous_on S f" and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
-    shows "f holomorphic_on S"
-proof -
-  { fix z
-    assume "z \<in> S" and cdf: "\<And>x. x \<in> S - K \<Longrightarrow> f field_differentiable at x"
-    have "f field_differentiable at z"
-    proof (cases "z \<in> K")
-      case False then show ?thesis by (blast intro: cdf \<open>z \<in> S\<close>)
-    next
-      case True
-      with finite_set_avoid [OF K, of z]
-      obtain d where "d>0" and d: "\<And>x. \<lbrakk>x\<in>K; x \<noteq> z\<rbrakk> \<Longrightarrow> d \<le> dist z x"
-        by blast
-      obtain e where "e>0" and e: "ball z e \<subseteq> S"
-        using  S \<open>z \<in> S\<close> by (force simp: open_contains_ball)
-      have fde: "continuous_on (ball z (min d e)) f"
-        by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI)
-      have cont: "{a,b,c} \<subseteq> ball z (min d e) \<Longrightarrow> continuous_on (convex hull {a, b, c}) f" for a b c
-        by (simp add: hull_minimal continuous_on_subset [OF fde])
-      have fd: "\<lbrakk>{a,b,c} \<subseteq> ball z (min d e); x \<in> interior (convex hull {a, b, c}) - K\<rbrakk>
-            \<Longrightarrow> f field_differentiable at x" for a b c x
-        by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e interior_mono interior_subset subset_hull)
-      obtain g where "\<And>w. w \<in> ball z (min d e) \<Longrightarrow> (g has_field_derivative f w) (at w within ball z (min d e))"
-        apply (rule contour_integral_convex_primitive
-                     [OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _ K]])
-        using cont fd by auto
-      then have "f holomorphic_on ball z (min d e)"
-        by (metis open_ball at_within_open derivative_is_holomorphic)
-      then show ?thesis
-        unfolding holomorphic_on_def
-        by (metis open_ball \<open>0 < d\<close> \<open>0 < e\<close> at_within_open centre_in_ball min_less_iff_conj)
-    qed
-  }
-  with holf S K show ?thesis
-    by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def [symmetric])
-qed
-
-lemma no_isolated_singularity':
-  fixes z::complex
-  assumes f: "\<And>z. z \<in> K \<Longrightarrow> (f \<longlongrightarrow> f z) (at z within S)"
-      and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
-    shows "f holomorphic_on S"
-proof (rule no_isolated_singularity[OF _ assms(2-)])
-  show "continuous_on S f" unfolding continuous_on_def
-  proof
-    fix z assume z: "z \<in> S"
-    show "(f \<longlongrightarrow> f z) (at z within S)"
-    proof (cases "z \<in> K")
-      case False
-      from holf have "continuous_on (S - K) f"
-        by (rule holomorphic_on_imp_continuous_on)
-      with z False have "(f \<longlongrightarrow> f z) (at z within (S - K))"
-        by (simp add: continuous_on_def)
-      also from z K S False have "at z within (S - K) = at z within S"
-        by (subst (1 2) at_within_open) (auto intro: finite_imp_closed)
-      finally show "(f \<longlongrightarrow> f z) (at z within S)" .
-    qed (insert assms z, simp_all)
-  qed
-qed
-
-proposition Cauchy_integral_formula_convex:
-  assumes S: "convex S" and K: "finite K" and contf: "continuous_on S f"
-    and fcd: "(\<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x)"
-    and z: "z \<in> interior S" and vpg: "valid_path \<gamma>"
-    and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-  shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  have *: "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x"
-    unfolding holomorphic_on_open [symmetric] field_differentiable_def
-    using no_isolated_singularity [where S = "interior S"]
-    by (meson K contf continuous_at_imp_continuous_on continuous_on_interior fcd
-          field_differentiable_at_within field_differentiable_def holomorphic_onI
-          holomorphic_on_imp_differentiable_at open_interior)
-  show ?thesis
-    by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use * assms in auto)
-qed
-
-text\<open> Formula for higher derivatives.\<close>
-
-lemma Cauchy_has_contour_integral_higher_derivative_circlepath:
-  assumes contf: "continuous_on (cball z r) f"
-      and holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "((\<lambda>u. f u / (u - w) ^ (Suc k)) has_contour_integral ((2 * pi * \<i>) / (fact k) * (deriv ^^ k) f w))
-           (circlepath z r)"
-using w
-proof (induction k arbitrary: w)
-  case 0 then show ?case
-    using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm)
-next
-  case (Suc k)
-  have [simp]: "r > 0" using w
-    using ball_eq_empty by fastforce
-  have f: "continuous_on (path_image (circlepath z r)) f"
-    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def less_imp_le)
-  obtain X where X: "((\<lambda>u. f u / (u - w) ^ Suc (Suc k)) has_contour_integral X) (circlepath z r)"
-    using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems]
-    by (auto simp: contour_integrable_on_def)
-  then have con: "contour_integral (circlepath z r) ((\<lambda>u. f u / (u - w) ^ Suc (Suc k))) = X"
-    by (rule contour_integral_unique)
-  have "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  then have dnf_diff: "\<And>n. (deriv ^^ n) f field_differentiable (at w)"
-    by (force simp: field_differentiable_def)
-  have "deriv (\<lambda>w. complex_of_real (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w) w =
-          of_nat (Suc k) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w) ^ Suc (Suc k))"
-    by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f Suc.IH _ Suc.prems])
-  also have "\<dots> = of_nat (Suc k) * X"
-    by (simp only: con)
-  finally have "deriv (\<lambda>w. ((2 * pi) * \<i> / (fact k)) * (deriv ^^ k) f w) w = of_nat (Suc k) * X" .
-  then have "((2 * pi) * \<i> / (fact k)) * deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X"
-    by (metis deriv_cmult dnf_diff)
-  then have "deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X / ((2 * pi) * \<i> / (fact k))"
-    by (simp add: field_simps)
-  then show ?case
-  using of_nat_eq_0_iff X by fastforce
-qed
-
-lemma Cauchy_higher_derivative_integral_circlepath:
-  assumes contf: "continuous_on (cball z r) f"
-      and holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
-           (is "?thes1")
-      and "(deriv ^^ k) f w = (fact k) / (2 * pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k))"
-           (is "?thes2")
-proof -
-  have *: "((\<lambda>u. f u / (u - w) ^ Suc k) has_contour_integral (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w)
-           (circlepath z r)"
-    using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms]
-    by simp
-  show ?thes1 using *
-    using contour_integrable_on_def by blast
-  show ?thes2
-    unfolding contour_integral_unique [OF *] by (simp add: field_split_simps)
-qed
-
-corollary Cauchy_contour_integral_circlepath:
-  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
-    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)) = (2 * pi * \<i>) * (deriv ^^ k) f w / (fact k)"
-by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms])
-
-lemma Cauchy_contour_integral_circlepath_2:
-  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
-    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^2) = (2 * pi * \<i>) * deriv f w"
-  using Cauchy_contour_integral_circlepath [OF assms, of 1]
-  by (simp add: power2_eq_square)
-
-
-subsection\<open>A holomorphic function is analytic, i.e. has local power series\<close>
-
-theorem holomorphic_power_series:
-  assumes holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "((\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
-proof -
-  \<comment> \<open>Replacing \<^term>\<open>r\<close> and the original (weak) premises with stronger ones\<close>
-  obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w \<in> ball z r"
-  proof
-    have "cball z ((r + dist w z) / 2) \<subseteq> ball z r"
-      using w by (simp add: dist_commute field_sum_of_halves subset_eq)
-    then show "f holomorphic_on cball z ((r + dist w z) / 2)"
-      by (rule holomorphic_on_subset [OF holf])
-    have "r > 0"
-      using w by clarsimp (metis dist_norm le_less_trans norm_ge_zero)
-    then show "0 < (r + dist w z) / 2"
-      by simp (use zero_le_dist [of w z] in linarith)
-  qed (use w in \<open>auto simp: dist_commute\<close>)
-  then have holf: "f holomorphic_on ball z r"
-    using ball_subset_cball holomorphic_on_subset by blast
-  have contf: "continuous_on (cball z r) f"
-    by (simp add: holfc holomorphic_on_imp_continuous_on)
-  have cint: "\<And>k. (\<lambda>u. f u / (u - z) ^ Suc k) contour_integrable_on circlepath z r"
-    by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp add: \<open>0 < r\<close>)
-  obtain B where "0 < B" and B: "\<And>u. u \<in> cball z r \<Longrightarrow> norm(f u) \<le> B"
-    by (metis (no_types) bounded_pos compact_cball compact_continuous_image compact_imp_bounded contf image_eqI)
-  obtain k where k: "0 < k" "k \<le> r" and wz_eq: "norm(w - z) = r - k"
-             and kle: "\<And>u. norm(u - z) = r \<Longrightarrow> k \<le> norm(u - w)"
-  proof
-    show "\<And>u. cmod (u - z) = r \<Longrightarrow> r - dist z w \<le> cmod (u - w)"
-      by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq)
-  qed (use w in \<open>auto simp: dist_norm norm_minus_commute\<close>)
-  have ul: "uniform_limit (sphere z r) (\<lambda>n x. (\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k))) (\<lambda>x. f x / (x - w)) sequentially"
-    unfolding uniform_limit_iff dist_norm
-  proof clarify
-    fix e::real
-    assume "0 < e"
-    have rr: "0 \<le> (r - k) / r" "(r - k) / r < 1" using  k by auto
-    obtain n where n: "((r - k) / r) ^ n < e / B * k"
-      using real_arch_pow_inv [of "e/B*k" "(r - k)/r"] \<open>0 < e\<close> \<open>0 < B\<close> k by force
-    have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) - f u / (u - w)) < e"
-         if "n \<le> N" and r: "r = dist z u"  for N u
-    proof -
-      have N: "((r - k) / r) ^ N < e / B * k"
-        apply (rule le_less_trans [OF power_decreasing n])
-        using  \<open>n \<le> N\<close> k by auto
-      have u [simp]: "(u \<noteq> z) \<and> (u \<noteq> w)"
-        using \<open>0 < r\<close> r w by auto
-      have wzu_not1: "(w - z) / (u - z) \<noteq> 1"
-        by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball norm_minus_commute r w)
-      have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) * (u - w) - f u)
-            = norm ((\<Sum>k<N. (((w - z) / (u - z)) ^ k)) * f u * (u - w) / (u - z) - f u)"
-        unfolding sum_distrib_right sum_divide_distrib power_divide by (simp add: algebra_simps)
-      also have "\<dots> = norm ((((w - z) / (u - z)) ^ N - 1) * (u - w) / (((w - z) / (u - z) - 1) * (u - z)) - 1) * norm (f u)"
-        using \<open>0 < B\<close>
-        apply (auto simp: geometric_sum [OF wzu_not1])
-        apply (simp add: field_simps norm_mult [symmetric])
-        done
-      also have "\<dots> = norm ((u-z) ^ N * (w - u) - ((w - z) ^ N - (u-z) ^ N) * (u-w)) / (r ^ N * norm (u-w)) * norm (f u)"
-        using \<open>0 < r\<close> r by (simp add: divide_simps norm_mult norm_divide norm_power dist_norm norm_minus_commute)
-      also have "\<dots> = norm ((w - z) ^ N * (w - u)) / (r ^ N * norm (u - w)) * norm (f u)"
-        by (simp add: algebra_simps)
-      also have "\<dots> = norm (w - z) ^ N * norm (f u) / r ^ N"
-        by (simp add: norm_mult norm_power norm_minus_commute)
-      also have "\<dots> \<le> (((r - k)/r)^N) * B"
-        using \<open>0 < r\<close> w k
-        apply (simp add: divide_simps)
-        apply (rule mult_mono [OF power_mono])
-        apply (auto simp: norm_divide wz_eq norm_power dist_norm norm_minus_commute B r)
-        done
-      also have "\<dots> < e * k"
-        using \<open>0 < B\<close> N by (simp add: divide_simps)
-      also have "\<dots> \<le> e * norm (u - w)"
-        using r kle \<open>0 < e\<close> by (simp add: dist_commute dist_norm)
-      finally show ?thesis
-        by (simp add: field_split_simps norm_divide del: power_Suc)
-    qed
-    with \<open>0 < r\<close> show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>sphere z r.
