author | eberlm <eberlm@in.tum.de> |
Mon, 29 May 2017 09:14:15 +0200 | |
changeset 65956 | 639eb3617a86 |
parent 64438 | f91cae6c1d74 |
child 67399 | eab6ce8368fa |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/HyperDef.thy |
2 |
Author: Jacques D. Fleuriot |
|
3 |
Copyright: 1998 University of Cambridge |
|
27468 | 4 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
5 |
*) |
|
6 |
||
64435 | 7 |
section \<open>Construction of Hyperreals Using Ultrafilters\<close> |
27468 | 8 |
|
9 |
theory HyperDef |
|
64435 | 10 |
imports Complex_Main HyperNat |
27468 | 11 |
begin |
12 |
||
42463 | 13 |
type_synonym hypreal = "real star" |
27468 | 14 |
|
64435 | 15 |
abbreviation hypreal_of_real :: "real \<Rightarrow> real star" |
16 |
where "hypreal_of_real \<equiv> star_of" |
|
27468 | 17 |
|
64435 | 18 |
abbreviation hypreal_of_hypnat :: "hypnat \<Rightarrow> hypreal" |
19 |
where "hypreal_of_hypnat \<equiv> of_hypnat" |
|
27468 | 20 |
|
64435 | 21 |
definition omega :: hypreal ("\<omega>") |
22 |
where "\<omega> = star_n (\<lambda>n. real (Suc n))" |
|
23 |
\<comment> \<open>an infinite number \<open>= [<1, 2, 3, \<dots>>]\<close>\<close> |
|
27468 | 24 |
|
64435 | 25 |
definition epsilon :: hypreal ("\<epsilon>") |
26 |
where "\<epsilon> = star_n (\<lambda>n. inverse (real (Suc n)))" |
|
27 |
\<comment> \<open>an infinitesimal number \<open>= [<1, 1/2, 1/3, \<dots>>]\<close>\<close> |
|
27468 | 28 |
|
29 |
||
61975 | 30 |
subsection \<open>Real vector class instances\<close> |
27468 | 31 |
|
32 |
instantiation star :: (scaleR) scaleR |
|
33 |
begin |
|
64435 | 34 |
definition star_scaleR_def [transfer_unfold]: "scaleR r \<equiv> *f* (scaleR r)" |
35 |
instance .. |
|
27468 | 36 |
end |
37 |
||
38 |
lemma Standard_scaleR [simp]: "x \<in> Standard \<Longrightarrow> scaleR r x \<in> Standard" |
|
64435 | 39 |
by (simp add: star_scaleR_def) |
27468 | 40 |
|
41 |
lemma star_of_scaleR [simp]: "star_of (scaleR r x) = scaleR r (star_of x)" |
|
64435 | 42 |
by transfer (rule refl) |
27468 | 43 |
|
44 |
instance star :: (real_vector) real_vector |
|
45 |
proof |
|
46 |
fix a b :: real |
|
47 |
show "\<And>x y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y" |
|
48 |
by transfer (rule scaleR_right_distrib) |
|
49 |
show "\<And>x::'a star. scaleR (a + b) x = scaleR a x + scaleR b x" |
|
50 |
by transfer (rule scaleR_left_distrib) |
|
51 |
show "\<And>x::'a star. scaleR a (scaleR b x) = scaleR (a * b) x" |
|
52 |
by transfer (rule scaleR_scaleR) |
|
53 |
show "\<And>x::'a star. scaleR 1 x = x" |
|
54 |
by transfer (rule scaleR_one) |
|
55 |
qed |
|
56 |
||
57 |
instance star :: (real_algebra) real_algebra |
|
58 |
proof |
|
59 |
fix a :: real |
|
60 |
show "\<And>x y::'a star. scaleR a x * y = scaleR a (x * y)" |
|
61 |
by transfer (rule mult_scaleR_left) |
|
62 |
show "\<And>x y::'a star. x * scaleR a y = scaleR a (x * y)" |
|
63 |
by transfer (rule mult_scaleR_right) |
|
64 |
qed |
|
65 |
||
66 |
instance star :: (real_algebra_1) real_algebra_1 .. |
|
67 |
||
68 |
instance star :: (real_div_algebra) real_div_algebra .. |
|
69 |
||
27553 | 70 |
instance star :: (field_char_0) field_char_0 .. |
