src/HOL/Number_Theory/Euclidean_Algorithm.thy
author haftmann
Fri, 12 Jun 2015 21:52:49 +0200
changeset 60437 63edc650cf67
parent 60436 77e694c0c919
child 60438 e1c345094813
permissions -rw-r--r--
generalized euclidean ring prerequisites
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     1
(* Author: Manuel Eberl *)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     2
58889
5b7a9633cfa8 modernized header uniformly as section;
wenzelm
parents: 58023
diff changeset
     3
section {* Abstract euclidean algorithm *}
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     4
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     5
theory Euclidean_Algorithm
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     6
imports Complex_Main
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     7
begin
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
     8
60436
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
     9
context semidom_divide
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    10
begin
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    11
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    12
lemma mult_cancel_right [simp]:
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    13
  "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    14
proof (cases "c = 0")
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    15
  case True then show ?thesis by simp
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    16
next
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    17
  case False
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    18
  { assume "a * c = b * c"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    19
    then have "a * c div c = b * c div c"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    20
      by simp
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    21
    with False have "a = b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    22
      by simp
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    23
  } then show ?thesis by auto
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    24
qed
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    25
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    26
lemma mult_cancel_left [simp]:
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    27
  "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    28
  using mult_cancel_right [of a c b] by (simp add: ac_simps)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    29
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    30
end
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
    31
60437
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    32
context semidom_divide
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
    33
begin 
60437
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    34
 
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    35
lemma div_self [simp]:
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    36
  assumes "a \<noteq> 0"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    37
  shows "a div a = 1"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    38
  using assms nonzero_mult_divide_cancel_left [of a 1] by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
    39
60437
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    40
lemma dvd_div_mult_self [simp]:
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    41
  "a dvd b \<Longrightarrow> b div a * a = b"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    42
  by (cases "a = 0") (auto elim: dvdE simp add: ac_simps)
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    43
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    44
lemma dvd_mult_div_cancel [simp]:
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    45
  "a dvd b \<Longrightarrow> a * (b div a) = b"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    46
  using dvd_div_mult_self [of a b] by (simp add: ac_simps)
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    47
  
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    48
lemma div_mult_swap:
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    49
  assumes "c dvd b"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    50
  shows "a * (b div c) = (a * b) div c"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    51
proof (cases "c = 0")
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    52
  case True then show ?thesis by simp
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    53
next
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    54
  case False from assms obtain d where "b = c * d" ..
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    55
  moreover from False have "a * divide (d * c) c = ((a * d) * c) div c"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    56
    by simp
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    57
  ultimately show ?thesis by (simp add: ac_simps)
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    58
qed
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    59
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    60
lemma dvd_div_mult:
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    61
  assumes "c dvd b"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    62
  shows "b div c * a = (b * a) div c"
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    63
  using assms div_mult_swap [of c b a] by (simp add: ac_simps)
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    64
63edc650cf67 generalized euclidean ring prerequisites
haftmann
parents: 60436
diff changeset
    65
  
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    66
text \<open>Units: invertible elements in a ring\<close>
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    67
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
    68
abbreviation is_unit :: "'a \<Rightarrow> bool"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
    69
where
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
    70
  "is_unit a \<equiv> a dvd 1"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
    71
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    72
lemma not_is_unit_0 [simp]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    73
  "\<not> is_unit 0"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    74
  by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    75
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    76
lemma unit_imp_dvd [dest]: 
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    77
  "is_unit b \<Longrightarrow> b dvd a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    78
  by (rule dvd_trans [of _ 1]) simp_all
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    79
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    80
lemma unit_dvdE:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    81
  assumes "is_unit a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    82
  obtains c where "a \<noteq> 0" and "b = a * c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    83
proof -
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    84
  from assms have "a dvd b" by auto
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    85
  then obtain c where "b = a * c" ..
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    86
  moreover from assms have "a \<noteq> 0" by auto
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    87
  ultimately show thesis using that by blast
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    88
qed
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    89
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    90
lemma dvd_unit_imp_unit:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    91
  "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    92
  by (rule dvd_trans)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    93
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    94
lemma unit_div_1_unit [simp, intro]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    95
  assumes "is_unit a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    96
  shows "is_unit (1 div a)"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    97
proof -
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    98
  from assms have "1 = 1 div a * a" by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
    99
  then show "is_unit (1 div a)" by (rule dvdI)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   100
qed
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   101
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   102
lemma is_unitE [elim?]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   103
  assumes "is_unit a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   104
  obtains b where "a \<noteq> 0" and "b \<noteq> 0"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   105
    and "is_unit b" and "1 div a = b" and "1 div b = a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   106
    and "a * b = 1" and "c div a = c * b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   107
proof (rule that)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   108
  def b \<equiv> "1 div a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   109
  then show "1 div a = b" by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   110
  from b_def `is_unit a` show "is_unit b" by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   111
  from `is_unit a` and `is_unit b` show "a \<noteq> 0" and "b \<noteq> 0" by auto
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   112
  from b_def `is_unit a` show "a * b = 1" by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   113
  then have "1 = a * b" ..
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   114
  with b_def `b \<noteq> 0` show "1 div b = a" by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   115
  from `is_unit a` have "a dvd c" ..
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   116
  then obtain d where "c = a * d" ..