-                norm ((\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k)) - f x / (x - w)) < e"
-      by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)
-  qed
-  have eq: "\<forall>\<^sub>F x in sequentially.
-             contour_integral (circlepath z r) (\<lambda>u. \<Sum>k<x. (w - z) ^ k * (f u / (u - z) ^ Suc k)) =
-             (\<Sum>k<x. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z) ^ k)"
-    apply (rule eventuallyI)
-    apply (subst contour_integral_sum, simp)
-    using contour_integrable_lmul [OF cint, of "(w - z) ^ a" for a] apply (simp add: field_simps)
-    apply (simp only: contour_integral_lmul cint algebra_simps)
-    done
-  have cic: "\<And>u. (\<lambda>y. \<Sum>k<u. (w - z) ^ k * (f y / (y - z) ^ Suc k)) contour_integrable_on circlepath z r"
-    apply (intro contour_integrable_sum contour_integrable_lmul, simp)
-    using \<open>0 < r\<close> by (force intro!: Cauchy_higher_derivative_integral_circlepath [OF contf holf])
-  have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k)
-        sums contour_integral (circlepath z r) (\<lambda>u. f u/(u - w))"
-    unfolding sums_def
-    apply (intro Lim_transform_eventually [OF _ eq] contour_integral_uniform_limit_circlepath [OF eventuallyI ul] cic)
-    using \<open>0 < r\<close> apply auto
-    done
-  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k)
-             sums (2 * of_real pi * \<i> * f w)"
-    using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF Cauchy_integral_circlepath_simple [OF holfc]])
-  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z)^k / (\<i> * (of_real pi * 2)))
-            sums ((2 * of_real pi * \<i> * f w) / (\<i> * (complex_of_real pi * 2)))"
-    by (rule sums_divide)
-  then have "(\<lambda>n. (w - z) ^ n * contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc n) / (\<i> * (of_real pi * 2)))
-            sums f w"
-    by (simp add: field_simps)
-  then show ?thesis
-    by (simp add: field_simps \<open>0 < r\<close> Cauchy_higher_derivative_integral_circlepath [OF contf holf])
-qed
-
-
-subsection\<open>The Liouville theorem and the Fundamental Theorem of Algebra\<close>
-
-text\<open> These weak Liouville versions don't even need the derivative formula.\<close>
-
-lemma Liouville_weak_0:
-  assumes holf: "f holomorphic_on UNIV" and inf: "(f \<longlongrightarrow> 0) at_infinity"
-    shows "f z = 0"
-proof (rule ccontr)
-  assume fz: "f z \<noteq> 0"
-  with inf [unfolded Lim_at_infinity, rule_format, of "norm(f z)/2"]
-  obtain B where B: "\<And>x. B \<le> cmod x \<Longrightarrow> norm (f x) * 2 < cmod (f z)"
-    by (auto simp: dist_norm)
-  define R where "R = 1 + \<bar>B\<bar> + norm z"
-  have "R > 0" unfolding R_def
-  proof -
-    have "0 \<le> cmod z + \<bar>B\<bar>"
-      by (metis (full_types) add_nonneg_nonneg norm_ge_zero real_norm_def)
-    then show "0 < 1 + \<bar>B\<bar> + cmod z"
-      by linarith
-  qed
-  have *: "((\<lambda>u. f u / (u - z)) has_contour_integral 2 * complex_of_real pi * \<i> * f z) (circlepath z R)"
-    apply (rule Cauchy_integral_circlepath)
-    using \<open>R > 0\<close> apply (auto intro: holomorphic_on_subset [OF holf] holomorphic_on_imp_continuous_on)+
-    done
-  have "cmod (x - z) = R \<Longrightarrow> cmod (f x) * 2 < cmod (f z)" for x
-    unfolding R_def
-    by (rule B) (use norm_triangle_ineq4 [of x z] in auto)
-  with \<open>R > 0\<close> fz show False
-    using has_contour_integral_bound_circlepath [OF *, of "norm(f z)/2/R"]
-    by (auto simp: less_imp_le norm_mult norm_divide field_split_simps)
-qed
-
-proposition Liouville_weak:
-  assumes "f holomorphic_on UNIV" and "(f \<longlongrightarrow> l) at_infinity"
-    shows "f z = l"
-  using Liouville_weak_0 [of "\<lambda>z. f z - l"]
-  by (simp add: assms holomorphic_on_diff LIM_zero)
-
-proposition Liouville_weak_inverse:
-  assumes "f holomorphic_on UNIV" and unbounded: "\<And>B. eventually (\<lambda>x. norm (f x) \<ge> B) at_infinity"
-    obtains z where "f z = 0"
-proof -
-  { assume f: "\<And>z. f z \<noteq> 0"
-    have 1: "(\<lambda>x. 1 / f x) holomorphic_on UNIV"
-      by (simp add: holomorphic_on_divide assms f)
-    have 2: "((\<lambda>x. 1 / f x) \<longlongrightarrow> 0) at_infinity"
-      apply (rule tendstoI [OF eventually_mono])
-      apply (rule_tac B="2/e" in unbounded)
-      apply (simp add: dist_norm norm_divide field_split_simps)
-      done
-    have False
-      using Liouville_weak_0 [OF 1 2] f by simp
-  }
-  then show ?thesis
-    using that by blast
-qed
-
-text\<open> In particular we get the Fundamental Theorem of Algebra.\<close>
-
-theorem fundamental_theorem_of_algebra:
-    fixes a :: "nat \<Rightarrow> complex"
-  assumes "a 0 = 0 \<or> (\<exists>i \<in> {1..n}. a i \<noteq> 0)"
-  obtains z where "(\<Sum>i\<le>n. a i * z^i) = 0"
-using assms
-proof (elim disjE bexE)
-  assume "a 0 = 0" then show ?thesis
-    by (auto simp: that [of 0])
-next
-  fix i
-  assume i: "i \<in> {1..n}" and nz: "a i \<noteq> 0"
-  have 1: "(\<lambda>z. \<Sum>i\<le>n. a i * z^i) holomorphic_on UNIV"
-    by (rule holomorphic_intros)+
-  show thesis
-  proof (rule Liouville_weak_inverse [OF 1])
-    show "\<forall>\<^sub>F x in at_infinity. B \<le> cmod (\<Sum>i\<le>n. a i * x ^ i)" for B
-      using i polyfun_extremal nz by force
-  qed (use that in auto)
-qed
-
-subsection\<open>Weierstrass convergence theorem\<close>
-
-lemma holomorphic_uniform_limit:
-  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and> (f n) holomorphic_on ball z r) F"
-      and ulim: "uniform_limit (cball z r) f g F"
-      and F:  "\<not> trivial_limit F"
-  obtains "continuous_on (cball z r) g" "g holomorphic_on ball z r"
-proof (cases r "0::real" rule: linorder_cases)
-  case less then show ?thesis by (force simp: ball_empty less_imp_le continuous_on_def holomorphic_on_def intro: that)
-next
-  case equal then show ?thesis
-    by (force simp: holomorphic_on_def intro: that)
-next
-  case greater
-  have contg: "continuous_on (cball z r) g"
-    using cont uniform_limit_theorem [OF eventually_mono ulim F]  by blast
-  have "path_image (circlepath z r) \<subseteq> cball z r"
-    using \<open>0 < r\<close> by auto
-  then have 1: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1 / (2 * complex_of_real pi * \<i>) * g x)"
-    by (intro continuous_intros continuous_on_subset [OF contg])
-  have 2: "((\<lambda>u. 1 / (2 * of_real pi * \<i>) * g u / (u - w) ^ 1) has_contour_integral g w) (circlepath z r)"
-       if w: "w \<in> ball z r" for w
-  proof -
-    define d where "d = (r - norm(w - z))"
-    have "0 < d"  "d \<le> r" using w by (auto simp: norm_minus_commute d_def dist_norm)
-    have dle: "\<And>u. cmod (z - u) = r \<Longrightarrow> d \<le> cmod (u - w)"
-      unfolding d_def by (metis add_diff_eq diff_add_cancel norm_diff_ineq norm_minus_commute)
-    have ev_int: "\<forall>\<^sub>F n in F. (\<lambda>u. f n u / (u - w)) contour_integrable_on circlepath z r"
-      apply (rule eventually_mono [OF cont])
-      using w
-      apply (auto intro: Cauchy_higher_derivative_integral_circlepath [where k=0, simplified])
-      done
-    have ul_less: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)) (\<lambda>x. g x / (x - w)) F"
-      using greater \<open>0 < d\<close>
-      apply (clarsimp simp add: uniform_limit_iff dist_norm norm_divide diff_divide_distrib [symmetric] divide_simps)
-      apply (rule_tac e1="e * d" in eventually_mono [OF uniform_limitD [OF ulim]])
-       apply (force simp: dist_norm intro: dle mult_left_mono less_le_trans)+
-      done
-    have g_cint: "(\<lambda>u. g u/(u - w)) contour_integrable_on circlepath z r"
-      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
-    have cif_tends_cig: "((\<lambda>n. contour_integral(circlepath z r) (\<lambda>u. f n u / (u - w))) \<longlongrightarrow> contour_integral(circlepath z r) (\<lambda>u. g u/(u - w))) F"
-      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
-    have f_tends_cig: "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> contour_integral (circlepath z r) (\<lambda>u. g u / (u - w))) F"
-    proof (rule Lim_transform_eventually)