71 |
||
27468 | 72 |
instance star :: (real_field) real_field .. |
73 |
||
74 |
lemma star_of_real_def [transfer_unfold]: "of_real r = star_of (of_real r)" |
|
64435 | 75 |
by (unfold of_real_def, transfer, rule refl) |
27468 | 76 |
|
77 |
lemma Standard_of_real [simp]: "of_real r \<in> Standard" |
|
64435 | 78 |
by (simp add: star_of_real_def) |
27468 | 79 |
|
80 |
lemma star_of_of_real [simp]: "star_of (of_real r) = of_real r" |
|
64435 | 81 |
by transfer (rule refl) |
27468 | 82 |
|
83 |
lemma of_real_eq_star_of [simp]: "of_real = star_of" |
|
84 |
proof |
|
64435 | 85 |
show "of_real r = star_of r" for r :: real |
27468 | 86 |
by transfer simp |
87 |
qed |
|
88 |
||
61070 | 89 |
lemma Reals_eq_Standard: "(\<real> :: hypreal set) = Standard" |
64435 | 90 |
by (simp add: Reals_def Standard_def) |
27468 | 91 |
|
92 |
||
61975 | 93 |
subsection \<open>Injection from @{typ hypreal}\<close> |
27468 | 94 |
|
64435 | 95 |
definition of_hypreal :: "hypreal \<Rightarrow> 'a::real_algebra_1 star" |
96 |
where [transfer_unfold]: "of_hypreal = *f* of_real" |
|
27468 | 97 |
|
64435 | 98 |
lemma Standard_of_hypreal [simp]: "r \<in> Standard \<Longrightarrow> of_hypreal r \<in> Standard" |
99 |
by (simp add: of_hypreal_def) |
|
27468 | 100 |
|
101 |
lemma of_hypreal_0 [simp]: "of_hypreal 0 = 0" |
|
64435 | 102 |
by transfer (rule of_real_0) |
27468 | 103 |
|
104 |
lemma of_hypreal_1 [simp]: "of_hypreal 1 = 1" |
|
64435 | 105 |
by transfer (rule of_real_1) |
27468 | 106 |
|
64435 | 107 |
lemma of_hypreal_add [simp]: "\<And>x y. of_hypreal (x + y) = of_hypreal x + of_hypreal y" |
108 |
by transfer (rule of_real_add) |
|
27468 | 109 |
|
110 |
lemma of_hypreal_minus [simp]: "\<And>x. of_hypreal (- x) = - of_hypreal x" |
|
64435 | 111 |
by transfer (rule of_real_minus) |
27468 | 112 |
|
64435 | 113 |
lemma of_hypreal_diff [simp]: "\<And>x y. of_hypreal (x - y) = of_hypreal x - of_hypreal y" |
114 |
by transfer (rule of_real_diff) |
|
27468 | 115 |
|
64435 | 116 |
lemma of_hypreal_mult [simp]: "\<And>x y. of_hypreal (x * y) = of_hypreal x * of_hypreal y" |
117 |
by transfer (rule of_real_mult) |
|
27468 | 118 |
|
119 |
lemma of_hypreal_inverse [simp]: |
|
120 |
"\<And>x. of_hypreal (inverse x) = |
|
64435 | 121 |
inverse (of_hypreal x :: 'a::{real_div_algebra, division_ring} star)" |
122 |
by transfer (rule of_real_inverse) |
|
27468 | 123 |
|
124 |
lemma of_hypreal_divide [simp]: |
|
125 |
"\<And>x y. of_hypreal (x / y) = |
|
64435 | 126 |
(of_hypreal x / of_hypreal y :: 'a::{real_field, field} star)" |
127 |
by transfer (rule of_real_divide) |
|
27468 | 128 |
|
64435 | 129 |
lemma of_hypreal_eq_iff [simp]: "\<And>x y. (of_hypreal x = of_hypreal y) = (x = y)" |
130 |
by transfer (rule of_real_eq_iff) |
|
27468 | 131 |
|
64435 | 132 |
lemma of_hypreal_eq_0_iff [simp]: "\<And>x. (of_hypreal x = 0) = (x = 0)" |
133 |
by transfer (rule of_real_eq_0_iff) |
|
27468 | 134 |
|
135 |
||
64435 | 136 |
subsection \<open>Properties of @{term starrel}\<close> |
27468 | 137 |
|
138 |
lemma lemma_starrel_refl [simp]: "x \<in> starrel `` {x}" |
|
64435 | 139 |
by (simp add: starrel_def) |
27468 | 140 |
|
141 |
