src/HOL/Analysis/Smooth_Paths.thy
changeset 71189 954ee5acaae0
child 71193 777d673fa672
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Smooth_Paths.thy	Sat Nov 30 13:47:33 2019 +0100
@@ -0,0 +1,490 @@
+(*
+  Material originally from HOL Light, ported by Larry Paulson, moved here by Manuel Eberl
+*)
+section\<^marker>\<open>tag unimportant\<close> \<open>Smooth paths\<close>
+theory Smooth_Paths
+  imports
+  Retracts
+begin
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Homeomorphisms of arc images\<close>
+
+lemma homeomorphism_arc:
+  fixes g :: "real \<Rightarrow> 'a::t2_space"
+  assumes "arc g"
+  obtains h where "homeomorphism {0..1} (path_image g) g h"
+using assms by (force simp: arc_def homeomorphism_compact path_def path_image_def)
+
+lemma homeomorphic_arc_image_interval:
+  fixes g :: "real \<Rightarrow> 'a::t2_space" and a::real
+  assumes "arc g" "a < b"
+  shows "(path_image g) homeomorphic {a..b}"
+proof -
+  have "(path_image g) homeomorphic {0..1::real}"
+    by (meson assms(1) homeomorphic_def homeomorphic_sym homeomorphism_arc)
+  also have "\<dots> homeomorphic {a..b}"
+    using assms by (force intro: homeomorphic_closed_intervals_real)
+  finally show ?thesis .
+qed
+
+lemma homeomorphic_arc_images:
+  fixes g :: "real \<Rightarrow> 'a::t2_space" and h :: "real \<Rightarrow> 'b::t2_space"
+  assumes "arc g" "arc h"
+  shows "(path_image g) homeomorphic (path_image h)"
+proof -
+  have "(path_image g) homeomorphic {0..1::real}"
+    by (meson assms homeomorphic_def homeomorphic_sym homeomorphism_arc)
+  also have "\<dots> homeomorphic (path_image h)"
+    by (meson assms homeomorphic_def homeomorphism_arc)
+  finally show ?thesis .
+qed
+
+lemma path_connected_arc_complement:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "arc \<gamma>" "2 \<le> DIM('a)"
+  shows "path_connected(- path_image \<gamma>)"
+proof -
+  have "path_image \<gamma> homeomorphic {0..1::real}"
+    by (simp add: assms homeomorphic_arc_image_interval)
+  then
+  show ?thesis
+    apply (rule path_connected_complement_homeomorphic_convex_compact)
+      apply (auto simp: assms)
+    done
+qed
+
+lemma connected_arc_complement:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "arc \<gamma>" "2 \<le> DIM('a)"
+  shows "connected(- path_image \<gamma>)"
+  by (simp add: assms path_connected_arc_complement path_connected_imp_connected)
+
+lemma inside_arc_empty:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "arc \<gamma>"
+    shows "inside(path_image \<gamma>) = {}"
+proof (cases "DIM('a) = 1")
+  case True
+  then show ?thesis
+    using assms connected_arc_image connected_convex_1_gen inside_convex by blast
+next
+  case False
+  show ?thesis
+  proof (rule inside_bounded_complement_connected_empty)
+    show "connected (- path_image \<gamma>)"
+      apply (rule connected_arc_complement [OF assms])
+      using False
+      by (metis DIM_ge_Suc0 One_nat_def Suc_1 not_less_eq_eq order_class.order.antisym)
+    show "bounded (path_image \<gamma>)"
+      by (simp add: assms bounded_arc_image)
+  qed
+qed
+
+lemma inside_simple_curve_imp_closed:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+    shows "\<lbrakk>simple_path \<gamma>; x \<in> inside(path_image \<gamma>)\<rbrakk> \<Longrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
+  using arc_simple_path  inside_arc_empty by blast
+
+
+subsection \<open>Piecewise differentiability of paths\<close>
+
+lemma continuous_on_joinpaths_D1:
+    "continuous_on {0..1} (g1 +++ g2) \<Longrightarrow> continuous_on {0..1} g1"
+  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> ((*)(inverse 2))"])
+  apply (rule continuous_intros | simp)+
+  apply (auto elim!: continuous_on_subset simp: joinpaths_def)
+  done
+
+lemma continuous_on_joinpaths_D2:
+    "\<lbrakk>continuous_on {0..1} (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> continuous_on {0..1} g2"
+  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> (\<lambda>x. inverse 2*x + 1/2)"])