-      show "\<forall>\<^sub>F x in F. contour_integral (circlepath z r) (\<lambda>u. f x u / (u - w))
-                     = 2 * of_real pi * \<i> * f x w"
-        apply (rule eventually_mono [OF cont contour_integral_unique [OF Cauchy_integral_circlepath]])
-        using w\<open>0 < d\<close> d_def by auto
-    qed (auto simp: cif_tends_cig)
-    have "\<And>e. 0 < e \<Longrightarrow> \<forall>\<^sub>F n in F. dist (f n w) (g w) < e"
-      by (rule eventually_mono [OF uniform_limitD [OF ulim]]) (use w in auto)
-    then have "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> 2 * of_real pi * \<i> * g w) F"
-      by (rule tendsto_mult_left [OF tendstoI])
-    then have "((\<lambda>u. g u / (u - w)) has_contour_integral 2 * of_real pi * \<i> * g w) (circlepath z r)"
-      using has_contour_integral_integral [OF g_cint] tendsto_unique [OF F f_tends_cig] w
-      by fastforce
-    then have "((\<lambda>u. g u / (2 * of_real pi * \<i> * (u - w))) has_contour_integral g w) (circlepath z r)"
-      using has_contour_integral_div [where c = "2 * of_real pi * \<i>"]
-      by (force simp: field_simps)
-    then show ?thesis
-      by (simp add: dist_norm)
-  qed
-  show ?thesis
-    using Cauchy_next_derivative_circlepath(2) [OF 1 2, simplified]
-    by (fastforce simp add: holomorphic_on_open contg intro: that)
-qed
-
-
-text\<open> Version showing that the limit is the limit of the derivatives.\<close>
-
-proposition has_complex_derivative_uniform_limit:
-  fixes z::complex
-  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and>
-                               (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))) F"
-      and ulim: "uniform_limit (cball z r) f g F"
-      and F:  "\<not> trivial_limit F" and "0 < r"
-  obtains g' where
-      "continuous_on (cball z r) g"
-      "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
-proof -
-  let ?conint = "contour_integral (circlepath z r)"
-  have g: "continuous_on (cball z r) g" "g holomorphic_on ball z r"
-    by (rule holomorphic_uniform_limit [OF eventually_mono [OF cont] ulim F];
-             auto simp: holomorphic_on_open field_differentiable_def)+
-  then obtain g' where g': "\<And>x. x \<in> ball z r \<Longrightarrow> (g has_field_derivative g' x) (at x)"
-    using DERIV_deriv_iff_has_field_derivative
-    by (fastforce simp add: holomorphic_on_open)
-  then have derg: "\<And>x. x \<in> ball z r \<Longrightarrow> deriv g x = g' x"
-    by (simp add: DERIV_imp_deriv)
-  have tends_f'n_g': "((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" if w: "w \<in> ball z r" for w
-  proof -
-    have eq_f': "?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2) = (f' n w - g' w) * (2 * of_real pi * \<i>)"
-             if cont_fn: "continuous_on (cball z r) (f n)"
-             and fnd: "\<And>w. w \<in> ball z r \<Longrightarrow> (f n has_field_derivative f' n w) (at w)" for n
-    proof -
-      have hol_fn: "f n holomorphic_on ball z r"
-        using fnd by (force simp: holomorphic_on_open)
-      have "(f n has_field_derivative 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)) (at w)"
-        by (rule Cauchy_derivative_integral_circlepath [OF cont_fn hol_fn w])
-      then have f': "f' n w = 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)"
-        using DERIV_unique [OF fnd] w by blast
-      show ?thesis
-        by (simp add: f' Cauchy_contour_integral_circlepath_2 [OF g w] derg [OF w] field_split_simps)
-    qed
-    define d where "d = (r - norm(w - z))^2"
-    have "d > 0"
-      using w by (simp add: dist_commute dist_norm d_def)
-    have dle: "d \<le> cmod ((y - w)\<^sup>2)" if "r = cmod (z - y)" for y
-    proof -
-      have "w \<in> ball z (cmod (z - y))"
-        using that w by fastforce
-      then have "cmod (w - z) \<le> cmod (z - y)"
-        by (simp add: dist_complex_def norm_minus_commute)
-      moreover have "cmod (z - y) - cmod (w - z) \<le> cmod (y - w)"
-        by (metis diff_add_cancel diff_add_eq_diff_diff_swap norm_minus_commute norm_triangle_ineq2)
-      ultimately show ?thesis
-        using that by (simp add: d_def norm_power power_mono)
-    qed
-    have 1: "\<forall>\<^sub>F n in F. (\<lambda>x. f n x / (x - w)\<^sup>2) contour_integrable_on circlepath z r"
-      by (force simp: holomorphic_on_open intro: w Cauchy_derivative_integral_circlepath eventually_mono [OF cont])
-    have 2: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)\<^sup>2) (\<lambda>x. g x / (x - w)\<^sup>2) F"
-      unfolding uniform_limit_iff
-    proof clarify
-      fix e::real
-      assume "0 < e"
-      with \<open>r > 0\<close> show "\<forall>\<^sub>F n in F. \<forall>x\<in>sphere z r. dist (f n x / (x - w)\<^sup>2) (g x / (x - w)\<^sup>2) < e"
-        apply (simp add: norm_divide field_split_simps sphere_def dist_norm)
-        apply (rule eventually_mono [OF uniform_limitD [OF ulim], of "e*d"])
-         apply (simp add: \<open>0 < d\<close>)
-        apply (force simp: dist_norm dle intro: less_le_trans)
-        done
-    qed
-    have "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>x. f n x / (x - w)\<^sup>2))
-             \<longlongrightarrow> contour_integral (circlepath z r) ((\<lambda>x. g x / (x - w)\<^sup>2))) F"
-      by (rule contour_integral_uniform_limit_circlepath [OF 1 2 F \<open>0 < r\<close>])
-    then have tendsto_0: "((\<lambda>n. 1 / (2 * of_real pi * \<i>) * (?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2))) \<longlongrightarrow> 0) F"
-      using Lim_null by (force intro!: tendsto_mult_right_zero)
-    have "((\<lambda>n. f' n w - g' w) \<longlongrightarrow> 0) F"
-      apply (rule Lim_transform_eventually [OF tendsto_0])
-      apply (force simp: divide_simps intro: eq_f' eventually_mono [OF cont])
-      done
-    then show ?thesis using Lim_null by blast
-  qed
-  obtain g' where "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
-      by (blast intro: tends_f'n_g' g')
-  then show ?thesis using g
-    using that by blast
-qed
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Some more simple/convenient versions for applications\<close>
-
-lemma holomorphic_uniform_sequence:
-  assumes S: "open S"
-      and hol_fn: "\<And>n. (f n) holomorphic_on S"
-      and ulim_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
-  shows "g holomorphic_on S"
-proof -
-  have "\<exists>f'. (g has_field_derivative f') (at z)" if "z \<in> S" for z
-  proof -
-    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
-               and ul: "uniform_limit (cball z r) f g sequentially"
-      using ulim_g [OF \<open>z \<in> S\<close>] by blast
-    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and> f n holomorphic_on ball z r"
-    proof (intro eventuallyI conjI)
-      show "continuous_on (cball z r) (f x)" for x
-        using hol_fn holomorphic_on_imp_continuous_on holomorphic_on_subset r by blast
-      show "f x holomorphic_on ball z r" for x
-        by (metis hol_fn holomorphic_on_subset interior_cball interior_subset r)
-    qed
-    show ?thesis
-      apply (rule holomorphic_uniform_limit [OF *])
-      using \<open>0 < r\<close> centre_in_ball ul
-      apply (auto simp: holomorphic_on_open)
-      done
-  qed
-  with S show ?thesis
-    by (simp add: holomorphic_on_open)
-qed
-
-lemma has_complex_derivative_uniform_sequence:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> ((f n) has_field_derivative f' n x) (at x)"
-      and ulim_g: "\<And>x. x \<in> S
-             \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
-  shows "\<exists>g'. \<forall>x \<in> S. (g has_field_derivative g' x) (at x) \<and> ((\<lambda>n. f' n x) \<longlongrightarrow> g' x) sequentially"
-proof -
-  have y: "\<exists>y. (g has_field_derivative y) (at z) \<and> (\<lambda>n. f' n z) \<longlonglongrightarrow> y" if "z \<in> S" for z
-  proof -
-    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
-               and ul: "uniform_limit (cball z r) f g sequentially"
-      using ulim_g [OF \<open>z \<in> S\<close>] by blast
-    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and>
-                                   (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))"