lemma starrel_in_hypreal [simp]: "starrel``{x}:star" |
|
64435 | 142 |
by (simp add: star_def starrel_def quotient_def, blast) |
27468 | 143 |
|
144 |
declare Abs_star_inject [simp] Abs_star_inverse [simp] |
|
145 |
declare equiv_starrel [THEN eq_equiv_class_iff, simp] |
|
146 |
||
64435 | 147 |
|
148 |
subsection \<open>@{term hypreal_of_real}: the Injection from @{typ real} to @{typ hypreal}\<close> |
|
27468 | 149 |
|
150 |
lemma inj_star_of: "inj star_of" |
|
64435 | 151 |
by (rule inj_onI) simp |
27468 | 152 |
|
64435 | 153 |
lemma mem_Rep_star_iff: "X \<in> Rep_star x \<longleftrightarrow> x = star_n X" |
154 |
by (cases x) (simp add: star_n_def) |
|
27468 | 155 |
|
64435 | 156 |
lemma Rep_star_star_n_iff [simp]: "X \<in> Rep_star (star_n Y) \<longleftrightarrow> eventually (\<lambda>n. Y n = X n) \<U>" |
157 |
by (simp add: star_n_def) |
|
27468 | 158 |
|
159 |
lemma Rep_star_star_n: "X \<in> Rep_star (star_n X)" |
|
64435 | 160 |
by simp |
27468 | 161 |
|
162 |
||
64435 | 163 |
subsection \<open>Properties of @{term star_n}\<close> |
164 |
||
165 |
lemma star_n_add: "star_n X + star_n Y = star_n (\<lambda>n. X n + Y n)" |
|
166 |
by (simp only: star_add_def starfun2_star_n) |
|
27468 | 167 |
|
64435 | 168 |
lemma star_n_minus: "- star_n X = star_n (\<lambda>n. -(X n))" |
169 |
by (simp only: star_minus_def starfun_star_n) |
|
27468 | 170 |
|
64435 | 171 |
lemma star_n_diff: "star_n X - star_n Y = star_n (\<lambda>n. X n - Y n)" |
172 |
by (simp only: star_diff_def starfun2_star_n) |
|
27468 | 173 |
|
64435 | 174 |
lemma star_n_mult: "star_n X * star_n Y = star_n (\<lambda>n. X n * Y n)" |
175 |
by (simp only: star_mult_def starfun2_star_n) |
|
27468 | 176 |
|
64435 | 177 |
lemma star_n_inverse: "inverse (star_n X) = star_n (\<lambda>n. inverse (X n))" |
178 |
by (simp only: star_inverse_def starfun_star_n) |
|
27468 | 179 |
|
64438 | 180 |
lemma star_n_le: "star_n X \<le> star_n Y = eventually (\<lambda>n. X n \<le> Y n) \<U>" |
64435 | 181 |
by (simp only: star_le_def starP2_star_n) |
182 |
||
64438 | 183 |
lemma star_n_less: "star_n X < star_n Y = eventually (\<lambda>n. X n < Y n) \<U>" |
64435 | 184 |
by (simp only: star_less_def starP2_star_n) |
27468 | 185 |
|
64435 | 186 |
lemma star_n_zero_num: "0 = star_n (\<lambda>n. 0)" |
187 |
by (simp only: star_zero_def star_of_def) |
|
27468 | 188 |
|
64435 | 189 |
lemma star_n_one_num: "1 = star_n (\<lambda>n. 1)" |
190 |
by (simp only: star_one_def star_of_def) |
|
27468 | 191 |
|
64435 | 192 |
lemma star_n_abs: "\<bar>star_n X\<bar> = star_n (\<lambda>n. \<bar>X n\<bar>)" |
193 |
by (simp only: star_abs_def starfun_star_n) |
|
27468 | 194 |
|
61981 | 195 |
lemma hypreal_omega_gt_zero [simp]: "0 < \<omega>" |
64435 | 196 |
by (simp add: omega_def star_n_zero_num star_n_less) |
27468 | 197 |
|
198 |
||
64435 | 199 |
subsection \<open>Existence of Infinite Hyperreal Number\<close> |
200 |
||
201 |
text \<open>Existence of infinite number not corresponding to any real number. |
|
64438 | 202 |
Use assumption that member @{term \<U>} is not finite.\<close> |
64435 | 203 |
|
204 |
text \<open>A few lemmas first.\<close> |
|