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   117
  with `a \<noteq> 0` `a * b = 1` show "c div a = c * b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   118
    by (simp add: mult.assoc mult.left_commute [of a])
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   119
qed
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   120
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   121
lemma unit_prod [intro]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   122
  "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   123
  by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono) 
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   124
  
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   125
lemma unit_div [intro]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   126
  "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   127
  by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   128
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   129
lemma mult_unit_dvd_iff:
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   130
  assumes "is_unit b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   131
  shows "a * b dvd c \<longleftrightarrow> a dvd c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   132
proof
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   133
  assume "a * b dvd c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   134
  with assms show "a dvd c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   135
    by (simp add: dvd_mult_left)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   136
next
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   137
  assume "a dvd c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   138
  then obtain k where "c = a * k" ..
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   139
  with assms have "c = (a * b) * (1 div b * k)"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   140
    by (simp add: mult_ac)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   141
  then show "a * b dvd c" by (rule dvdI)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   142
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   143
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   144
lemma dvd_mult_unit_iff:
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   145
  assumes "is_unit b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   146
  shows "a dvd c * b \<longleftrightarrow> a dvd c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   147
proof
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   148
  assume "a dvd c * b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   149
  with assms have "c * b dvd c * (b * (1 div b))"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   150
    by (subst mult_assoc [symmetric]) simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   151
  also from `is_unit b` have "b * (1 div b) = 1" by (rule is_unitE) simp
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   152
  finally have "c * b dvd c" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   153
  with `a dvd c * b` show "a dvd c" by (rule dvd_trans)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   154
next
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   155
  assume "a dvd c"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   156
  then show "a dvd c * b" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   157
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   158
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   159
lemma div_unit_dvd_iff:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   160
  "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   161
  by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   162
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   163
lemma dvd_div_unit_iff:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   164
  "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   165
  by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   166
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   167
lemmas unit_dvd_iff = mult_unit_dvd_iff div_unit_dvd_iff
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   168
  dvd_mult_unit_iff dvd_div_unit_iff -- \<open>FIXME consider fact collection\<close>
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   169
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   170
lemma unit_mult_div_div [simp]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   171
  "is_unit a \<Longrightarrow> b * (1 div a) = b div a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   172
  by (erule is_unitE [of _ b]) simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   173
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   174
lemma unit_div_mult_self [simp]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   175
  "is_unit a \<Longrightarrow> b div a * a = b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   176
  by (rule dvd_div_mult_self) auto
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   177
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   178
lemma unit_div_1_div_1 [simp]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   179
  "is_unit a \<Longrightarrow> 1 div (1 div a) = a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   180
  by (erule is_unitE) simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   181
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   182
lemma unit_div_mult_swap:
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   183
  "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   184
  by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c])
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   185
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   186
lemma unit_div_commute:
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   187
  "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   188
  using unit_div_mult_swap [of b c a] by (simp add: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   189
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   190
lemma unit_eq_div1:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   191
  "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   192
  by (auto elim: is_unitE)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   193
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   194
lemma unit_eq_div2:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   195
  "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   196
  using unit_eq_div1 [of b c a] by auto
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   197
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   198
lemma unit_mult_left_cancel:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   199
  assumes "is_unit a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   200
  shows "a * b = a * c \<longleftrightarrow> b = c" (is "?P \<longleftrightarrow> ?Q")
60436
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   201
  using assms mult_cancel_left [of a b c] by auto 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   202
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   203
lemma unit_mult_right_cancel:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   204
  "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   205
  using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   206
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   207
lemma unit_div_cancel:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   208
  assumes "is_unit a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   209
  shows "b div a = c div a \<longleftrightarrow> b = c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   210
proof -
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   211
  from assms have "is_unit (1 div a)" by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   212
  then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   213
    by (rule unit_mult_right_cancel)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   214
  with assms show ?thesis by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   215
qed
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   216
  
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   217
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   218
text \<open>Associated elements in a ring – an equivalence relation induced by the quasi-order divisibility \<close>
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   219
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   220
definition associated :: "'a \<Rightarrow> 'a \<Rightarrow> bool" 
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   221
where
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   222
  "associated a b \<longleftrightarrow> a dvd b \<and> b dvd a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   223
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   224
lemma associatedI:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   225
  "a dvd b \<Longrightarrow> b dvd a \<Longrightarrow> associated a b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   226
  by (simp add: associated_def)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   227
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   228
lemma associatedD1:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   229
  "associated a b \<Longrightarrow> a dvd b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   230
  by (simp add: associated_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   231
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   232
lemma associatedD2:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   233
  "associated a b \<Longrightarrow> b dvd a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   234
  by (simp add: associated_def)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   235
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   236
lemma associated_refl [simp]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   237
  "associated a a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   238
  by (auto intro: associatedI)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   239
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   240
lemma associated_sym:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   241
  "associated b a \<longleftrightarrow> associated a b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   242
  by (auto intro: associatedI dest: associatedD1 associatedD2)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   243
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   244
lemma associated_trans:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   245
  "associated a b \<Longrightarrow> associated b c \<Longrightarrow> associated a c"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   246
  by (auto intro: associatedI dvd_trans dest: associatedD1 associatedD2)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   247
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   248
lemma equivp_associated:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   249
  "equivp associated"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   250
proof (rule equivpI)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   251
  show "reflp associated"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   252
    by (rule reflpI) simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   253
  show "symp associated"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   254
    by (rule sympI) (simp add: associated_sym)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   255
  show "transp associated"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   256
    by (rule transpI) (fact associated_trans)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   257
qed
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   258
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   259
lemma associated_0 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   260
  "associated 0 b \<longleftrightarrow> b = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   261
  "associated a 0 \<longleftrightarrow> a = 0"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   262
  by (auto dest: associatedD1 associatedD2)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   263
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   264
lemma associated_unit:
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   265
  "associated a b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   266
  using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   267
60436
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   268
lemma is_unit_associatedI:
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   269
  assumes "is_unit c" and "a = c * b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   270
  shows "associated a b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   271
proof (rule associatedI)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   272
  from `a = c * b` show "b dvd a" by auto
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   273
  from `is_unit c` obtain d where "c * d = 1" by (rule is_unitE)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   274
  moreover from `a = c * b` have "d * a = d * (c * b)" by simp
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   275
  ultimately have "b = a * d" by (simp add: ac_simps)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   276
  then show "a dvd b" ..