-    proof (intro eventuallyI conjI ballI)
-      show "continuous_on (cball z r) (f x)" for x
-        by (meson S continuous_on_subset hfd holomorphic_on_imp_continuous_on holomorphic_on_open r)
-      show "w \<in> ball z r \<Longrightarrow> (f x has_field_derivative f' x w) (at w)" for w x
-        using ball_subset_cball hfd r by blast
-    qed
-    show ?thesis
-      by (rule has_complex_derivative_uniform_limit [OF *, of g]) (use \<open>0 < r\<close> ul in \<open>force+\<close>)
-  qed
-  show ?thesis
-    by (rule bchoice) (blast intro: y)
-qed
-
-subsection\<open>On analytic functions defined by a series\<close>
-
-lemma series_and_derivative_comparison:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and h: "summable h"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      and to_g: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. norm (f n x) \<le> h n"
-  obtains g g' where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-proof -
-  obtain g where g: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
-    using Weierstrass_m_test_ev [OF to_g h]  by force
-  have *: "\<exists>d>0. cball x d \<subseteq> S \<and> uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
-         if "x \<in> S" for x
-  proof -
-    obtain d where "d>0" and d: "cball x d \<subseteq> S"
-      using open_contains_cball [of "S"] \<open>x \<in> S\<close> S by blast
-    show ?thesis
-    proof (intro conjI exI)
-      show "uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
-        using d g uniform_limit_on_subset by (force simp: dist_norm eventually_sequentially)
-    qed (use \<open>d > 0\<close> d in auto)
-  qed
-  have "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i x) \<longlonglongrightarrow> g x"
-    by (metis tendsto_uniform_limitI [OF g])
-  moreover have "\<exists>g'. \<forall>x\<in>S. (g has_field_derivative g' x) (at x) \<and> (\<lambda>n. \<Sum>i<n. f' i x) \<longlonglongrightarrow> g' x"
-    by (rule has_complex_derivative_uniform_sequence [OF S]) (auto intro: * hfd DERIV_sum)+
-  ultimately show ?thesis
-    by (metis sums_def that)
-qed
-
-text\<open>A version where we only have local uniform/comparative convergence.\<close>
-
-lemma series_and_derivative_comparison_local:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. norm (f n y) \<le> h n)"
-  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-proof -
-  have "\<exists>y. (\<lambda>n. f n z) sums (\<Sum>n. f n z) \<and> (\<lambda>n. f' n z) sums y \<and> ((\<lambda>x. \<Sum>n. f n x) has_field_derivative y) (at z)"
-       if "z \<in> S" for z
-  proof -
-    obtain d h where "0 < d" "summable h" and le_h: "\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball z d \<inter> S. norm (f n y) \<le> h n"
-      using to_g \<open>z \<in> S\<close> by meson
-    then obtain r where "r>0" and r: "ball z r \<subseteq> ball z d \<inter> S" using \<open>z \<in> S\<close> S
-      by (metis Int_iff open_ball centre_in_ball open_Int open_contains_ball_eq)
-    have 1: "open (ball z d \<inter> S)"
-      by (simp add: open_Int S)
-    have 2: "\<And>n x. x \<in> ball z d \<inter> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      by (auto simp: hfd)
-    obtain g g' where gg': "\<forall>x \<in> ball z d \<inter> S. ((\<lambda>n. f n x) sums g x) \<and>
-                                    ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-      by (auto intro: le_h series_and_derivative_comparison [OF 1 \<open>summable h\<close> hfd])
-    then have "(\<lambda>n. f' n z) sums g' z"
-      by (meson \<open>0 < r\<close> centre_in_ball contra_subsetD r)
-    moreover have "(\<lambda>n. f n z) sums (\<Sum>n. f n z)"
-      using  summable_sums centre_in_ball \<open>0 < d\<close> \<open>summable h\<close> le_h
-      by (metis (full_types) Int_iff gg' summable_def that)
-    moreover have "((\<lambda>x. \<Sum>n. f n x) has_field_derivative g' z) (at z)"
-    proof (rule has_field_derivative_transform_within)
-      show "\<And>x. dist x z < r \<Longrightarrow> g x = (\<Sum>n. f n x)"
-        by (metis subsetD dist_commute gg' mem_ball r sums_unique)
-    qed (use \<open>0 < r\<close> gg' \<open>z \<in> S\<close> \<open>0 < d\<close> in auto)
-    ultimately show ?thesis by auto
-  qed
-  then show ?thesis
-    by (rule_tac x="\<lambda>x. suminf (\<lambda>n. f n x)" in exI) meson
-qed
-
-
-text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
-
-lemma series_and_derivative_comparison_complex:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
-  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
-apply (rule ex_forward [OF to_g], assumption)
-apply (erule exE)
-apply (rule_tac x="Re \<circ> h" in exI)
-apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
-done
-
-text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
-lemma series_differentiable_comparison_complex:
-  fixes S :: "complex set"
-  assumes S: "open S"
-    and hfd: "\<And>n x. x \<in> S \<Longrightarrow> f n field_differentiable (at x)"
-    and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
-  obtains g where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> g field_differentiable (at x)"
-proof -
-  have hfd': "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative deriv (f n) x) (at x)"
-    using hfd field_differentiable_derivI by blast
-  have "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. deriv (f n) x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-    by (metis series_and_derivative_comparison_complex [OF S hfd' to_g])
-  then show ?thesis
-    using field_differentiable_def that by blast
-qed
-
-text\<open>In particular, a power series is analytic inside circle of convergence.\<close>
-
-lemma power_series_and_derivative_0:
-  fixes a :: "nat \<Rightarrow> complex" and r::real
-  assumes "summable (\<lambda>n. a n * r^n)"
-    shows "\<exists>g g'. \<forall>z. cmod z < r \<longrightarrow>
-             ((\<lambda>n. a n * z^n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * z^(n - 1)) sums g' z) \<and> (g has_field_derivative g' z) (at z)"
-proof (cases "0 < r")
-  case True
-    have der: "\<And>n z. ((\<lambda>x. a n * x ^ n) has_field_derivative of_nat n * a n * z ^ (n - 1)) (at z)"
-      by (rule derivative_eq_intros | simp)+
-    have y_le: "\<lbrakk>cmod (z - y) * 2 < r - cmod z\<rbrakk> \<Longrightarrow> cmod y \<le> cmod (of_real r + of_real (cmod z)) / 2" for z y
-      using \<open>r > 0\<close>
-      apply (auto simp: algebra_simps norm_mult norm_divide norm_power simp flip: of_real_add)
-      using norm_triangle_ineq2 [of y z]
-      apply (simp only: diff_le_eq norm_minus_commute mult_2)
-      done
-    have "summable (\<lambda>n. a n * complex_of_real r ^ n)"
-      using assms \<open>r > 0\<close> by simp
-    moreover have "\<And>z. cmod z < r \<Longrightarrow> cmod ((of_real r + of_real (cmod z)) / 2) < cmod (of_real r)"
-      using \<open>r > 0\<close>
-      by (simp flip: of_real_add)
-    ultimately have sum: "\<And>z. cmod z < r \<Longrightarrow> summable (\<lambda>n. of_real (cmod (a n)) * ((of_real r + complex_of_real (cmod z)) / 2) ^ n)"
-      by (rule power_series_conv_imp_absconv_weak)
-    have "\<exists>g g'. \<forall>z \<in> ball 0 r. (\<lambda>n.  (a n) * z ^ n) sums g z \<and>
-               (\<lambda>n. of_nat n * (a n) * z ^ (n - 1)) sums g' z \<and> (g has_field_derivative g' z) (at z)"
-      apply (rule series_and_derivative_comparison_complex [OF open_ball der])
-      apply (rule_tac x="(r - norm z)/2" in exI)
-      apply (rule_tac x="\<lambda>n. of_real(norm(a n)*((r + norm z)/2)^n)" in exI)
-      using \<open>r > 0\<close>
-      apply (auto simp: sum eventually_sequentially norm_mult norm_power dist_norm intro!: mult_left_mono power_mono y_le)
-      done
-  then show ?thesis
-    by (simp add: ball_def)
-next
-  case False then show ?thesis
-    apply (simp add: not_less)
-    using less_le_trans norm_not_less_zero by blast
-qed
-
-proposition\<^marker>\<open>tag unimportant\<close> power_series_and_derivative:
-  fixes a :: "nat \<Rightarrow> complex" and r::real
-  assumes "summable (\<lambda>n. a n * r^n)"
-    obtains g g' where "\<forall>z \<in> ball w r.