27468 | 205 |
|
61806
d2e62ae01cd8
Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
206 |
lemma lemma_omega_empty_singleton_disj: |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
207 |
"{n::nat. x = real n} = {} \<or> (\<exists>y. {n::nat. x = real n} = {y})" |
64435 | 208 |
by force |
27468 | 209 |
|
210 |
lemma lemma_finite_omega_set: "finite {n::nat. x = real n}" |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
211 |
using lemma_omega_empty_singleton_disj [of x] by auto |
27468 | 212 |
|
64435 | 213 |
lemma not_ex_hypreal_of_real_eq_omega: "\<nexists>x. hypreal_of_real x = \<omega>" |
214 |
apply (simp add: omega_def star_of_def star_n_eq_iff) |
|
215 |
apply clarify |
|
216 |
apply (rule_tac x2="x-1" in lemma_finite_omega_set [THEN FreeUltrafilterNat.finite, THEN notE]) |
|
217 |
apply (erule eventually_mono) |
|
218 |
apply auto |
|
219 |
done |
|
27468 | 220 |
|
61981 | 221 |
lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> \<omega>" |
64435 | 222 |
using not_ex_hypreal_of_real_eq_omega by auto |
27468 | 223 |
|
64435 | 224 |
text \<open>Existence of infinitesimal number also not corresponding to any real number.\<close> |
27468 | 225 |
|
226 |
lemma lemma_epsilon_empty_singleton_disj: |
|
64435 | 227 |
"{n::nat. x = inverse(real(Suc n))} = {} \<or> (\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})" |
228 |
by auto |
|
27468 | 229 |
|
64435 | 230 |
lemma lemma_finite_epsilon_set: "finite {n. x = inverse (real (Suc n))}" |
231 |
using lemma_epsilon_empty_singleton_disj [of x] by auto |
|
27468 | 232 |
|
64435 | 233 |
lemma not_ex_hypreal_of_real_eq_epsilon: "\<nexists>x. hypreal_of_real x = \<epsilon>" |
234 |
by (auto simp: epsilon_def star_of_def star_n_eq_iff |
|
235 |
lemma_finite_epsilon_set [THEN FreeUltrafilterNat.finite] simp del: of_nat_Suc) |
|
27468 | 236 |
|
61981 | 237 |
lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> \<epsilon>" |
64435 | 238 |
using not_ex_hypreal_of_real_eq_epsilon by auto |
27468 | 239 |
|
61981 | 240 |
lemma hypreal_epsilon_not_zero: "\<epsilon> \<noteq> 0" |
64435 | 241 |
by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff FreeUltrafilterNat.proper |
242 |
del: star_of_zero) |
|
27468 | 243 |
|
61981 | 244 |
lemma hypreal_epsilon_inverse_omega: "\<epsilon> = inverse \<omega>" |
64435 | 245 |
by (simp add: epsilon_def omega_def star_n_inverse) |
27468 | 246 |
|
61981 | 247 |
lemma hypreal_epsilon_gt_zero: "0 < \<epsilon>" |
64435 | 248 |
by (simp add: hypreal_epsilon_inverse_omega) |
27468 | 249 |
|
250 |
||
64435 | 251 |
subsection \<open>Absolute Value Function for the Hyperreals\<close> |
252 |
||
253 |
lemma hrabs_add_less: "\<bar>x\<bar> < r \<Longrightarrow> \<bar>y\<bar> < s \<Longrightarrow> \<bar>x + y\<bar> < r + s" |
|
254 |
for x y r s :: hypreal |
|
255 |
by (simp add: abs_if split: if_split_asm) |
|
256 |
||
257 |
lemma hrabs_less_gt_zero: "\<bar>x\<bar> < r \<Longrightarrow> 0 < r" |
|
258 |
for x r :: hypreal |
|
259 |
by (blast intro!: order_le_less_trans abs_ge_zero) |
|
27468 | 260 |
|
64435 | 261 |
lemma hrabs_disj: "\<bar>x\<bar> = x \<or> \<bar>x\<bar> = -x" |
262 |
for x :: "'a::abs_if" |
