| author | wenzelm |
| Fri, 21 Jul 2023 11:31:33 +0200 | |
| changeset 78425 | 62d7ef1da441 |
| parent 67399 | eab6ce8368fa |
| permissions | -rw-r--r-- |
| 47455 | 1 |
(* Title: HOL/Library/Quotient_Sum.thy |
|
53012
cb82606b8215
move Lifting/Transfer relevant parts of Library/Quotient_* to Main
kuncar
parents:
53010
diff
changeset
|
2 |
Author: Cezary Kaliszyk and Christian Urban |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
3 |
*) |
| 35788 | 4 |
|
| 60500 | 5 |
section \<open>Quotient infrastructure for the sum type\<close> |
| 35788 | 6 |
|
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
7 |
theory Quotient_Sum |
| 62954 | 8 |
imports Quotient_Syntax |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
9 |
begin |
|
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
10 |
|
| 60500 | 11 |
subsection \<open>Rules for the Quotient package\<close> |
|
51956
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
kuncar
parents:
51377
diff
changeset
|
12 |
|
| 55943 | 13 |
lemma rel_sum_map1: |
14 |
"rel_sum R1 R2 (map_sum f1 f2 x) y \<longleftrightarrow> rel_sum (\<lambda>x. R1 (f1 x)) (\<lambda>x. R2 (f2 x)) x y" |
|
| 58916 | 15 |
by (rule sum.rel_map(1)) |
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
16 |
|
| 55943 | 17 |
lemma rel_sum_map2: |
18 |
"rel_sum R1 R2 x (map_sum f1 f2 y) \<longleftrightarrow> rel_sum (\<lambda>x y. R1 x (f1 y)) (\<lambda>x y. R2 x (f2 y)) x y" |
|
| 58916 | 19 |
by (rule sum.rel_map(2)) |
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
20 |
|
| 55931 | 21 |
lemma map_sum_id [id_simps]: |
22 |
"map_sum id id = id" |
|
23 |
by (simp add: id_def map_sum.identity fun_eq_iff) |
|
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
24 |
|
| 55943 | 25 |
lemma rel_sum_eq [id_simps]: |
| 67399 | 26 |
"rel_sum (=) (=) = (=)" |
| 58916 | 27 |
by (rule sum.rel_eq) |
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
28 |
|
| 55943 | 29 |
lemma reflp_rel_sum: |
30 |
"reflp R1 \<Longrightarrow> reflp R2 \<Longrightarrow> reflp (rel_sum R1 R2)" |
|
31 |
unfolding reflp_def split_sum_all rel_sum_simps by fast |
|
|
55564
e81ee43ab290
delete or move now not necessary reflexivity rules due to 1726f46d2aa8
kuncar
parents:
53026
diff
changeset
|
32 |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
33 |
lemma sum_symp: |
| 55943 | 34 |
"symp R1 \<Longrightarrow> symp R2 \<Longrightarrow> symp (rel_sum R1 R2)" |
35 |
unfolding symp_def split_sum_all rel_sum_simps by fast |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
36 |
|
|
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
37 |
lemma sum_transp: |
| 55943 | 38 |
"transp R1 \<Longrightarrow> transp R2 \<Longrightarrow> transp (rel_sum R1 R2)" |
39 |
unfolding transp_def split_sum_all rel_sum_simps by fast |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
40 |
|
|
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
41 |
lemma sum_equivp [quot_equiv]: |
| 55943 | 42 |
"equivp R1 \<Longrightarrow> equivp R2 \<Longrightarrow> equivp (rel_sum R1 R2)" |
43 |
by (blast intro: equivpI reflp_rel_sum sum_symp sum_transp elim: equivpE) |
|
|
47624
16d433895d2e
add new transfer rules and setup for lifting package
huffman
parents:
47455
diff
changeset
|
44 |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
45 |
lemma sum_quotient [quot_thm]: |
| 47308 | 46 |
assumes q1: "Quotient3 R1 Abs1 Rep1" |
47 |
assumes q2: "Quotient3 R2 Abs2 Rep2" |
|
| 55943 | 48 |
shows "Quotient3 (rel_sum R1 R2) (map_sum Abs1 Abs2) (map_sum Rep1 Rep2)" |
| 47308 | 49 |
apply (rule Quotient3I) |
| 55943 | 50 |
apply (simp_all add: map_sum.compositionality comp_def map_sum.identity rel_sum_eq rel_sum_map1 rel_sum_map2 |
| 47308 | 51 |
Quotient3_abs_rep [OF q1] Quotient3_rel_rep [OF q1] Quotient3_abs_rep [OF q2] Quotient3_rel_rep [OF q2]) |
52 |
using Quotient3_rel [OF q1] Quotient3_rel [OF q2] |
|
| 58916 | 53 |
apply (fastforce elim!: rel_sum.cases simp add: comp_def split: sum.split) |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
54 |
done |
|
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
55 |
|
| 55943 | 56 |
declare [[mapQ3 sum = (rel_sum, sum_quotient)]] |
| 47094 | 57 |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
58 |
lemma sum_Inl_rsp [quot_respect]: |
| 47308 | 59 |
assumes q1: "Quotient3 R1 Abs1 Rep1" |
60 |
assumes q2: "Quotient3 R2 Abs2 Rep2" |
|
| 55943 | 61 |
shows "(R1 ===> rel_sum R1 R2) Inl Inl" |
|
40465
2989f9f3aa10
more appropriate specification packages; fun_rel_def is no simp rule by default
haftmann
parents:
39302
diff
changeset
|
62 |
by auto |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
63 |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
64 |
lemma sum_Inr_rsp [quot_respect]: |
| 47308 | 65 |
assumes q1: "Quotient3 R1 Abs1 Rep1" |
66 |
assumes q2: "Quotient3 R2 Abs2 Rep2" |
|
| 55943 | 67 |
shows "(R2 ===> rel_sum R1 R2) Inr Inr" |
|
40465
2989f9f3aa10
more appropriate specification packages; fun_rel_def is no simp rule by default
haftmann
parents:
39302
diff
changeset
|
68 |
by auto |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
69 |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
70 |
lemma sum_Inl_prs [quot_preserve]: |
| 47308 | 71 |
assumes q1: "Quotient3 R1 Abs1 Rep1" |
72 |
assumes q2: "Quotient3 R2 Abs2 Rep2" |
|
| 55931 | 73 |
shows "(Rep1 ---> map_sum Abs1 Abs2) Inl = Inl" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
74 |
apply(simp add: fun_eq_iff) |
| 47308 | 75 |
apply(simp add: Quotient3_abs_rep[OF q1]) |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
76 |
done |
|
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
77 |
|
|
40820
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
haftmann
parents:
40610
diff
changeset
|
78 |
lemma sum_Inr_prs [quot_preserve]: |
| 47308 | 79 |
assumes q1: "Quotient3 R1 Abs1 Rep1" |
80 |
assumes q2: "Quotient3 R2 Abs2 Rep2" |
|
| 55931 | 81 |
shows "(Rep2 ---> map_sum Abs1 Abs2) Inr = Inr" |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
82 |
apply(simp add: fun_eq_iff) |
| 47308 | 83 |
apply(simp add: Quotient3_abs_rep[OF q2]) |
|
35222
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
84 |
done |
|
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
85 |
|
|
4f1fba00f66d
Initial version of HOL quotient package.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
diff
changeset
|
86 |
end |