-             ((\<lambda>n. a n * (z - w) ^ n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * (z - w) ^ (n - 1)) sums g' z) \<and>
-              (g has_field_derivative g' z) (at z)"
-  using power_series_and_derivative_0 [OF assms]
-  apply clarify
-  apply (rule_tac g="(\<lambda>z. g(z - w))" in that)
-  using DERIV_shift [where z="-w"]
-  apply (auto simp: norm_minus_commute Ball_def dist_norm)
-  done
-
-proposition\<^marker>\<open>tag unimportant\<close> power_series_holomorphic:
-  assumes "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>n. a n*(w - z)^n) sums f w)"
-    shows "f holomorphic_on ball z r"
-proof -
-  have "\<exists>f'. (f has_field_derivative f') (at w)" if w: "dist z w < r" for w
-  proof -
-    have inb: "z + complex_of_real ((dist z w + r) / 2) \<in> ball z r"
-    proof -
-      have wz: "cmod (w - z) < r" using w
-        by (auto simp: field_split_simps dist_norm norm_minus_commute)
-      then have "0 \<le> r"
-        by (meson less_eq_real_def norm_ge_zero order_trans)
-      show ?thesis
-        using w by (simp add: dist_norm \<open>0\<le>r\<close> flip: of_real_add)
-    qed
-    have sum: "summable (\<lambda>n. a n * of_real (((cmod (z - w) + r) / 2) ^ n))"
-      using assms [OF inb] by (force simp: summable_def dist_norm)
-    obtain g g' where gg': "\<And>u. u \<in> ball z ((cmod (z - w) + r) / 2) \<Longrightarrow>
-                               (\<lambda>n. a n * (u - z) ^ n) sums g u \<and>
-                               (\<lambda>n. of_nat n * a n * (u - z) ^ (n - 1)) sums g' u \<and> (g has_field_derivative g' u) (at u)"
-      by (rule power_series_and_derivative [OF sum, of z]) fastforce
-    have [simp]: "g u = f u" if "cmod (u - w) < (r - cmod (z - w)) / 2" for u
-    proof -
-      have less: "cmod (z - u) * 2 < cmod (z - w) + r"
-        using that dist_triangle2 [of z u w]
-        by (simp add: dist_norm [symmetric] algebra_simps)
-      show ?thesis
-        apply (rule sums_unique2 [of "\<lambda>n. a n*(u - z)^n"])
-        using gg' [of u] less w
-        apply (auto simp: assms dist_norm)
-        done
-    qed
-    have "(f has_field_derivative g' w) (at w)"
-      by (rule has_field_derivative_transform_within [where d="(r - norm(z - w))/2"])
-      (use w gg' [of w] in \<open>(force simp: dist_norm)+\<close>)
-    then show ?thesis ..
-  qed
-  then show ?thesis by (simp add: holomorphic_on_open)
-qed
-
-corollary holomorphic_iff_power_series:
-     "f holomorphic_on ball z r \<longleftrightarrow>
-      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
-  apply (intro iffI ballI holomorphic_power_series, assumption+)
-  apply (force intro: power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"])
-  done
-
-lemma power_series_analytic:
-     "(\<And>w. w \<in> ball z r \<Longrightarrow> (\<lambda>n. a n*(w - z)^n) sums f w) \<Longrightarrow> f analytic_on ball z r"
-  by (force simp: analytic_on_open intro!: power_series_holomorphic)
-
-lemma analytic_iff_power_series:
-     "f analytic_on ball z r \<longleftrightarrow>
-      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
-  by (simp add: analytic_on_open holomorphic_iff_power_series)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Equality between holomorphic functions, on open ball then connected set\<close>
-
-lemma holomorphic_fun_eq_on_ball:
-   "\<lbrakk>f holomorphic_on ball z r; g holomorphic_on ball z r;
-     w \<in> ball z r;
-     \<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z\<rbrakk>
-     \<Longrightarrow> f w = g w"
-  apply (rule sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"])
-  apply (auto simp: holomorphic_iff_power_series)
-  done
-
-lemma holomorphic_fun_eq_0_on_ball:
-   "\<lbrakk>f holomorphic_on ball z r;  w \<in> ball z r;
-     \<And>n. (deriv ^^ n) f z = 0\<rbrakk>
-     \<Longrightarrow> f w = 0"
-  apply (rule sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"])
-  apply (auto simp: holomorphic_iff_power_series)
-  done
-
-lemma holomorphic_fun_eq_0_on_connected:
-  assumes holf: "f holomorphic_on S" and "open S"
-      and cons: "connected S"
-      and der: "\<And>n. (deriv ^^ n) f z = 0"
-      and "z \<in> S" "w \<in> S"
-    shows "f w = 0"
-proof -
-  have *: "ball x e \<subseteq> (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
-    if "\<forall>u. (deriv ^^ u) f x = 0" "ball x e \<subseteq> S" for x e
-  proof -
-    have "\<And>x' n. dist x x' < e \<Longrightarrow> (deriv ^^ n) f x' = 0"
-      apply (rule holomorphic_fun_eq_0_on_ball [OF holomorphic_higher_deriv])
-         apply (rule holomorphic_on_subset [OF holf])
-      using that apply simp_all
-      by (metis funpow_add o_apply)
-    with that show ?thesis by auto
-  qed
-  have 1: "openin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
-    apply (rule open_subset, force)
-    using \<open>open S\<close>
-    apply (simp add: open_contains_ball Ball_def)
-    apply (erule all_forward)
-    using "*" by auto blast+
-  have 2: "closedin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
-    using assms
-    by (auto intro: continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on holomorphic_higher_deriv)
-  obtain e where "e>0" and e: "ball w e \<subseteq> S" using openE [OF \<open>open S\<close> \<open>w \<in> S\<close>] .
-  then have holfb: "f holomorphic_on ball w e"
-    using holf holomorphic_on_subset by blast
-  have 3: "(\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}) = S \<Longrightarrow> f w = 0"
-    using \<open>e>0\<close> e by (force intro: holomorphic_fun_eq_0_on_ball [OF holfb])
-  show ?thesis
-    using cons der \<open>z \<in> S\<close>
-    apply (simp add: connected_clopen)
-    apply (drule_tac x="\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}" in spec)
-    apply (auto simp: 1 2 3)
-    done
-qed
-
-lemma holomorphic_fun_eq_on_connected:
-  assumes "f holomorphic_on S" "g holomorphic_on S" and "open S"  "connected S"
-      and "\<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z"
-      and "z \<in> S" "w \<in> S"
-    shows "f w = g w"
-proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>x. f x - g x" S z, simplified])
-  show "(\<lambda>x. f x - g x) holomorphic_on S"
-    by (intro assms holomorphic_intros)
-  show "\<And>n. (deriv ^^ n) (\<lambda>x. f x - g x) z = 0"
-    using assms higher_deriv_diff by auto
-qed (use assms in auto)
-
-lemma holomorphic_fun_eq_const_on_connected:
-  assumes holf: "f holomorphic_on S" and "open S"
-      and cons: "connected S"
-      and der: "\<And>n. 0 < n \<Longrightarrow> (deriv ^^ n) f z = 0"
-      and "z \<in> S" "w \<in> S"
-    shows "f w = f z"
-proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>w. f w - f z" S z, simplified])
-  show "(\<lambda>w. f w - f z) holomorphic_on S"
-    by (intro assms holomorphic_intros)
-  show "\<And>n. (deriv ^^ n) (\<lambda>w. f w - f z) z = 0"
-    by (subst higher_deriv_diff) (use assms in \<open>auto intro: holomorphic_intros\<close>)
-qed (use assms in auto)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Some basic lemmas about poles/singularities\<close>
-
-lemma pole_lemma:
-  assumes holf: "f holomorphic_on S" and a: "a \<in> interior S"
-    shows "(\<lambda>z. if z = a then deriv f a
-                 else (f z - f a) / (z - a)) holomorphic_on S" (is "?F holomorphic_on S")
-proof -
-  have F1: "?F field_differentiable (at u within S)" if "u \<in> S" "u \<noteq> a" for u
-  proof -
-    have fcd: "f field_differentiable at u within S"
-      using holf holomorphic_on_def by (simp add: \<open>u \<in> S\<close>)
-    have cd: "(\<lambda>z. (f z - f a) / (z - a)) field_differentiable at u within S"
-      by (rule fcd derivative_intros | simp add: that)+
-    have "0 < dist a u" using that dist_nz by blast
-    then show ?thesis
-      by (rule field_differentiable_transform_within [OF _ _ _ cd]) (auto simp: \<open>u \<in> S\<close>)
-  qed
-  have F2: "?F field_differentiable at a" if "0 < e" "ball a e \<subseteq> S" for e
-  proof -
-    have holfb: "f holomorphic_on ball a e"
-      by (rule holomorphic_on_subset [OF holf \<open>ball a e \<subseteq> S\<close>])
-    have 2: "?F holomorphic_on ball a e - {a}"
-      apply (simp add: holomorphic_on_def flip: field_differentiable_def)
-      using mem_ball that
-      apply (auto intro: F1 field_differentiable_within_subset)