|
263 |
by (simp add: abs_if) |
|
264 |
||
265 |
lemma hrabs_add_lemma_disj: "y + - x + (y + - z) = \<bar>x + - z\<bar> \<Longrightarrow> y = z \<or> x = y" |
|
266 |
for x y z :: hypreal |
|
267 |
by (simp add: abs_if split: if_split_asm) |
|
268 |
||
269 |
||
270 |
subsection \<open>Embedding the Naturals into the Hyperreals\<close> |
|
271 |
||
272 |
abbreviation hypreal_of_nat :: "nat \<Rightarrow> hypreal" |
|
273 |
where "hypreal_of_nat \<equiv> of_nat" |
|
27468 | 274 |
|
275 |
lemma SNat_eq: "Nats = {n. \<exists>N. n = hypreal_of_nat N}" |
|
64435 | 276 |
by (simp add: Nats_def image_def) |
27468 | 277 |
|
64435 | 278 |
text \<open>Naturals embedded in hyperreals: is a hyperreal c.f. NS extension.\<close> |
27468 | 279 |
|
64435 | 280 |
lemma hypreal_of_nat: "hypreal_of_nat m = star_n (\<lambda>n. real m)" |
281 |
by (simp add: star_of_def [symmetric]) |
|
27468 | 282 |
|
61975 | 283 |
declaration \<open> |
31100 | 284 |
K (Lin_Arith.add_inj_thms [@{thm star_of_le} RS iffD2, |
285 |
@{thm star_of_less} RS iffD2, @{thm star_of_eq} RS iffD2] |
|
286 |
#> Lin_Arith.add_simps [@{thm star_of_zero}, @{thm star_of_one}, |
|
55911
d00023bd3554
remove simp rules made redundant by the replacement of neg_numeral with negated numerals
huffman
parents:
54489
diff
changeset
|
287 |
@{thm star_of_numeral}, @{thm star_of_add}, |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45605
diff
changeset
|
288 |
@{thm star_of_minus}, @{thm star_of_diff}, @{thm star_of_mult}] |
43595 | 289 |
#> Lin_Arith.add_inj_const (@{const_name "StarDef.star_of"}, @{typ "real \<Rightarrow> hypreal"})) |
61975 | 290 |
\<close> |
27468 | 291 |
|
64435 | 292 |
simproc_setup fast_arith_hypreal ("(m::hypreal) < n" | "(m::hypreal) \<le> n" | "(m::hypreal) = n") = |
61975 | 293 |
\<open>K Lin_Arith.simproc\<close> |
43595 | 294 |
|
27468 | 295 |
|
61975 | 296 |
subsection \<open>Exponentials on the Hyperreals\<close> |
27468 | 297 |
|
64435 | 298 |
lemma hpowr_0 [simp]: "r ^ 0 = (1::hypreal)" |
299 |
for r :: hypreal |
|
300 |
by (rule power_0) |
|
27468 | 301 |
|
64435 | 302 |
lemma hpowr_Suc [simp]: "r ^ (Suc n) = r * (r ^ n)" |
303 |
for r :: hypreal |
|
304 |
by (rule power_Suc) |
|
27468 | 305 |
|
64435 | 306 |
lemma hrealpow_two: "r ^ Suc (Suc 0) = r * r" |
307 |
for r :: hypreal |
|
308 |
by simp |
|
27468 | 309 |
|
64435 | 310 |
lemma hrealpow_two_le [simp]: "0 \<le> r ^ Suc (Suc 0)" |
311 |
for r :: hypreal |
|
312 |
by (auto simp add: zero_le_mult_iff) |
|
313 |
||
314 |
lemma hrealpow_two_le_add_order [simp]: "0 \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)" |
|
315 |
for u v :: hypreal |
|
316 |
by (simp only: hrealpow_two_le add_nonneg_nonneg) |
|
27468 | 317 |
|
64435 | 318 |
lemma hrealpow_two_le_add_order2 [simp]: "0 \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)" |
319 |
for u v w :: hypreal |
|
320 |
by (simp only: hrealpow_two_le add_nonneg_nonneg) |
|
27468 | 321 |
|
64435 | 322 |
lemma hypreal_add_nonneg_eq_0_iff: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" |
323 |
for x y :: hypreal |
|
324 |
by arith |
|
27468 | 325 |
|
326 |
||
64435 | 327 |