+  apply (rule continuous_intros | simp)+
+  apply (auto elim!: continuous_on_subset simp add: joinpaths_def pathfinish_def pathstart_def Ball_def)
+  done
+
+lemma piecewise_differentiable_D1:
+  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}"
+  shows "g1 piecewise_differentiable_on {0..1}"
+proof -
+  obtain S where cont: "continuous_on {0..1} g1" and "finite S"
+    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
+    using assms unfolding piecewise_differentiable_on_def
+    by (blast dest!: continuous_on_joinpaths_D1)
+  show ?thesis
+    unfolding piecewise_differentiable_on_def
+  proof (intro exI conjI ballI cont)
+    show "finite (insert 1 (((*)2) ` S))"
+      by (simp add: \<open>finite S\<close>)
+    show "g1 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
+    proof (rule_tac d="dist (x/2) (1/2)" in differentiable_transform_within)
+      have "g1 +++ g2 differentiable at (x / 2) within {0..1/2}"
+        by (rule differentiable_subset [OF S [of "x/2"]] | use that in force)+
+      then show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x within {0..1}"
+        using image_affinity_atLeastAtMost_div [of 2 0 "0::real" 1]
+        by (auto intro: differentiable_chain_within)
+    qed (use that in \<open>auto simp: joinpaths_def\<close>)
+  qed
+qed
+
+lemma piecewise_differentiable_D2:
+  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}" and eq: "pathfinish g1 = pathstart g2"
+  shows "g2 piecewise_differentiable_on {0..1}"
+proof -
+  have [simp]: "g1 1 = g2 0"
+    using eq by (simp add: pathfinish_def pathstart_def)
+  obtain S where cont: "continuous_on {0..1} g2" and "finite S"
+    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
+    using assms unfolding piecewise_differentiable_on_def
+    by (blast dest!: continuous_on_joinpaths_D2)
+  show ?thesis
+    unfolding piecewise_differentiable_on_def
+  proof (intro exI conjI ballI cont)
+    show "finite (insert 0 ((\<lambda>x. 2*x-1)`S))"
+      by (simp add: \<open>finite S\<close>)
+    show "g2 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1)`S)" for x
+    proof (rule_tac d="dist ((x+1)/2) (1/2)" in differentiable_transform_within)
+      have x2: "(x + 1) / 2 \<notin> S"
+        using that
+        apply (clarsimp simp: image_iff)
+        by (metis add.commute add_diff_cancel_left' mult_2 field_sum_of_halves)
+      have "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
+        by (rule differentiable_chain_within differentiable_subset [OF S [of "(x+1)/2"]] | use x2 that in force)+
+      then show "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
+        by (auto intro: differentiable_chain_within)
+      show "(g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'" if "x' \<in> {0..1}" "dist x' x < dist ((x + 1) / 2) (1/2)" for x'
+      proof -
+        have [simp]: "(2*x'+2)/2 = x'+1"
+          by (simp add: field_split_simps)
+        show ?thesis
+          using that by (auto simp: joinpaths_def)
+      qed
+    qed (use that in \<open>auto simp: joinpaths_def\<close>)
+  qed
+qed
+
+lemma piecewise_C1_differentiable_D1:
+  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
+  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}"
+    shows "g1 piecewise_C1_differentiable_on {0..1}"
+proof -
+  obtain S where "finite S"
+             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
+    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have g1D: "g1 differentiable at x" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
+  proof (rule differentiable_transform_within)
+    show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x"
+      using that g12D
+      apply (simp only: joinpaths_def)
+      by (rule differentiable_chain_at derivative_intros | force)+
+    show "\<And>x'. \<lbrakk>dist x' x < dist (x/2) (1/2)\<rbrakk>
+          \<Longrightarrow> (g1 +++ g2 \<circ> (*) (inverse 2)) x' = g1 x'"