-      done
-    have "isCont (\<lambda>z. if z = a then deriv f a else (f z - f a) / (z - a)) x"
-            if "dist a x < e" for x
-    proof (cases "x=a")
-      case True
-      then have "f field_differentiable at a"
-        using holfb \<open>0 < e\<close> holomorphic_on_imp_differentiable_at by auto
-      with True show ?thesis
-        by (auto simp: continuous_at has_field_derivative_iff simp flip: DERIV_deriv_iff_field_differentiable
-                elim: rev_iffD1 [OF _ LIM_equal])
-    next
-      case False with 2 that show ?thesis
-        by (force simp: holomorphic_on_open open_Diff field_differentiable_def [symmetric] field_differentiable_imp_continuous_at)
-    qed
-    then have 1: "continuous_on (ball a e) ?F"
-      by (clarsimp simp:  continuous_on_eq_continuous_at)
-    have "?F holomorphic_on ball a e"
-      by (auto intro: no_isolated_singularity [OF 1 2])
-    with that show ?thesis
-      by (simp add: holomorphic_on_open field_differentiable_def [symmetric]
-                    field_differentiable_at_within)
-  qed
-  show ?thesis
-  proof
-    fix x assume "x \<in> S" show "?F field_differentiable at x within S"
-    proof (cases "x=a")
-      case True then show ?thesis
-      using a by (auto simp: mem_interior intro: field_differentiable_at_within F2)
-    next
-      case False with F1 \<open>x \<in> S\<close>
-      show ?thesis by blast
-    qed
-  qed
-qed
-
-lemma pole_theorem:
-  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-    shows "(\<lambda>z. if z = a then deriv g a
-                 else f z - g a/(z - a)) holomorphic_on S"
-  using pole_lemma [OF holg a]
-  by (rule holomorphic_transform) (simp add: eq field_split_simps)
-
-lemma pole_lemma_open:
-  assumes "f holomorphic_on S" "open S"
-    shows "(\<lambda>z. if z = a then deriv f a else (f z - f a)/(z - a)) holomorphic_on S"
-proof (cases "a \<in> S")
-  case True with assms interior_eq pole_lemma
-    show ?thesis by fastforce
-next
-  case False with assms show ?thesis
-    apply (simp add: holomorphic_on_def field_differentiable_def [symmetric], clarify)
-    apply (rule field_differentiable_transform_within [where f = "\<lambda>z. (f z - f a)/(z - a)" and d = 1])
-    apply (rule derivative_intros | force)+
-    done
-qed
-
-lemma pole_theorem_open:
-  assumes holg: "g holomorphic_on S" and S: "open S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-    shows "(\<lambda>z. if z = a then deriv g a
-                 else f z - g a/(z - a)) holomorphic_on S"
-  using pole_lemma_open [OF holg S]
-  by (rule holomorphic_transform) (auto simp: eq divide_simps)
-
-lemma pole_theorem_0:
-  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f holomorphic_on S"
-  using pole_theorem [OF holg a eq]
-  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
-
-lemma pole_theorem_open_0:
-  assumes holg: "g holomorphic_on S" and S: "open S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f holomorphic_on S"
-  using pole_theorem_open [OF holg S eq]
-  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
-
-lemma pole_theorem_analytic:
-  assumes g: "g analytic_on S"
-      and eq: "\<And>z. z \<in> S
-             \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
-    shows "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S" (is "?F analytic_on S")
-  unfolding analytic_on_def
-proof
-  fix x
-  assume "x \<in> S"
-  with g obtain e where "0 < e" and e: "g holomorphic_on ball x e"
-    by (auto simp add: analytic_on_def)
-  obtain d where "0 < d" and d: "\<And>w. w \<in> ball x d - {a} \<Longrightarrow> g w = (w - a) * f w"
-    using \<open>x \<in> S\<close> eq by blast
-  have "?F holomorphic_on ball x (min d e)"
-    using d e \<open>x \<in> S\<close> by (fastforce simp: holomorphic_on_subset subset_ball intro!: pole_theorem_open)
-  then show "\<exists>e>0. ?F holomorphic_on ball x e"
-    using \<open>0 < d\<close> \<open>0 < e\<close> not_le by fastforce
-qed
-
-lemma pole_theorem_analytic_0:
-  assumes g: "g analytic_on S"
-      and eq: "\<And>z. z \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f analytic_on S"
-proof -
-  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f"
-    by auto
-  show ?thesis
-    using pole_theorem_analytic [OF g eq] by simp
-qed
-
-lemma pole_theorem_analytic_open_superset:
-  assumes g: "g analytic_on S" and "S \<subseteq> T" "open T"
-      and eq: "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
-    shows "(\<lambda>z. if z = a then deriv g a
-                 else f z - g a/(z - a)) analytic_on S"
-proof (rule pole_theorem_analytic [OF g])
-  fix z
-  assume "z \<in> S"
-  then obtain e where "0 < e" and e: "ball z e \<subseteq> T"
-    using assms openE by blast
-  then show "\<exists>d>0. \<forall>w\<in>ball z d - {a}. g w = (w - a) * f w"
-    using eq by auto
-qed
-
-lemma pole_theorem_analytic_open_superset_0:
-  assumes g: "g analytic_on S" "S \<subseteq> T" "open T" "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f analytic_on S"
-proof -
-  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f"
-    by auto
-  have "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S"
-    by (rule pole_theorem_analytic_open_superset [OF g])
-  then show ?thesis by simp
-qed
-
-
-subsection\<open>General, homology form of Cauchy's theorem\<close>
-
-text\<open>Proof is based on Dixon's, as presented in Lang's "Complex Analysis" book (page 147).\<close>
-
-lemma contour_integral_continuous_on_linepath_2D:
-  assumes "open U" and cont_dw: "\<And>w. w \<in> U \<Longrightarrow> F w contour_integrable_on (linepath a b)"
-      and cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). F x y)"
-      and abu: "closed_segment a b \<subseteq> U"
-    shows "continuous_on U (\<lambda>w. contour_integral (linepath a b) (F w))"
-proof -
-  have *: "\<exists>d>0. \<forall>x'\<in>U. dist x' w < d \<longrightarrow>
-                         dist (contour_integral (linepath a b) (F x'))
-                              (contour_integral (linepath a b) (F w)) \<le> \<epsilon>"
-          if "w \<in> U" "0 < \<epsilon>" "a \<noteq> b" for w \<epsilon>
-  proof -
-    obtain \<delta> where "\<delta>>0" and \<delta>: "cball w \<delta> \<subseteq> U" using open_contains_cball \<open>open U\<close> \<open>w \<in> U\<close> by force
-    let ?TZ = "cball w \<delta>  \<times> closed_segment a b"
-    have "uniformly_continuous_on ?TZ (\<lambda>(x,y). F x y)"
-    proof (rule compact_uniformly_continuous)
-      show "continuous_on ?TZ (\<lambda>(x,y). F x y)"
-        by (rule continuous_on_subset[OF cond_uu]) (use SigmaE \<delta> abu in blast)
-      show "compact ?TZ"
-        by (simp add: compact_Times)
-    qed
-    then obtain \<eta> where "\<eta>>0"
-        and \<eta>: "\<And>x x'. \<lbrakk>x\<in>?TZ; x'\<in>?TZ; dist x' x < \<eta>\<rbrakk> \<Longrightarrow>
-                         dist ((\<lambda>(x,y). F x y) x') ((\<lambda>(x,y). F x y) x) < \<epsilon>/norm(b - a)"
-      apply (rule uniformly_continuous_onE [where e = "\<epsilon>/norm(b - a)"])
-      using \<open>0 < \<epsilon>\<close> \<open>a \<noteq> b\<close> by auto
-    have \<eta>: "\<lbrakk>norm (w - x1) \<le> \<delta>;   x2 \<in> closed_segment a b;
-              norm (w - x1') \<le> \<delta>;  x2' \<in> closed_segment a b; norm ((x1', x2') - (x1, x2)) < \<eta>\<rbrakk>
-              \<Longrightarrow> norm (F x1' x2' - F x1 x2) \<le> \<epsilon> / cmod (b - a)"
-             for x1 x2 x1' x2'
-      using \<eta> [of "(x1,x2)" "(x1',x2')"] by (force simp: dist_norm)
-    have le_ee: "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>"
-                if "x' \<in> U" "cmod (x' - w) < \<delta>" "cmod (x' - w) < \<eta>"  for x'
-    proof -
-      have "(\<lambda>x. F x' x - F w x) contour_integrable_on linepath a b"
-        by (simp add: \<open>w \<in> U\<close> cont_dw contour_integrable_diff that)
-      then have "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>/norm(b - a) * norm(b - a)"
-        apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_integral _ \<eta>])
-        using \<open>0 < \<epsilon>\<close> \<open>0 < \<delta>\<close> that apply (auto simp: norm_minus_commute)
-        done
-      also have "\<dots> = \<epsilon>" using \<open>a \<noteq> b\<close> by simp
-      finally show ?thesis .