(* FIXME: DELETE THESE *) |
328 |
lemma hypreal_three_squares_add_zero_iff: "x * x + y * y + z * z = 0 \<longleftrightarrow> x = 0 \<and> y = 0 \<and> z = 0" |
|
329 |
for x y z :: hypreal |
|
330 |
by (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff) auto |
|
27468 | 331 |
|
332 |
lemma hrealpow_three_squares_add_zero_iff [simp]: |
|
64435 | 333 |
"x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = 0 \<longleftrightarrow> x = 0 \<and> y = 0 \<and> z = 0" |
334 |
for x y z :: hypreal |
|
335 |
by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two) |
|
27468 | 336 |
|
337 |
(*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract |
|
35050
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
haftmann
parents:
35043
diff
changeset
|
338 |
result proved in Rings or Fields*) |
64435 | 339 |
lemma hrabs_hrealpow_two [simp]: "\<bar>x ^ Suc (Suc 0)\<bar> = x ^ Suc (Suc 0)" |
340 |
for x :: hypreal |
|
341 |
by (simp add: abs_mult) |
|
27468 | 342 |
|
343 |
lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n" |
|
64435 | 344 |
using power_increasing [of 0 n "2::hypreal"] by simp |
27468 | 345 |
|
64435 | 346 |
lemma hrealpow: "star_n X ^ m = star_n (\<lambda>n. (X n::real) ^ m)" |
347 |
by (induct m) (auto simp: star_n_one_num star_n_mult) |
|
27468 | 348 |
|
349 |
lemma hrealpow_sum_square_expand: |
|
64435 | 350 |
"(x + y) ^ Suc (Suc 0) = |
351 |
x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0))) * x * y" |
|
352 |
for x y :: hypreal |
|
353 |
by (simp add: distrib_left distrib_right) |
|
27468 | 354 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45605
diff
changeset
|
355 |
lemma power_hypreal_of_real_numeral: |
64435 | 356 |
"(numeral v :: hypreal) ^ n = hypreal_of_real ((numeral v) ^ n)" |
357 |
by simp |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45605
diff
changeset
|
358 |
declare power_hypreal_of_real_numeral [of _ "numeral w", simp] for w |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45605
diff
changeset
|
359 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45605
diff
changeset
|
360 |
lemma power_hypreal_of_real_neg_numeral: |
64435 | 361 |
"(- numeral v :: hypreal) ^ n = hypreal_of_real ((- numeral v) ^ n)" |
362 |
by simp |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45605
diff
changeset
|
363 |
declare power_hypreal_of_real_neg_numeral [of _ "numeral w", simp] for w |
27468 | 364 |
(* |
365 |
lemma hrealpow_HFinite: |
|
31017 | 366 |
fixes x :: "'a::{real_normed_algebra,power} star" |
27468 | 367 |
shows "x \<in> HFinite ==> x ^ n \<in> HFinite" |
368 |
apply (induct_tac "n") |
|
369 |
apply (auto simp add: power_Suc intro: HFinite_mult) |
|
370 |
done |
|
371 |
*) |
|
372 |
||
373 |
||
64435 | 374 |
subsection \<open>Powers with Hypernatural Exponents\<close> |
27468 | 375 |
|
64435 | 376 |
text \<open>Hypernatural powers of hyperreals.\<close> |
377 |
definition pow :: "'a::power star \<Rightarrow> nat star \<Rightarrow> 'a star" (infixr "pow" 80) |
|
378 |
where hyperpow_def [transfer_unfold]: "R pow N = ( *f2* op ^) R N" |
|
27468 | 379 |
|
64435 | 380 |