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   277
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   278
60436
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   279
lemma associated_is_unitE:
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   280
  assumes "associated a b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   281
  obtains c where "is_unit c" and "a = c * b"
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   282
proof (cases "b = 0")
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   283
  case True with assms have "is_unit 1" and "a = 1 * b" by simp_all
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   284
  with that show thesis .
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   285
next
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   286
  case False
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   287
  from assms have "a dvd b" and "b dvd a" by (auto dest: associatedD1 associatedD2)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   288
  then obtain c d where "b = a * d" and "a = b * c" by (blast elim: dvdE)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   289
  then have "a = c * b" and "(c * d) * b = 1 * b" by (simp_all add: ac_simps)
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   290
  with False have "c * d = 1" using mult_cancel_right [of "c * d" b 1] by simp
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   291
  then have "is_unit c" by auto
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   292
  with `a = c * b` that show thesis by blast
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   293
qed
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   294
  
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   295
lemmas unit_simps = mult_unit_dvd_iff div_unit_dvd_iff dvd_mult_unit_iff 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   296
  dvd_div_unit_iff unit_div_mult_swap unit_div_commute
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   297
  unit_mult_left_cancel unit_mult_right_cancel unit_div_cancel 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   298
  unit_eq_div1 unit_eq_div2
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   299
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   300
end
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   301
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   302
lemma is_unit_int:
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   303
  "is_unit (k::int) \<longleftrightarrow> k = 1 \<or> k = - 1"
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
   304
  by auto
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   305
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   306
  
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   307
text {*
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   308
  A Euclidean semiring is a semiring upon which the Euclidean algorithm can be
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   309
  implemented. It must provide:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   310
  \begin{itemize}
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   311
  \item division with remainder
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   312
  \item a size function such that @{term "size (a mod b) < size b"} 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   313
        for any @{term "b \<noteq> 0"}
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   314
  \item a normalisation factor such that two associated numbers are equal iff 
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   315
        they are the same when divd by their normalisation factors.
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   316
  \end{itemize}
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   317
  The existence of these functions makes it possible to derive gcd and lcm functions 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   318
  for any Euclidean semiring.
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   319
*} 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   320
class euclidean_semiring = semiring_div + 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   321
  fixes euclidean_size :: "'a \<Rightarrow> nat"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   322
  fixes normalisation_factor :: "'a \<Rightarrow> 'a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   323
  assumes mod_size_less [simp]: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   324
    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   325
  assumes size_mult_mono:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   326
    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a * b) \<ge> euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   327
  assumes normalisation_factor_is_unit [intro,simp]: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   328
    "a \<noteq> 0 \<Longrightarrow> is_unit (normalisation_factor a)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   329
  assumes normalisation_factor_mult: "normalisation_factor (a * b) = 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   330
    normalisation_factor a * normalisation_factor b"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   331
  assumes normalisation_factor_unit: "is_unit a \<Longrightarrow> normalisation_factor a = a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   332
  assumes normalisation_factor_0 [simp]: "normalisation_factor 0 = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   333
begin
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   334
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   335
lemma normalisation_factor_dvd [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   336
  "a \<noteq> 0 \<Longrightarrow> normalisation_factor a dvd b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   337
  by (rule unit_imp_dvd, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   338
    
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   339
lemma normalisation_factor_1 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   340
  "normalisation_factor 1 = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   341
  by (simp add: normalisation_factor_unit)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   342
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   343
lemma normalisation_factor_0_iff [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   344
  "normalisation_factor a = 0 \<longleftrightarrow> a = 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   345
proof
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   346
  assume "normalisation_factor a = 0"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   347
  hence "\<not> is_unit (normalisation_factor a)"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   348
    by simp
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   349
  then show "a = 0" by auto
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   350
qed simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   351
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   352
lemma normalisation_factor_pow:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   353
  "normalisation_factor (a ^ n) = normalisation_factor a ^ n"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   354
  by (induct n) (simp_all add: normalisation_factor_mult power_Suc2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   355
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   356
lemma normalisation_correct [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   357
  "normalisation_factor (a div normalisation_factor a) = (if a = 0 then 0 else 1)"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   358
proof (cases "a = 0", simp)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   359
  assume "a \<noteq> 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   360
  let ?nf = "normalisation_factor"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   361
  from normalisation_factor_is_unit[OF `a \<noteq> 0`] have "?nf a \<noteq> 0"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   362
    by auto
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   363
  have "?nf (a div ?nf a) * ?nf (?nf a) = ?nf (a div ?nf a * ?nf a)" 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   364
    by (simp add: normalisation_factor_mult)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   365
  also have "a div ?nf a * ?nf a = a" using `a \<noteq> 0`
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   366
    by simp
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   367
  also have "?nf (?nf a) = ?nf a" using `a \<noteq> 0` 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   368
    normalisation_factor_is_unit normalisation_factor_unit by simp
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   369