+      using that by (auto simp: dist_real_def joinpaths_def)
+  qed (use that in \<open>auto simp: dist_real_def\<close>)
+  have [simp]: "vector_derivative (g1 \<circ> (*) 2) (at (x/2)) = 2 *\<^sub>R vector_derivative g1 (at x)"
+               if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
+    apply (subst vector_derivative_chain_at)
+    using that
+    apply (rule derivative_eq_intros g1D | simp)+
+    done
+  have "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+    using co12 by (rule continuous_on_subset) force
+  then have coDhalf: "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 \<circ> (*)2) (at x))"
+  proof (rule continuous_on_eq [OF _ vector_derivative_at])
+    show "(g1 +++ g2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
+      if "x \<in> {0..1/2} - insert (1/2) S" for x
+    proof (rule has_vector_derivative_transform_within)
+      show "(g1 \<circ> (*) 2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
+        using that
+        by (force intro: g1D differentiable_chain_at simp: vector_derivative_works [symmetric])
+      show "\<And>x'. \<lbrakk>dist x' x < dist x (1/2)\<rbrakk> \<Longrightarrow> (g1 \<circ> (*) 2) x' = (g1 +++ g2) x'"
+        using that by (auto simp: dist_norm joinpaths_def)
+    qed (use that in \<open>auto simp: dist_norm\<close>)
+  qed
+  have "continuous_on ({0..1} - insert 1 ((*) 2 ` S))
+                      ((\<lambda>x. 1/2 * vector_derivative (g1 \<circ> (*)2) (at x)) \<circ> (*)(1/2))"
+    apply (rule continuous_intros)+
+    using coDhalf
+    apply (simp add: scaleR_conv_of_real image_set_diff image_image)
+    done
+  then have con_g1: "continuous_on ({0..1} - insert 1 ((*) 2 ` S)) (\<lambda>x. vector_derivative g1 (at x))"
+    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
+  have "continuous_on {0..1} g1"
+    using continuous_on_joinpaths_D1 assms piecewise_C1_differentiable_on_def by blast
+  with \<open>finite S\<close> show ?thesis
+    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+    apply (rule_tac x="insert 1 (((*)2)`S)" in exI)
+    apply (simp add: g1D con_g1)
+  done
+qed
+
+lemma piecewise_C1_differentiable_D2:
+  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
+  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}" "pathfinish g1 = pathstart g2"
+    shows "g2 piecewise_C1_differentiable_on {0..1}"
+proof -
+  obtain S where "finite S"
+             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
+    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have g2D: "g2 differentiable at x" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
+  proof (rule differentiable_transform_within)
+    show "g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2) differentiable at x"
+      using g12D that
+      apply (simp only: joinpaths_def)
+      apply (drule_tac x= "(x+1) / 2" in bspec, force simp: field_split_simps)
+      apply (rule differentiable_chain_at derivative_intros | force)+
+      done
+    show "\<And>x'. dist x' x < dist ((x + 1) / 2) (1/2) \<Longrightarrow> (g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'"
+      using that by (auto simp: dist_real_def joinpaths_def field_simps)
+    qed (use that in \<open>auto simp: dist_norm\<close>)
+  have [simp]: "vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at ((x+1)/2)) = 2 *\<^sub>R vector_derivative g2 (at x)"
+               if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
+    using that  by (auto simp: vector_derivative_chain_at field_split_simps g2D)
+  have "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+    using co12 by (rule continuous_on_subset) force
+  then have coDhalf: "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x))"
+  proof (rule continuous_on_eq [OF _ vector_derivative_at])
+    show "(g1 +++ g2 has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
+          (at x)"
+      if "x \<in> {1 / 2..1} - insert (1 / 2) S" for x