lemma Standard_hyperpow [simp]: "r \<in> Standard \<Longrightarrow> n \<in> Standard \<Longrightarrow> r pow n \<in> Standard" |
381 |
by (simp add: hyperpow_def) |
|
27468 | 382 |
|
64435 | 383 |
lemma hyperpow: "star_n X pow star_n Y = star_n (\<lambda>n. X n ^ Y n)" |
384 |
by (simp add: hyperpow_def starfun2_star_n) |
|
385 |
||
386 |
lemma hyperpow_zero [simp]: "\<And>n. (0::'a::{power,semiring_0} star) pow (n + (1::hypnat)) = 0" |
|
387 |
by transfer simp |
|
27468 | 388 |
|
64435 | 389 |
lemma hyperpow_not_zero: "\<And>r n. r \<noteq> (0::'a::{field} star) \<Longrightarrow> r pow n \<noteq> 0" |
390 |
by transfer (rule power_not_zero) |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
55911
diff
changeset
|
391 |
|
64435 | 392 |
lemma hyperpow_inverse: "\<And>r n. r \<noteq> (0::'a::field star) \<Longrightarrow> inverse (r pow n) = (inverse r) pow n" |
393 |
by transfer (rule power_inverse [symmetric]) |
|
27468 | 394 |
|
64435 | 395 |
lemma hyperpow_hrabs: "\<And>r n. \<bar>r::'a::{linordered_idom} star\<bar> pow n = \<bar>r pow n\<bar>" |
396 |
by transfer (rule power_abs [symmetric]) |
|
27468 | 397 |
|
64435 | 398 |
lemma hyperpow_add: "\<And>r n m. (r::'a::monoid_mult star) pow (n + m) = (r pow n) * (r pow m)" |
399 |
by transfer (rule power_add) |
|
27468 | 400 |
|
64435 | 401 |
lemma hyperpow_one [simp]: "\<And>r. (r::'a::monoid_mult star) pow (1::hypnat) = r" |
402 |
by transfer (rule power_one_right) |
|
27468 | 403 |
|
64435 | 404 |
lemma hyperpow_two: "\<And>r. (r::'a::monoid_mult star) pow (2::hypnat) = r * r" |
405 |
by transfer (rule power2_eq_square) |
|
27468 | 406 |
|
64435 | 407 |
lemma hyperpow_gt_zero: "\<And>r n. (0::'a::{linordered_semidom} star) < r \<Longrightarrow> 0 < r pow n" |
408 |
by transfer (rule zero_less_power) |
|
409 |
||
410 |
lemma hyperpow_ge_zero: "\<And>r n. (0::'a::{linordered_semidom} star) \<le> r \<Longrightarrow> 0 \<le> r pow n" |
|
411 |
by transfer (rule zero_le_power) |
|
27468 | 412 |
|
64435 | 413 |
lemma hyperpow_le: "\<And>x y n. (0::'a::{linordered_semidom} star) < x \<Longrightarrow> x \<le> y \<Longrightarrow> x pow n \<le> y pow n" |
414 |
by transfer (rule power_mono [OF _ order_less_imp_le]) |
|
27468 | 415 |
|
64435 | 416 |
lemma hyperpow_eq_one [simp]: "\<And>n. 1 pow n = (1::'a::monoid_mult star)" |
417 |
by transfer (rule power_one) |
|
27468 | 418 |
|
64435 | 419 |
lemma hrabs_hyperpow_minus [simp]: "\<And>(a::'a::linordered_idom star) n. \<bar>(-a) pow n\<bar> = \<bar>a pow n\<bar>" |
420 |
by transfer (rule abs_power_minus) |
|
27468 | 421 |
|
64435 | 422 |
lemma hyperpow_mult: "\<And>r s n. (r * s::'a::comm_monoid_mult star) pow n = (r pow n) * (s pow n)" |
423 |
by transfer (rule power_mult_distrib) |
|
27468 | 424 |
|
64435 | 425 |
lemma hyperpow_two_le [simp]: "\<And>r. (0::'a::{monoid_mult,linordered_ring_strict} star) \<le> r pow 2" |
426 |
by (auto simp add: hyperpow_two zero_le_mult_iff) |
|
27468 | 427 |
|
428 |
lemma hrabs_hyperpow_two [simp]: |
|
64435 | 429 |
"\<bar>x pow 2\<bar> = (x::'a::{monoid_mult,linordered_ring_strict} star) pow 2" |
430 |
by (simp only: abs_of_nonneg hyperpow_two_le) |
|
27468 | 431 |
|
64435 | 432 |