  finally have "normalisation_factor (a div normalisation_factor a) = 1"  
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   370
    using `?nf a \<noteq> 0` by (metis div_mult_self2_is_id div_self)
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   371
  with `a \<noteq> 0` show ?thesis by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   372
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   373
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   374
lemma normalisation_0_iff [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   375
  "a div normalisation_factor a = 0 \<longleftrightarrow> a = 0"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   376
  by (cases "a = 0", simp, subst unit_eq_div1, blast, simp)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   377
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   378
lemma mult_div_normalisation [simp]:
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   379
  "b * (1 div normalisation_factor a) = b div normalisation_factor a"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   380
  by (cases "a = 0") simp_all
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   381
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   382
lemma associated_iff_normed_eq:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   383
  "associated a b \<longleftrightarrow> a div normalisation_factor a = b div normalisation_factor b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   384
proof (cases "b = 0", simp, cases "a = 0", metis associated_0(1) normalisation_0_iff, rule iffI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   385
  let ?nf = normalisation_factor
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   386
  assume "a \<noteq> 0" "b \<noteq> 0" "a div ?nf a = b div ?nf b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   387
  hence "a = b * (?nf a div ?nf b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   388
    apply (subst (asm) unit_eq_div1, blast, subst (asm) unit_div_commute, blast)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   389
    apply (subst div_mult_swap, simp, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   390
    done
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   391
  with `a \<noteq> 0` `b \<noteq> 0` have "\<exists>c. is_unit c \<and> a = c * b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   392
    by (intro exI[of _ "?nf a div ?nf b"], force simp: mult_ac)
60436
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   393
  then obtain c where "is_unit c" and "a = c * b" by blast
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   394
  then show "associated a b" by (rule is_unit_associatedI) 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   395
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   396
  let ?nf = normalisation_factor
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   397
  assume "a \<noteq> 0" "b \<noteq> 0" "associated a b"
60436
77e694c0c919 simplified relationship between associated and is_unit
haftmann
parents: 60433
diff changeset
   398
  then obtain c where "is_unit c" and "a = c * b" by (blast elim: associated_is_unitE)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   399
  then show "a div ?nf a = b div ?nf b"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   400
    apply (simp only: `a = c * b` normalisation_factor_mult normalisation_factor_unit)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   401
    apply (rule div_mult_mult1, force)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   402
    done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   403
  qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   404
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   405
lemma normed_associated_imp_eq:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   406
  "associated a b \<Longrightarrow> normalisation_factor a \<in> {0, 1} \<Longrightarrow> normalisation_factor b \<in> {0, 1} \<Longrightarrow> a = b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   407
  by (simp add: associated_iff_normed_eq, elim disjE, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   408
    
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   409
lemmas normalisation_factor_dvd_iff [simp] =
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   410
  unit_dvd_iff [OF normalisation_factor_is_unit]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   411
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   412
lemma euclidean_division:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   413
  fixes a :: 'a and b :: 'a
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   414
  assumes "b \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   415
  obtains s and t where "a = s * b + t" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   416
    and "euclidean_size t < euclidean_size b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   417
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   418
  from div_mod_equality[of a b 0] 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   419
     have "a = a div b * b + a mod b" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   420
  with that and assms show ?thesis by force
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   421
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   422
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   423
lemma dvd_euclidean_size_eq_imp_dvd:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   424
  assumes "a \<noteq> 0" and b_dvd_a: "b dvd a" and size_eq: "euclidean_size a = euclidean_size b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   425
  shows "a dvd b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   426
proof (subst dvd_eq_mod_eq_0, rule ccontr)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   427
  assume "b mod a \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   428
  from b_dvd_a have b_dvd_mod: "b dvd b mod a" by (simp add: dvd_mod_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   429
  from b_dvd_mod obtain c where "b mod a = b * c" unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   430
    with `b mod a \<noteq> 0` have "c \<noteq> 0" by auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   431
  with `b mod a = b * c` have "euclidean_size (b mod a) \<ge> euclidean_size b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   432
      using size_mult_mono by force
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   433
  moreover from `a \<noteq> 0` have "euclidean_size (b mod a) < euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   434
      using mod_size_less by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   435
  ultimately show False using size_eq by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   436
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   437
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   438
function gcd_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   439
where
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   440
  "gcd_eucl a b = (if b = 0 then a div normalisation_factor a else gcd_eucl b (a mod b))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   441
  by (pat_completeness, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   442
termination by (relation "measure (euclidean_size \<circ> snd)", simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   443
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   444
declare gcd_eucl.simps [simp del]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   445
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   446
lemma gcd_induct: "\<lbrakk>\<And>b. P b 0; \<And>a b. 0 \<noteq> b \<Longrightarrow> P b (a mod b) \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   447
proof (induct a b rule: gcd_eucl.induct)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   448
  case ("1" m n)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   449
    then show ?case by (cases "n = 0") auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   450
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   451
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   452
definition lcm_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   453
where
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   454
  "lcm_eucl a b = a * b div (gcd_eucl a b * normalisation_factor (a * b))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   455
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   456
  (* Somewhat complicated definition of Lcm that has the advantage of working
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   457
     for infinite sets as well *)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   458
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   459
definition Lcm_eucl :: "'a set \<Rightarrow> 'a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   460