+    proof (rule_tac f="g2 \<circ> (\<lambda>x. 2*x-1)" and d="dist (3/4) ((x+1)/2)" in has_vector_derivative_transform_within)
+      show "(g2 \<circ> (\<lambda>x. 2 * x - 1) has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
+            (at x)"
+        using that by (force intro: g2D differentiable_chain_at simp: vector_derivative_works [symmetric])
+      show "\<And>x'. \<lbrakk>dist x' x < dist (3 / 4) ((x + 1) / 2)\<rbrakk> \<Longrightarrow> (g2 \<circ> (\<lambda>x. 2 * x - 1)) x' = (g1 +++ g2) x'"
+        using that by (auto simp: dist_norm joinpaths_def add_divide_distrib)
+    qed (use that in \<open>auto simp: dist_norm\<close>)
+  qed
+  have [simp]: "((\<lambda>x. (x+1) / 2) ` ({0..1} - insert 0 ((\<lambda>x. 2 * x - 1) ` S))) = ({1/2..1} - insert (1/2) S)"
+    apply (simp add: image_set_diff inj_on_def image_image)
+    apply (auto simp: image_affinity_atLeastAtMost_div add_divide_distrib)
+    done
+  have "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S))
+                      ((\<lambda>x. 1/2 * vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x)) \<circ> (\<lambda>x. (x+1)/2))"
+    by (rule continuous_intros | simp add:  coDhalf)+
+  then have con_g2: "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)) (\<lambda>x. vector_derivative g2 (at x))"
+    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
+  have "continuous_on {0..1} g2"
+    using continuous_on_joinpaths_D2 assms piecewise_C1_differentiable_on_def by blast
+  with \<open>finite S\<close> show ?thesis
+    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+    apply (rule_tac x="insert 0 ((\<lambda>x. 2 * x - 1) ` S)" in exI)
+    apply (simp add: g2D con_g2)
+  done
+qed
+
+
+subsection \<open>Valid paths, and their start and finish\<close>
+
+definition\<^marker>\<open>tag important\<close> valid_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
+  where "valid_path f \<equiv> f piecewise_C1_differentiable_on {0..1::real}"
+
+definition closed_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
+  where "closed_path g \<equiv> g 0 = g 1"
+
+text\<open>In particular, all results for paths apply\<close>
+
+lemma valid_path_imp_path: "valid_path g \<Longrightarrow> path g"
+  by (simp add: path_def piecewise_C1_differentiable_on_def valid_path_def)
+
+lemma connected_valid_path_image: "valid_path g \<Longrightarrow> connected(path_image g)"
+  by (metis connected_path_image valid_path_imp_path)
+
+lemma compact_valid_path_image: "valid_path g \<Longrightarrow> compact(path_image g)"
+  by (metis compact_path_image valid_path_imp_path)
+
+lemma bounded_valid_path_image: "valid_path g \<Longrightarrow> bounded(path_image g)"
+  by (metis bounded_path_image valid_path_imp_path)
+
+lemma closed_valid_path_image: "valid_path g \<Longrightarrow> closed(path_image g)"
+  by (metis closed_path_image valid_path_imp_path)
+
+lemma valid_path_compose:
+  assumes "valid_path g"
+      and der: "\<And>x. x \<in> path_image g \<Longrightarrow> f field_differentiable (at x)"
+      and con: "continuous_on (path_image g) (deriv f)"
+    shows "valid_path (f \<circ> g)"
+proof -
+  obtain S where "finite S" and g_diff: "g C1_differentiable_on {0..1} - S"
+    using \<open>valid_path g\<close> unfolding valid_path_def piecewise_C1_differentiable_on_def by auto
+  have "f \<circ> g differentiable at t" when "t\<in>{0..1} - S" for t
+    proof (rule differentiable_chain_at)
+      show "g differentiable at t" using \<open>valid_path g\<close>
+        by (meson C1_differentiable_on_eq \<open>g C1_differentiable_on {0..1} - S\<close> that)
+    next
+      have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
+      then show "f differentiable at (g t)"
+        using der[THEN field_differentiable_imp_differentiable] by auto
+    qed
+  moreover have "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (f \<circ> g) (at x))"
+    proof (rule continuous_on_eq [where f = "\<lambda>x. vector_derivative g (at x) * deriv f (g x)"],