-    qed
-    show ?thesis
-      apply (rule_tac x="min \<delta> \<eta>" in exI)
-      using \<open>0 < \<delta>\<close> \<open>0 < \<eta>\<close>
-      apply (auto simp: dist_norm contour_integral_diff [OF cont_dw cont_dw, symmetric] \<open>w \<in> U\<close> intro: le_ee)
-      done
-  qed
-  show ?thesis
-  proof (cases "a=b")
-    case True
-    then show ?thesis by simp
-  next
-    case False
-    show ?thesis
-      by (rule continuous_onI) (use False in \<open>auto intro: *\<close>)
-  qed
-qed
-
-text\<open>This version has \<^term>\<open>polynomial_function \<gamma>\<close> as an additional assumption.\<close>
-lemma Cauchy_integral_formula_global_weak:
-  assumes "open U" and holf: "f holomorphic_on U"
-        and z: "z \<in> U" and \<gamma>: "polynomial_function \<gamma>"
-        and pasz: "path_image \<gamma> \<subseteq> U - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-        and zero: "\<And>w. w \<notin> U \<Longrightarrow> winding_number \<gamma> w = 0"
-      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  obtain \<gamma>' where pf\<gamma>': "polynomial_function \<gamma>'" and \<gamma>': "\<And>x. (\<gamma> has_vector_derivative (\<gamma>' x)) (at x)"
-    using has_vector_derivative_polynomial_function [OF \<gamma>] by blast
-  then have "bounded(path_image \<gamma>')"
-    by (simp add: path_image_def compact_imp_bounded compact_continuous_image continuous_on_polymonial_function)
-  then obtain B where "B>0" and B: "\<And>x. x \<in> path_image \<gamma>' \<Longrightarrow> norm x \<le> B"
-    using bounded_pos by force
-  define d where [abs_def]: "d z w = (if w = z then deriv f z else (f w - f z)/(w - z))" for z w
-  define v where "v = {w. w \<notin> path_image \<gamma> \<and> winding_number \<gamma> w = 0}"
-  have "path \<gamma>" "valid_path \<gamma>" using \<gamma>
-    by (auto simp: path_polynomial_function valid_path_polynomial_function)
-  then have ov: "open v"
-    by (simp add: v_def open_winding_number_levelsets loop)
-  have uv_Un: "U \<union> v = UNIV"
-    using pasz zero by (auto simp: v_def)
-  have conf: "continuous_on U f"
-    by (metis holf holomorphic_on_imp_continuous_on)
-  have hol_d: "(d y) holomorphic_on U" if "y \<in> U" for y
-  proof -
-    have *: "(\<lambda>c. if c = y then deriv f y else (f c - f y) / (c - y)) holomorphic_on U"
-      by (simp add: holf pole_lemma_open \<open>open U\<close>)
-    then have "isCont (\<lambda>x. if x = y then deriv f y else (f x - f y) / (x - y)) y"
-      using at_within_open field_differentiable_imp_continuous_at holomorphic_on_def that \<open>open U\<close> by fastforce
-    then have "continuous_on U (d y)"
-      apply (simp add: d_def continuous_on_eq_continuous_at \<open>open U\<close>, clarify)
-      using * holomorphic_on_def
-      by (meson field_differentiable_within_open field_differentiable_imp_continuous_at \<open>open U\<close>)
-    moreover have "d y holomorphic_on U - {y}"
-    proof -
-      have "\<And>w. w \<in> U - {y} \<Longrightarrow>
-                 (\<lambda>w. if w = y then deriv f y else (f w - f y) / (w - y)) field_differentiable at w"
-        apply (rule_tac d="dist w y" and f = "\<lambda>w. (f w - f y)/(w - y)" in field_differentiable_transform_within)
-           apply (auto simp: dist_pos_lt dist_commute intro!: derivative_intros)
-        using \<open>open U\<close> holf holomorphic_on_imp_differentiable_at by blast
-      then show ?thesis
-        unfolding field_differentiable_def by (simp add: d_def holomorphic_on_open \<open>open U\<close> open_delete)
-    qed
-    ultimately show ?thesis
-      by (rule no_isolated_singularity) (auto simp: \<open>open U\<close>)
-  qed
-  have cint_fxy: "(\<lambda>x. (f x - f y) / (x - y)) contour_integrable_on \<gamma>" if "y \<notin> path_image \<gamma>" for y
-  proof (rule contour_integrable_holomorphic_simple [where S = "U-{y}"])
-    show "(\<lambda>x. (f x - f y) / (x - y)) holomorphic_on U - {y}"
-      by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
-    show "path_image \<gamma> \<subseteq> U - {y}"
-      using pasz that by blast
-  qed (auto simp: \<open>open U\<close> open_delete \<open>valid_path \<gamma>\<close>)
-  define h where
-    "h z = (if z \<in> U then contour_integral \<gamma> (d z) else contour_integral \<gamma> (\<lambda>w. f w/(w - z)))" for z
-  have U: "((d z) has_contour_integral h z) \<gamma>" if "z \<in> U" for z
-  proof -
-    have "d z holomorphic_on U"
-      by (simp add: hol_d that)
-    with that show ?thesis
-    apply (simp add: h_def)
-      by (meson Diff_subset \<open>open U\<close> \<open>valid_path \<gamma>\<close> contour_integrable_holomorphic_simple has_contour_integral_integral pasz subset_trans)
-  qed
-  have V: "((\<lambda>w. f w / (w - z)) has_contour_integral h z) \<gamma>" if z: "z \<in> v" for z
-  proof -
-    have 0: "0 = (f z) * 2 * of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-      using v_def z by auto
-    then have "((\<lambda>x. 1 / (x - z)) has_contour_integral 0) \<gamma>"
-     using z v_def  has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close>] by fastforce
-    then have "((\<lambda>x. f z * (1 / (x - z))) has_contour_integral 0) \<gamma>"
-      using has_contour_integral_lmul by fastforce
-    then have "((\<lambda>x. f z / (x - z)) has_contour_integral 0) \<gamma>"
-      by (simp add: field_split_simps)
-    moreover have "((\<lambda>x. (f x - f z) / (x - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
-      using z
-      apply (auto simp: v_def)
-      apply (metis (no_types, lifting) contour_integrable_eq d_def has_contour_integral_eq has_contour_integral_integral cint_fxy)
-      done
-    ultimately have *: "((\<lambda>x. f z / (x - z) + (f x - f z) / (x - z)) has_contour_integral (0 + contour_integral \<gamma> (d z))) \<gamma>"
-      by (rule has_contour_integral_add)
-    have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
-            if  "z \<in> U"
-      using * by (auto simp: divide_simps has_contour_integral_eq)
-    moreover have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (\<lambda>w. f w / (w - z))) \<gamma>"
-            if "z \<notin> U"
-      apply (rule has_contour_integral_integral [OF contour_integrable_holomorphic_simple [where S=U]])
-      using U pasz \<open>valid_path \<gamma>\<close> that
-      apply (auto intro: holomorphic_on_imp_continuous_on hol_d)
-       apply (rule continuous_intros conf holomorphic_intros holf assms | force)+
-      done
-    ultimately show ?thesis
-      using z by (simp add: h_def)
-  qed
-  have znot: "z \<notin> path_image \<gamma>"
-    using pasz by blast
-  obtain d0 where "d0>0" and d0: "\<And>x y. x \<in> path_image \<gamma> \<Longrightarrow> y \<in> - U \<Longrightarrow> d0 \<le> dist x y"
-    using separate_compact_closed [of "path_image \<gamma>" "-U"] pasz \<open>open U\<close>
-    by (fastforce simp add: \<open>path \<gamma>\<close> compact_path_image)
-  obtain dd where "0 < dd" and dd: "{y + k | y k. y \<in> path_image \<gamma> \<and> k \<in> ball 0 dd} \<subseteq> U"
-    apply (rule that [of "d0/2"])
-    using \<open>0 < d0\<close>
-    apply (auto simp: dist_norm dest: d0)
-    done
-  have "\<And>x x'. \<lbrakk>x \<in> path_image \<gamma>; dist x x' * 2 < dd\<rbrakk> \<Longrightarrow> \<exists>y k. x' = y + k \<and> y \<in> path_image \<gamma> \<and> dist 0 k * 2 \<le> dd"
-    apply (rule_tac x=x in exI)
-    apply (rule_tac x="x'-x" in exI)
-    apply (force simp: dist_norm)
-    done
-  then have 1: "path_image \<gamma> \<subseteq> interior {y + k |y k. y \<in> path_image \<gamma> \<and> k \<in> cball 0 (dd / 2)}"
-    apply (clarsimp simp add: mem_interior)
-    using \<open>0 < dd\<close>
-    apply (rule_tac x="dd/2" in exI, auto)
-    done
-  obtain T where "compact T" and subt: "path_image \<gamma> \<subseteq> interior T" and T: "T \<subseteq> U"
-    apply (rule that [OF _ 1])
-    apply (fastforce simp add: \<open>valid_path \<gamma>\<close> compact_valid_path_image intro!: compact_sums)
-    apply (rule order_trans [OF _ dd])
-    using \<open>0 < dd\<close> by fastforce
-  obtain L where "L>0"
-           and L: "\<And>f B. \<lbrakk>f holomorphic_on interior T; \<And>z. z\<in>interior T \<Longrightarrow> cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
-                         cmod (contour_integral \<gamma> f) \<le> L * B"
-      using contour_integral_bound_exists [OF open_interior \<open>valid_path \<gamma>\<close> subt]
-      by blast
-  have "bounded(f ` T)"
-    by (meson \<open>compact T\<close> compact_continuous_image compact_imp_bounded conf continuous_on_subset T)
-  then obtain D where "D>0" and D: "\<And>x. x \<in> T \<Longrightarrow> norm (f x) \<le> D"
-    by (auto simp: bounded_pos)
-  obtain C where "C>0" and C: "\<And>x. x \<in> T \<Longrightarrow> norm x \<le> C"
-    using \<open>compact T\<close> bounded_pos compact_imp_bounded by force
-  have "dist (h y) 0 \<le> e" if "0 < e" and le: "D * L / e + C \<le> cmod y" for e y
-  proof -
-    have "D * L / e > 0"  using \<open>D>0\<close> \<open>L>0\<close> \<open>e>0\<close> by simp
-    with le have ybig: "norm y > C" by force
-    with C have "y \<notin> T"  by force
-    then have ynot: "y \<notin> path_image \<gamma>"
-      using subt interior_subset by blast
-    have [simp]: "winding_number \<gamma> y = 0"
-      apply (rule winding_number_zero_outside [of _ "cball 0 C"])
-      using ybig interior_subset subt
-      apply (force simp: loop \<open>path \<gamma>\<close> dist_norm intro!: C)+
-      done
-    have [simp]: "h y = contour_integral \<gamma> (\<lambda>w. f w/(w - y))"
-      by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V)
-    have holint: "(\<lambda>w. f w / (w - y)) holomorphic_on interior T"
-      apply (rule holomorphic_on_divide)
-      using holf holomorphic_on_subset interior_subset T apply blast
-      apply (rule holomorphic_intros)+
-      using \<open>y \<notin> T\<close> interior_subset by auto
-    have leD: "cmod (f z / (z - y)) \<le> D * (e / L / D)" if z: "z \<in> interior T" for z
-    proof -
-      have "D * L / e + cmod z \<le> cmod y"
-        using le C [of z] z using interior_subset by force
-      then have DL2: "D * L / e \<le> cmod (z - y)"
-        using norm_triangle_ineq2 [of y z] by (simp add: norm_minus_commute)
-      have "cmod (f z / (z - y)) = cmod (f z) * inverse (cmod (z - y))"
-        by (simp add: norm_mult norm_inverse Fields.field_class.field_divide_inverse)
-      also have "\<dots> \<le> D * (e / L / D)"
-        apply (rule mult_mono)
-        using that D interior_subset apply blast
-        using \<open>L>0\<close> \<open>e>0\<close> \<open>D>0\<close> DL2
-        apply (auto simp: norm_divide field_split_simps)
-        done
-      finally show ?thesis .
-    qed
-    have "dist (h y) 0 = cmod (contour_integral \<gamma> (\<lambda>w. f w / (w - y)))"
-      by (simp add: dist_norm)
-    also have "\<dots> \<le> L * (D * (e / L / D))"
-      by (rule L [OF holint leD])
-    also have "\<dots> = e"
-      using  \<open>L>0\<close> \<open>0 < D\<close> by auto
-    finally show ?thesis .