where
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   461
  "Lcm_eucl A = (if \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) then
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   462
     let l = SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l =
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   463
       (LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   464
       in l div normalisation_factor l
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   465
      else 0)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   466
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   467
definition Gcd_eucl :: "'a set \<Rightarrow> 'a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   468
where
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   469
  "Gcd_eucl A = Lcm_eucl {d. \<forall>a\<in>A. d dvd a}"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   470
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   471
end
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   472
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   473
class euclidean_semiring_gcd = euclidean_semiring + gcd + Gcd +
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   474
  assumes gcd_gcd_eucl: "gcd = gcd_eucl" and lcm_lcm_eucl: "lcm = lcm_eucl"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   475
  assumes Gcd_Gcd_eucl: "Gcd = Gcd_eucl" and Lcm_Lcm_eucl: "Lcm = Lcm_eucl"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   476
begin
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   477
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   478
lemma gcd_red:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   479
  "gcd a b = gcd b (a mod b)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   480
  by (metis gcd_eucl.simps mod_0 mod_by_0 gcd_gcd_eucl)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   481
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   482
lemma gcd_non_0:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   483
  "b \<noteq> 0 \<Longrightarrow> gcd a b = gcd b (a mod b)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   484
  by (rule gcd_red)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   485
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   486
lemma gcd_0_left:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   487
  "gcd 0 a = a div normalisation_factor a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   488
   by (simp only: gcd_gcd_eucl, subst gcd_eucl.simps, subst gcd_eucl.simps, simp add: Let_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   489
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   490
lemma gcd_0:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   491
  "gcd a 0 = a div normalisation_factor a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   492
  by (simp only: gcd_gcd_eucl, subst gcd_eucl.simps, simp add: Let_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   493
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   494
lemma gcd_dvd1 [iff]: "gcd a b dvd a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   495
  and gcd_dvd2 [iff]: "gcd a b dvd b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   496
proof (induct a b rule: gcd_eucl.induct)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   497
  fix a b :: 'a
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   498
  assume IH1: "b \<noteq> 0 \<Longrightarrow> gcd b (a mod b) dvd b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   499
  assume IH2: "b \<noteq> 0 \<Longrightarrow> gcd b (a mod b) dvd (a mod b)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   500
  
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   501
  have "gcd a b dvd a \<and> gcd a b dvd b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   502
  proof (cases "b = 0")
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   503
    case True
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   504
      then show ?thesis by (cases "a = 0", simp_all add: gcd_0)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   505
  next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   506
    case False
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   507
      with IH1 and IH2 show ?thesis by (simp add: gcd_non_0 dvd_mod_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   508
  qed
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   509
  then show "gcd a b dvd a" "gcd a b dvd b" by simp_all
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   510
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   511
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   512
lemma dvd_gcd_D1: "k dvd gcd m n \<Longrightarrow> k dvd m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   513
  by (rule dvd_trans, assumption, rule gcd_dvd1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   514
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   515
lemma dvd_gcd_D2: "k dvd gcd m n \<Longrightarrow> k dvd n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   516
  by (rule dvd_trans, assumption, rule gcd_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   517
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   518
lemma gcd_greatest:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   519
  fixes k a b :: 'a
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   520
  shows "k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd gcd a b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   521
proof (induct a b rule: gcd_eucl.induct)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   522
  case (1 a b)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   523
  show ?case
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   524
    proof (cases "b = 0")
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   525
      assume "b = 0"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   526
      with 1 show ?thesis by (cases "a = 0", simp_all add: gcd_0)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   527
    next
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   528
      assume "b \<noteq> 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   529
      with 1 show ?thesis by (simp add: gcd_non_0 dvd_mod_iff) 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   530
    qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   531
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   532
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   533
lemma dvd_gcd_iff:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   534
  "k dvd gcd a b \<longleftrightarrow> k dvd a \<and> k dvd b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   535
  by (blast intro!: gcd_greatest intro: dvd_trans)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   536
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   537
lemmas gcd_greatest_iff = dvd_gcd_iff
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   538
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   539
lemma gcd_zero [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   540
  "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   541
  by (metis dvd_0_left dvd_refl gcd_dvd1 gcd_dvd2 gcd_greatest)+
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   542
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   543
lemma normalisation_factor_gcd [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   544
  "normalisation_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" (is "?f a b = ?g a b")
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   545
proof (induct a b rule: gcd_eucl.induct)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   546
  fix a b :: 'a
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   547
  assume IH: "b \<noteq> 0 \<Longrightarrow> ?f b (a mod b) = ?g b (a mod b)"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   548
  then show "?f a b = ?g a b" by (cases "b = 0", auto simp: gcd_non_0 gcd_0)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   549
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   550
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   551
lemma gcdI:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   552
  "k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> (\<And>l. l dvd a \<Longrightarrow> l dvd b \<Longrightarrow> l dvd k)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   553
    \<Longrightarrow> normalisation_factor k = (if k = 0 then 0 else 1) \<Longrightarrow> k = gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   554
  by (intro normed_associated_imp_eq) (auto simp: associated_def intro: gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   555
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   556
sublocale gcd!: abel_semigroup gcd
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   557
proof
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   558