+        rule continuous_intros)
+      show "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative g (at x))"
+        using g_diff C1_differentiable_on_eq by auto
+    next
+      have "continuous_on {0..1} (\<lambda>x. deriv f (g x))"
+        using continuous_on_compose[OF _ con[unfolded path_image_def],unfolded comp_def]
+          \<open>valid_path g\<close> piecewise_C1_differentiable_on_def valid_path_def
+        by blast
+      then show "continuous_on ({0..1} - S) (\<lambda>x. deriv f (g x))"
+        using continuous_on_subset by blast
+    next
+      show "vector_derivative g (at t) * deriv f (g t) = vector_derivative (f \<circ> g) (at t)"
+          when "t \<in> {0..1} - S" for t
+        proof (rule vector_derivative_chain_at_general[symmetric])
+          show "g differentiable at t" by (meson C1_differentiable_on_eq g_diff that)
+        next
+          have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
+          then show "f field_differentiable at (g t)" using der by auto
+        qed
+    qed
+  ultimately have "f \<circ> g C1_differentiable_on {0..1} - S"
+    using C1_differentiable_on_eq by blast
+  moreover have "path (f \<circ> g)"
+    apply (rule path_continuous_image[OF valid_path_imp_path[OF \<open>valid_path g\<close>]])
+    using der
+    by (simp add: continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
+  ultimately show ?thesis unfolding valid_path_def piecewise_C1_differentiable_on_def path_def
+    using \<open>finite S\<close> by auto
+qed
+  
+lemma valid_path_uminus_comp[simp]:
+  fixes g::"real \<Rightarrow> 'a ::real_normed_field"
+  shows "valid_path (uminus \<circ> g) \<longleftrightarrow> valid_path g"
+proof 
+  show "valid_path g \<Longrightarrow> valid_path (uminus \<circ> g)" for g::"real \<Rightarrow> 'a"
+    by (auto intro!: valid_path_compose derivative_intros)  
+  then show "valid_path g" when "valid_path (uminus \<circ> g)"
+    by (metis fun.map_comp group_add_class.minus_comp_minus id_comp that)
+qed
+
+lemma valid_path_offset[simp]:
+  shows "valid_path (\<lambda>t. g t - z) \<longleftrightarrow> valid_path g"  
+proof 
+  show *: "valid_path (g::real\<Rightarrow>'a) \<Longrightarrow> valid_path (\<lambda>t. g t - z)" for g z
+    unfolding valid_path_def
+    by (fastforce intro:derivative_intros C1_differentiable_imp_piecewise piecewise_C1_differentiable_diff)
+  show "valid_path (\<lambda>t. g t - z) \<Longrightarrow> valid_path g"
+    using *[of "\<lambda>t. g t - z" "-z",simplified] .
+qed
+
+lemma valid_path_imp_reverse:
+  assumes "valid_path g"
+    shows "valid_path(reversepath g)"
+proof -
+  obtain S where "finite S" and S: "g C1_differentiable_on ({0..1} - S)"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
+  then have "finite ((-) 1 ` S)"
+    by auto
+  moreover have "(reversepath g C1_differentiable_on ({0..1} - (-) 1 ` S))"
+    unfolding reversepath_def
+    apply (rule C1_differentiable_compose [of "\<lambda>x::real. 1-x" _ g, unfolded o_def])
+    using S
+    by (force simp: finite_vimageI inj_on_def C1_differentiable_on_eq elim!: continuous_on_subset)+
+  ultimately show ?thesis using assms
+    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def path_def [symmetric])
+qed
+
+lemma valid_path_reversepath [simp]: "valid_path(reversepath g) \<longleftrightarrow> valid_path g"
+  using valid_path_imp_reverse by force
+
+lemma valid_path_join:
+  assumes "valid_path g1" "valid_path g2" "pathfinish g1 = pathstart g2"
+    shows "valid_path(g1 +++ g2)"
+proof -
+  have "g1 1 = g2 0"
+    using assms by (auto simp: pathfinish_def pathstart_def)
+  moreover have "(g1 \<circ> (\<lambda>x. 2*x)) piecewise_C1_differentiable_on {0..1/2}"
+    apply (rule piecewise_C1_differentiable_compose)
+    using assms
+    apply (auto simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_joinpaths)
+    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
+    done