-  qed
-  then have "(h \<longlongrightarrow> 0) at_infinity"
-    by (meson Lim_at_infinityI)
-  moreover have "h holomorphic_on UNIV"
-  proof -
-    have con_ff: "continuous (at (x,z)) (\<lambda>(x,y). (f y - f x) / (y - x))"
-                 if "x \<in> U" "z \<in> U" "x \<noteq> z" for x z
-      using that conf
-      apply (simp add: split_def continuous_on_eq_continuous_at \<open>open U\<close>)
-      apply (simp | rule continuous_intros continuous_within_compose2 [where g=f])+
-      done
-    have con_fstsnd: "continuous_on UNIV (\<lambda>x. (fst x - snd x) ::complex)"
-      by (rule continuous_intros)+
-    have open_uu_Id: "open (U \<times> U - Id)"
-      apply (rule open_Diff)
-      apply (simp add: open_Times \<open>open U\<close>)
-      using continuous_closed_preimage_constant [OF con_fstsnd closed_UNIV, of 0]
-      apply (auto simp: Id_fstsnd_eq algebra_simps)
-      done
-    have con_derf: "continuous (at z) (deriv f)" if "z \<in> U" for z
-      apply (rule continuous_on_interior [of U])
-      apply (simp add: holf holomorphic_deriv holomorphic_on_imp_continuous_on \<open>open U\<close>)
-      by (simp add: interior_open that \<open>open U\<close>)
-    have tendsto_f': "((\<lambda>(x,y). if y = x then deriv f (x)
-                                else (f (y) - f (x)) / (y - x)) \<longlongrightarrow> deriv f x)
-                      (at (x, x) within U \<times> U)" if "x \<in> U" for x
-    proof (rule Lim_withinI)
-      fix e::real assume "0 < e"
-      obtain k1 where "k1>0" and k1: "\<And>x'. norm (x' - x) \<le> k1 \<Longrightarrow> norm (deriv f x' - deriv f x) < e"
-        using \<open>0 < e\<close> continuous_within_E [OF con_derf [OF \<open>x \<in> U\<close>]]
-        by (metis UNIV_I dist_norm)
-      obtain k2 where "k2>0" and k2: "ball x k2 \<subseteq> U"
-        by (blast intro: openE [OF \<open>open U\<close>] \<open>x \<in> U\<close>)
-      have neq: "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e"
-                    if "z' \<noteq> x'" and less_k1: "norm (x'-x, z'-x) < k1" and less_k2: "norm (x'-x, z'-x) < k2"
-                 for x' z'
-      proof -
-        have cs_less: "w \<in> closed_segment x' z' \<Longrightarrow> cmod (w - x) \<le> norm (x'-x, z'-x)" for w
-          apply (drule segment_furthest_le [where y=x])
-          by (metis (no_types) dist_commute dist_norm norm_fst_le norm_snd_le order_trans)
-        have derf_le: "w \<in> closed_segment x' z' \<Longrightarrow> z' \<noteq> x' \<Longrightarrow> cmod (deriv f w - deriv f x) \<le> e" for w
-          by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm] less_imp_le le_less_trans)
-        have f_has_der: "\<And>x. x \<in> U \<Longrightarrow> (f has_field_derivative deriv f x) (at x within U)"
-          by (metis DERIV_deriv_iff_field_differentiable at_within_open holf holomorphic_on_def \<open>open U\<close>)
-        have "closed_segment x' z' \<subseteq> U"
-          by (rule order_trans [OF _ k2]) (simp add: cs_less  le_less_trans [OF _ less_k2] dist_complex_def norm_minus_commute subset_iff)
-        then have cint_derf: "(deriv f has_contour_integral f z' - f x') (linepath x' z')"
-          using contour_integral_primitive [OF f_has_der valid_path_linepath] pasz  by simp
-        then have *: "((\<lambda>x. deriv f x / (z' - x')) has_contour_integral (f z' - f x') / (z' - x')) (linepath x' z')"
-          by (rule has_contour_integral_div)
-        have "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e/norm(z' - x') * norm(z' - x')"
-          apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_diff [OF *]])
-          using has_contour_integral_div [where c = "z' - x'", OF has_contour_integral_const_linepath [of "deriv f x" z' x']]
-                 \<open>e > 0\<close>  \<open>z' \<noteq> x'\<close>
-          apply (auto simp: norm_divide divide_simps derf_le)
-          done
-        also have "\<dots> \<le> e" using \<open>0 < e\<close> by simp
-        finally show ?thesis .
-      qed
-      show "\<exists>d>0. \<forall>xa\<in>U \<times> U.
-                  0 < dist xa (x, x) \<and> dist xa (x, x) < d \<longrightarrow>
-                  dist (case xa of (x, y) \<Rightarrow> if y = x then deriv f x else (f y - f x) / (y - x)) (deriv f x) \<le> e"
-        apply (rule_tac x="min k1 k2" in exI)
-        using \<open>k1>0\<close> \<open>k2>0\<close> \<open>e>0\<close>
-        apply (force simp: dist_norm neq intro: dual_order.strict_trans2 k1 less_imp_le norm_fst_le)
-        done
-    qed
-    have con_pa_f: "continuous_on (path_image \<gamma>) f"
-      by (meson holf holomorphic_on_imp_continuous_on holomorphic_on_subset interior_subset subt T)
-    have le_B: "\<And>T. T \<in> {0..1} \<Longrightarrow> cmod (vector_derivative \<gamma> (at T)) \<le> B"
-      apply (rule B)
-      using \<gamma>' using path_image_def vector_derivative_at by fastforce
-    have f_has_cint: "\<And>w. w \<in> v - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f u / (u - w) ^ 1) has_contour_integral h w) \<gamma>"
-      by (simp add: V)
-    have cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). d x y)"
-      apply (simp add: continuous_on_eq_continuous_within d_def continuous_within tendsto_f')
-      apply (simp add: tendsto_within_open_NO_MATCH open_Times \<open>open U\<close>, clarify)
-      apply (rule Lim_transform_within_open [OF _ open_uu_Id, where f = "(\<lambda>(x,y). (f y - f x) / (y - x))"])
-      using con_ff
-      apply (auto simp: continuous_within)
-      done
-    have hol_dw: "(\<lambda>z. d z w) holomorphic_on U" if "w \<in> U" for w
-    proof -
-      have "continuous_on U ((\<lambda>(x,y). d x y) \<circ> (\<lambda>z. (w,z)))"
-        by (rule continuous_on_compose continuous_intros continuous_on_subset [OF cond_uu] | force intro: that)+
-      then have *: "continuous_on U (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z))"
-        by (rule rev_iffD1 [OF _ continuous_on_cong [OF refl]]) (simp add: d_def field_simps)
-      have **: "\<And>x. \<lbrakk>x \<in> U; x \<noteq> w\<rbrakk> \<Longrightarrow> (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z)) field_differentiable at x"
-        apply (rule_tac f = "\<lambda>x. (f w - f x)/(w - x)" and d = "dist x w" in field_differentiable_transform_within)
-        apply (rule \<open>open U\<close> derivative_intros holomorphic_on_imp_differentiable_at [OF holf] | force simp: dist_commute)+
-        done
-      show ?thesis
-        unfolding d_def
-        apply (rule no_isolated_singularity [OF * _ \<open>open U\<close>, where K = "{w}"])
-        apply (auto simp: field_differentiable_def [symmetric] holomorphic_on_open open_Diff \<open>open U\<close> **)
-        done
-    qed
-    { fix a b
-      assume abu: "closed_segment a b \<subseteq> U"
-      then have "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) contour_integrable_on (linepath a b)"
-        by (metis hol_dw continuous_on_subset contour_integrable_continuous_linepath holomorphic_on_imp_continuous_on)
-      then have cont_cint_d: "continuous_on U (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
-        apply (rule contour_integral_continuous_on_linepath_2D [OF \<open>open U\<close> _ _ abu])
-        apply (auto intro: continuous_on_swap_args cond_uu)
-        done
-      have cont_cint_d\<gamma>: "continuous_on {0..1} ((\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) \<circ> \<gamma>)"
-      proof (rule continuous_on_compose)
-        show "continuous_on {0..1} \<gamma>"
-          using \<open>path \<gamma>\<close> path_def by blast
-        show "continuous_on (\<gamma> ` {0..1}) (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
-          using pasz unfolding path_image_def
-          by (auto intro!: continuous_on_subset [OF cont_cint_d])
-      qed
-      have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>"
-        apply (simp add: contour_integrable_on)
-        apply (rule integrable_continuous_real)
-        apply (rule continuous_on_mult [OF cont_cint_d\<gamma> [unfolded o_def]])
-        using pf\<gamma>'
-        by (simp add: continuous_on_polymonial_function vector_derivative_at [OF \<gamma>'])
-      have "contour_integral (linepath a b) h = contour_integral (linepath a b) (\<lambda>z. contour_integral \<gamma> (d z))"
-        using abu  by (force simp: h_def intro: contour_integral_eq)
-      also have "\<dots> =  contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
-        apply (rule contour_integral_swap)
-        apply (rule continuous_on_subset [OF cond_uu])
-        using abu pasz \<open>valid_path \<gamma>\<close>
-        apply (auto intro!: continuous_intros)
-        by (metis \<gamma>' continuous_on_eq path_def path_polynomial_function pf\<gamma>' vector_derivative_at)
-      finally have cint_h_eq:
-          "contour_integral (linepath a b) h =
-                    contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" .
-      note cint_cint cint_h_eq
-    } note cint_h = this
-    have conthu: "continuous_on U h"
-    proof (simp add: continuous_on_sequentially, clarify)
-      fix a x
-      assume x: "x \<in> U" and au: "\<forall>n. a n \<in> U" and ax: "a \<longlonglongrightarrow> x"
-      then have A1: "\<forall>\<^sub>F n in sequentially. d (a n) contour_integrable_on \<gamma>"
-        by (meson U contour_integrable_on_def eventuallyI)
-      obtain dd where "dd>0" and dd: "cball x dd \<subseteq> U" using open_contains_cball \<open>open U\<close> x by force
-      have A2: "uniform_limit (path_image \<gamma>) (\<lambda>n. d (a n)) (d x) sequentially"
-        unfolding uniform_limit_iff dist_norm