  fix a b c 
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   559
  show "gcd (gcd a b) c = gcd a (gcd b c)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   560
  proof (rule gcdI)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   561
    have "gcd (gcd a b) c dvd gcd a b" "gcd a b dvd a" by simp_all
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   562
    then show "gcd (gcd a b) c dvd a" by (rule dvd_trans)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   563
    have "gcd (gcd a b) c dvd gcd a b" "gcd a b dvd b" by simp_all
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   564
    hence "gcd (gcd a b) c dvd b" by (rule dvd_trans)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   565
    moreover have "gcd (gcd a b) c dvd c" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   566
    ultimately show "gcd (gcd a b) c dvd gcd b c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   567
      by (rule gcd_greatest)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   568
    show "normalisation_factor (gcd (gcd a b) c) =  (if gcd (gcd a b) c = 0 then 0 else 1)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   569
      by auto
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   570
    fix l assume "l dvd a" and "l dvd gcd b c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   571
    with dvd_trans[OF _ gcd_dvd1] and dvd_trans[OF _ gcd_dvd2]
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   572
      have "l dvd b" and "l dvd c" by blast+
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   573
    with `l dvd a` show "l dvd gcd (gcd a b) c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   574
      by (intro gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   575
  qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   576
next
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   577
  fix a b
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   578
  show "gcd a b = gcd b a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   579
    by (rule gcdI) (simp_all add: gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   580
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   581
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   582
lemma gcd_unique: "d dvd a \<and> d dvd b \<and> 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   583
    normalisation_factor d = (if d = 0 then 0 else 1) \<and>
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   584
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   585
  by (rule, auto intro: gcdI simp: gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   586
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   587
lemma gcd_dvd_prod: "gcd a b dvd k * b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   588
  using mult_dvd_mono [of 1] by auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   589
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   590
lemma gcd_1_left [simp]: "gcd 1 a = 1"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   591
  by (rule sym, rule gcdI, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   592
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   593
lemma gcd_1 [simp]: "gcd a 1 = 1"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   594
  by (rule sym, rule gcdI, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   595
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   596
lemma gcd_proj2_if_dvd: 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   597
  "b dvd a \<Longrightarrow> gcd a b = b div normalisation_factor b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   598
  by (cases "b = 0", simp_all add: dvd_eq_mod_eq_0 gcd_non_0 gcd_0)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   599
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   600
lemma gcd_proj1_if_dvd: 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   601
  "a dvd b \<Longrightarrow> gcd a b = a div normalisation_factor a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   602
  by (subst gcd.commute, simp add: gcd_proj2_if_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   603
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   604
lemma gcd_proj1_iff: "gcd m n = m div normalisation_factor m \<longleftrightarrow> m dvd n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   605
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   606
  assume A: "gcd m n = m div normalisation_factor m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   607
  show "m dvd n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   608
  proof (cases "m = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   609
    assume [simp]: "m \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   610
    from A have B: "m = gcd m n * normalisation_factor m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   611
      by (simp add: unit_eq_div2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   612
    show ?thesis by (subst B, simp add: mult_unit_dvd_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   613
  qed (insert A, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   614
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   615
  assume "m dvd n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   616
  then show "gcd m n = m div normalisation_factor m" by (rule gcd_proj1_if_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   617
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   618
  
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   619
lemma gcd_proj2_iff: "gcd m n = n div normalisation_factor n \<longleftrightarrow> n dvd m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   620
  by (subst gcd.commute, simp add: gcd_proj1_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   621
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   622
lemma gcd_mod1 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   623
  "gcd (a mod b) b = gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   624
  by (rule gcdI, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   625
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   626
lemma gcd_mod2 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   627
  "gcd a (b mod a) = gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   628
  by (rule gcdI, simp, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   629
         
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   630
lemma normalisation_factor_dvd' [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   631
  "normalisation_factor a dvd a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   632
  by (cases "a = 0", simp_all)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   633
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   634
lemma gcd_mult_distrib': 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   635
  "k div normalisation_factor k * gcd a b = gcd (k*a) (k*b)"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   636
proof (induct a b rule: gcd_eucl.induct)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   637
  case (1 a b)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   638
  show ?case
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   639
  proof (cases "b = 0")
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   640
    case True
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   641
    then show ?thesis by (simp add: normalisation_factor_mult gcd_0 algebra_simps div_mult_div_if_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   642
  next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   643
    case False
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   644
    hence "k div normalisation_factor k * gcd a b =  gcd (k * b) (k * (a mod b))" 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   645
      using 1 by (subst gcd_red, simp)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   646
    also have "... = gcd (k * a) (k * b)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   647
      by (simp add: mult_mod_right gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   648
    finally show ?thesis .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   649
  qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   650
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   651
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   652
lemma gcd_mult_distrib:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   653
  "k * gcd a b = gcd (k*a) (k*b) * normalisation_factor k"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   654
proof-
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   655
  let ?nf = "normalisation_factor"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   656
  from gcd_mult_distrib' 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   657
    have "gcd (k*a) (k*b) = k div ?nf k * gcd a b" ..