lemma hyperpow_two_hrabs [simp]: "\<bar>x::'a::linordered_idom star\<bar> pow 2 = x pow 2" |
433 |
by (simp add: hyperpow_hrabs) |
|
27468 | 434 |
|
64435 | 435 |
text \<open>The precondition could be weakened to @{term "0\<le>x"}.\<close> |
436 |
lemma hypreal_mult_less_mono: "u < v \<Longrightarrow> x < y \<Longrightarrow> 0 < v \<Longrightarrow> 0 < x \<Longrightarrow> u * x < v * y" |
|
437 |
for u v x y :: hypreal |
|
438 |
by (simp add: mult_strict_mono order_less_imp_le) |
|
27468 | 439 |
|
64435 | 440 |
lemma hyperpow_two_gt_one: "\<And>r::'a::linordered_semidom star. 1 < r \<Longrightarrow> 1 < r pow 2" |
441 |
by transfer simp |
|
27468 | 442 |
|
64435 | 443 |
lemma hyperpow_two_ge_one: "\<And>r::'a::linordered_semidom star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow 2" |
444 |
by transfer (rule one_le_power) |
|
27468 | 445 |
|
446 |
lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n" |
|
64435 | 447 |
apply (rule_tac y = "1 pow n" in order_trans) |
448 |
apply (rule_tac [2] hyperpow_le) |
|
449 |
apply auto |
|
450 |
done |
|
27468 | 451 |
|
64435 | 452 |
lemma hyperpow_minus_one2 [simp]: "\<And>n. (- 1) pow (2 * n) = (1::hypreal)" |
453 |
by transfer (rule power_minus1_even) |
|
27468 | 454 |
|
64435 | 455 |
lemma hyperpow_less_le: "\<And>r n N. (0::hypreal) \<le> r \<Longrightarrow> r \<le> 1 \<Longrightarrow> n < N \<Longrightarrow> r pow N \<le> r pow n" |
456 |
by transfer (rule power_decreasing [OF order_less_imp_le]) |
|
27468 | 457 |
|
458 |
lemma hyperpow_SHNat_le: |
|
64435 | 459 |
"0 \<le> r \<Longrightarrow> r \<le> (1::hypreal) \<Longrightarrow> N \<in> HNatInfinite \<Longrightarrow> \<forall>n\<in>Nats. r pow N \<le> r pow n" |
460 |
by (auto intro!: hyperpow_less_le simp: HNatInfinite_iff) |
|
27468 | 461 |
|
64435 | 462 |
lemma hyperpow_realpow: "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)" |
463 |
by transfer (rule refl) |
|
27468 | 464 |
|
64435 | 465 |
lemma hyperpow_SReal [simp]: "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> \<real>" |
466 |
by (simp add: Reals_eq_Standard) |
|
27468 | 467 |
|
64435 | 468 |
lemma hyperpow_zero_HNatInfinite [simp]: "N \<in> HNatInfinite \<Longrightarrow> (0::hypreal) pow N = 0" |
469 |
by (drule HNatInfinite_is_Suc, auto) |
|
27468 | 470 |
|
64435 | 471 |
lemma hyperpow_le_le: "(0::hypreal) \<le> r \<Longrightarrow> r \<le> 1 \<Longrightarrow> n \<le> N \<Longrightarrow> r pow N \<le> r pow n" |
472 |
apply (drule order_le_less [of n, THEN iffD1]) |
|
473 |
apply (auto intro: hyperpow_less_le) |
|
474 |
done |
|
27468 | 475 |
|
64435 | 476 |
lemma hyperpow_Suc_le_self2: "(0::hypreal) \<le> r \<Longrightarrow> r < 1 \<Longrightarrow> r pow (n + (1::hypnat)) \<le> r" |
477 |
apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le) |
|
478 |
apply auto |
|
479 |
done |
|
27468 | 480 |
|
481 |
lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n" |
|
64435 | 482 |
by transfer (rule refl) |
27468 | 483 |
|
484 |
lemma of_hypreal_hyperpow: |
|
64435 | 485 |
"\<And>x n. of_hypreal (x pow n) = (of_hypreal x::'a::{real_algebra_1} star) pow n" |
486 |
by transfer (rule of_real_power) |
|
27468 | 487 |
|
488 |
end |