+  moreover have "(g2 \<circ> (\<lambda>x. 2*x-1)) piecewise_C1_differentiable_on {1/2..1}"
+    apply (rule piecewise_C1_differentiable_compose)
+    using assms unfolding valid_path_def piecewise_C1_differentiable_on_def
+    by (auto intro!: continuous_intros finite_vimageI [where h = "(\<lambda>x. 2*x - 1)"] inj_onI
+             simp: image_affinity_atLeastAtMost_diff continuous_on_joinpaths)
+  ultimately show ?thesis
+    apply (simp only: valid_path_def continuous_on_joinpaths joinpaths_def)
+    apply (rule piecewise_C1_differentiable_cases)
+    apply (auto simp: o_def)
+    done
+qed
+
+lemma valid_path_join_D1:
+  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
+  shows "valid_path (g1 +++ g2) \<Longrightarrow> valid_path g1"
+  unfolding valid_path_def
+  by (rule piecewise_C1_differentiable_D1)
+
+lemma valid_path_join_D2:
+  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
+  shows "\<lbrakk>valid_path (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> valid_path g2"
+  unfolding valid_path_def
+  by (rule piecewise_C1_differentiable_D2)
+
+lemma valid_path_join_eq [simp]:
+  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
+  shows "pathfinish g1 = pathstart g2 \<Longrightarrow> (valid_path(g1 +++ g2) \<longleftrightarrow> valid_path g1 \<and> valid_path g2)"
+  using valid_path_join_D1 valid_path_join_D2 valid_path_join by blast
+
+lemma valid_path_shiftpath [intro]:
+  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
+    shows "valid_path(shiftpath a g)"
+  using assms
+  apply (auto simp: valid_path_def shiftpath_alt_def)
+  apply (rule piecewise_C1_differentiable_cases)
+  apply (auto simp: algebra_simps)
+  apply (rule piecewise_C1_differentiable_affine [of g 1 a, simplified o_def scaleR_one])
+  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
+  apply (rule piecewise_C1_differentiable_affine [of g 1 "a-1", simplified o_def scaleR_one algebra_simps])
+  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
+  done
+
+lemma vector_derivative_linepath_within:
+    "x \<in> {0..1} \<Longrightarrow> vector_derivative (linepath a b) (at x within {0..1}) = b - a"
+  apply (rule vector_derivative_within_cbox [of 0 "1::real", simplified])
+  apply (auto simp: has_vector_derivative_linepath_within)
+  done
+
+lemma vector_derivative_linepath_at [simp]: "vector_derivative (linepath a b) (at x) = b - a"
+  by (simp add: has_vector_derivative_linepath_within vector_derivative_at)
+
+lemma valid_path_linepath [iff]: "valid_path (linepath a b)"
+  apply (simp add: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_on_linepath)
+  apply (rule_tac x="{}" in exI)
+  apply (simp add: differentiable_on_def differentiable_def)
+  using has_vector_derivative_def has_vector_derivative_linepath_within
+  apply (fastforce simp add: continuous_on_eq_continuous_within)
+  done
+
+lemma valid_path_subpath:
+  fixes g :: "real \<Rightarrow> 'a :: real_normed_vector"
+  assumes "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
+    shows "valid_path(subpath u v g)"
+proof (cases "v=u")
+  case True
+  then show ?thesis
+    unfolding valid_path_def subpath_def
+    by (force intro: C1_differentiable_on_const C1_differentiable_imp_piecewise)
+next
+  case False
+  have "(g \<circ> (\<lambda>x. ((v-u) * x + u))) piecewise_C1_differentiable_on {0..1}"
+    apply (rule piecewise_C1_differentiable_compose)
+    apply (simp add: C1_differentiable_imp_piecewise)
+     apply (simp add: image_affinity_atLeastAtMost)
+    using assms False
+    apply (auto simp: algebra_simps valid_path_def piecewise_C1_differentiable_on_subset)
+    apply (subst Int_commute)
+    apply (auto simp: inj_on_def algebra_simps crossproduct_eq finite_vimage_IntI)
+    done
+  then show ?thesis
+    by (auto simp: o_def valid_path_def subpath_def)
+qed
+
+lemma valid_path_rectpath [simp, intro]: "valid_path (rectpath a b)"
+  by (simp add: Let_def rectpath_def)
+
+end
\ No newline at end of file