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   658
  also have "... = k * gcd a b div ?nf k"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   659
    by (metis dvd_div_mult dvd_eq_mod_eq_0 mod_0 normalisation_factor_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   660
  finally show ?thesis
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   661
    by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   662
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   663
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   664
lemma euclidean_size_gcd_le1 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   665
  assumes "a \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   666
  shows "euclidean_size (gcd a b) \<le> euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   667
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   668
   have "gcd a b dvd a" by (rule gcd_dvd1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   669
   then obtain c where A: "a = gcd a b * c" unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   670
   with `a \<noteq> 0` show ?thesis by (subst (2) A, intro size_mult_mono) auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   671
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   672
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   673
lemma euclidean_size_gcd_le2 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   674
  "b \<noteq> 0 \<Longrightarrow> euclidean_size (gcd a b) \<le> euclidean_size b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   675
  by (subst gcd.commute, rule euclidean_size_gcd_le1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   676
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   677
lemma euclidean_size_gcd_less1:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   678
  assumes "a \<noteq> 0" and "\<not>a dvd b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   679
  shows "euclidean_size (gcd a b) < euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   680
proof (rule ccontr)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   681
  assume "\<not>euclidean_size (gcd a b) < euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   682
  with `a \<noteq> 0` have "euclidean_size (gcd a b) = euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   683
    by (intro le_antisym, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   684
  with assms have "a dvd gcd a b" by (auto intro: dvd_euclidean_size_eq_imp_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   685
  hence "a dvd b" using dvd_gcd_D2 by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   686
  with `\<not>a dvd b` show False by contradiction
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   687
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   688
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   689
lemma euclidean_size_gcd_less2:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   690
  assumes "b \<noteq> 0" and "\<not>b dvd a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   691
  shows "euclidean_size (gcd a b) < euclidean_size b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   692
  using assms by (subst gcd.commute, rule euclidean_size_gcd_less1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   693
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   694
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   695
  apply (rule gcdI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   696
  apply (rule dvd_trans, rule gcd_dvd1, simp add: unit_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   697
  apply (rule gcd_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   698
  apply (rule gcd_greatest, simp add: unit_simps, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   699
  apply (subst normalisation_factor_gcd, simp add: gcd_0)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   700
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   701
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   702
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   703
  by (subst gcd.commute, subst gcd_mult_unit1, assumption, rule gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   704
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   705
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   706
  by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   707
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   708
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   709
  by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   710
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   711
lemma gcd_idem: "gcd a a = a div normalisation_factor a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   712
  by (cases "a = 0") (simp add: gcd_0_left, rule sym, rule gcdI, simp_all)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   713
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   714
lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   715
  apply (rule gcdI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   716
  apply (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   717
  apply (rule gcd_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   718
  apply (rule gcd_greatest, erule (1) gcd_greatest, assumption)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   719
  apply simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   720
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   721
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   722
lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   723
  apply (rule gcdI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   724
  apply simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   725
  apply (rule dvd_trans, rule gcd_dvd2, rule gcd_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   726
  apply (rule gcd_greatest, assumption, erule gcd_greatest, assumption)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   727
  apply simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   728
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   729
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   730
lemma comp_fun_idem_gcd: "comp_fun_idem gcd"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   731
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   732
  fix a b show "gcd a \<circ> gcd b = gcd b \<circ> gcd a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   733
    by (simp add: fun_eq_iff ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   734
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   735
  fix a show "gcd a \<circ> gcd a = gcd a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   736
    by (simp add: fun_eq_iff gcd_left_idem)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   737
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   738
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   739
lemma coprime_dvd_mult:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   740
  assumes "gcd c b = 1" and "c dvd a * b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   741
  shows "c dvd a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   742
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   743
  let ?nf = "normalisation_factor"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   744
  from assms gcd_mult_distrib [of a c b] 
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   745
    have A: "a = gcd (a * c) (a * b) * ?nf a" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   746
  from `c dvd a * b` show ?thesis by (subst A, simp_all add: gcd_greatest)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   747
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   748
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   749
lemma coprime_dvd_mult_iff:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   750
  "gcd c b = 1 \<Longrightarrow> (c dvd a * b) = (c dvd a)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   751
  by (rule, rule coprime_dvd_mult, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   752
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   753
lemma gcd_dvd_antisym:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   754
  "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   755
proof (rule gcdI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   756
  assume A: "gcd a b dvd gcd c d" and B: "gcd c d dvd gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   757
  have "gcd c d dvd c" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   758
  with A show "gcd a b dvd c" by (rule dvd_trans)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   759
  have "gcd c d dvd d" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   760
  with A show "gcd a b dvd d" by (rule dvd_trans)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   761
  show "normalisation_factor (gcd a b) = (if gcd a b = 0 then 0 else 1)"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   762
    by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   763
  fix l assume "l dvd c" and "l dvd d"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   764
  hence "l dvd gcd c d" by (rule gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   765
  from this and B show "l dvd gcd a b" by (rule dvd_trans)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   766
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   767
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   768
lemma gcd_mult_cancel:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   769
  assumes "gcd k n = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   770
  shows "gcd (k * m) n = gcd m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   771
proof (rule gcd_dvd_antisym)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   772
  have "gcd (gcd (k * m) n) k = gcd (gcd k n) (k * m)" by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   773
  also note `gcd k n = 1`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   774
  finally have "gcd (gcd (k * m) n) k = 1" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   775
  hence "gcd (k * m) n dvd m" by (rule coprime_dvd_mult, simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   776
  moreover have "gcd (k * m) n dvd n" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   777
  ultimately show "gcd (k * m) n dvd gcd m n" by (rule gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   778
  have "gcd m n dvd (k * m)" and "gcd m n dvd n" by simp_all
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   779
  then show "gcd m n dvd gcd (k * m) n" by (rule gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   780
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   781
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   782
lemma coprime_crossproduct:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   783
  assumes [simp]: "gcd a d = 1" "gcd b c = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   784
  shows "associated (a * c) (b * d) \<longleftrightarrow> associated a b \<and> associated c d" (is "?lhs \<longleftrightarrow> ?rhs")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   785
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   786
  assume ?rhs then show ?lhs unfolding associated_def by (fast intro: mult_dvd_mono)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   787
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   788
  assume ?lhs
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   789
  from `?lhs` have "a dvd b * d" unfolding associated_def by (metis dvd_mult_left) 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   790
  hence "a dvd b" by (simp add: coprime_dvd_mult_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   791
  moreover from `?lhs` have "b dvd a * c" unfolding associated_def by (metis dvd_mult_left) 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   792
  hence "b dvd a" by (simp add: coprime_dvd_mult_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   793
  moreover from `?lhs` have "c dvd d * b" 
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   794
    unfolding associated_def by (auto dest: dvd_mult_right simp add: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   795
  hence "c dvd d" by (simp add: coprime_dvd_mult_iff gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   796
  moreover from `?lhs` have "d dvd c * a"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   797
    unfolding associated_def by (auto dest: dvd_mult_right simp add: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   798
  hence "d dvd c" by (simp add: coprime_dvd_mult_iff gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   799
  ultimately show ?rhs unfolding associated_def by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   800
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   801
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   802
lemma gcd_add1 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   803
  "gcd (m + n) n = gcd m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   804
  by (cases "n = 0", simp_all add: gcd_non_0)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   805
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   806
lemma gcd_add2 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   807
  "gcd m (m + n) = gcd m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   808
  using gcd_add1 [of n m] by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   809
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   810
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   811
  by (subst gcd.commute, subst gcd_red, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   812
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   813
lemma coprimeI: "(\<And>l. \<lbrakk>l dvd a; l dvd b\<rbrakk> \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd a b = 1"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   814
  by (rule sym, rule gcdI, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   815
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   816
lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)"
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
   817
  by (auto intro: coprimeI gcd_greatest dvd_gcd_D1 dvd_gcd_D2)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   818
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   819
lemma div_gcd_coprime:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   820
  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   821
  defines [simp]: "d \<equiv> gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   822
  defines [simp]: "a' \<equiv> a div d" and [simp]: "b' \<equiv> b div d"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   823
  shows "gcd a' b' = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   824
proof (rule coprimeI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   825
  fix l assume "l dvd a'" "l dvd b'"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   826
  then obtain s t where "a' = l * s" "b' = l * t" unfolding dvd_def by blast
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   827
  moreover have "a = a' * d" "b = b' * d" by simp_all
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   828
  ultimately have "a = (l * d) * s" "b = (l * d) * t"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   829
    by (simp_all only: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   830
  hence "l*d dvd a" and "l*d dvd b" by (simp_all only: dvd_triv_left)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   831
  hence "l*d dvd d" by (simp add: gcd_greatest)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   832
  then obtain u where "d = l * d * u" ..
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   833
  then have "d * (l * u) = d" by (simp add: ac_simps)
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   834
  moreover from nz have "d \<noteq> 0" by simp
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   835
  with div_mult_self1_is_id have "d * (l * u) div d = l * u" . 
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   836
  ultimately have "1 = l * u"
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   837
    using `d \<noteq> 0` by simp
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   838
  then show "l dvd 1" ..
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   839
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   840
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   841
lemma coprime_mult: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   842
  assumes da: "gcd d a = 1" and db: "gcd d b = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   843
  shows "gcd d (a * b) = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   844
  apply (subst gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   845
  using da apply (subst gcd_mult_cancel)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   846
  apply (subst gcd.commute, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   847
  apply (subst gcd.commute, rule db)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   848
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   849
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   850
lemma coprime_lmult:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   851
  assumes dab: "gcd d (a * b) = 1" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   852
  shows "gcd d a = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   853
proof (rule coprimeI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   854
  fix l assume "l dvd d" and "l dvd a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   855
  hence "l dvd a * b" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   856
  with `l dvd d` and dab show "l dvd 1" by (auto intro: gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   857
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   858
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   859
lemma coprime_rmult:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   860
  assumes dab: "gcd d (a * b) = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   861
  shows "gcd d b = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   862
proof (rule coprimeI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   863
  fix l assume "l dvd d" and "l dvd b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   864
  hence "l dvd a * b" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   865
  with `l dvd d` and dab show "l dvd 1" by (auto intro: gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   866
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   867
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   868
lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   869
  using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b] by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   870
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   871
lemma gcd_coprime:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   872
  assumes c: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   873
  shows "gcd a' b' = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   874
proof -
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   875
  from c have "a \<noteq> 0 \<or> b \<noteq> 0" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   876
  with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   877
  also from assms have "a div gcd a b = a'" by (metis div_mult_self2_is_id)+
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   878
  also from assms have "b div gcd a b = b'" by (metis div_mult_self2_is_id)+
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   879
  finally show ?thesis .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   880
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   881
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   882
lemma coprime_power:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   883
  assumes "0 < n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   884
  shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   885
using assms proof (induct n)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   886
  case (Suc n) then show ?case
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   887
    by (cases n) (simp_all add: coprime_mul_eq)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   888
qed simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   889
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   890
lemma gcd_coprime_exists:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   891
  assumes nz: "gcd a b \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   892
  shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   893
  apply (rule_tac x = "a div gcd a b" in exI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   894
  apply (rule_tac x = "b div gcd a b" in exI)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   895
  apply (insert nz, auto intro: div_gcd_coprime)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   896
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   897
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   898
lemma coprime_exp:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   899
  "gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   900
  by (induct n, simp_all add: coprime_mult)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   901
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   902
lemma coprime_exp2 [intro]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   903
  "gcd a b = 1 \<Longrightarrow> gcd (a^n) (b^m) = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   904
  apply (rule coprime_exp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   905
  apply (subst gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   906
  apply (rule coprime_exp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   907
  apply (subst gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   908
  apply assumption
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   909
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   910
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   911
lemma gcd_exp:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   912
  "gcd (a^n) (b^n) = (gcd a b) ^ n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   913
proof (cases "a = 0 \<and> b = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   914
  assume "a = 0 \<and> b = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   915
  then show ?thesis by (cases n, simp_all add: gcd_0_left)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   916
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   917
  assume A: "\<not>(a = 0 \<and> b = 0)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   918
  hence "1 = gcd ((a div gcd a b)^n) ((b div gcd a b)^n)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   919
    using div_gcd_coprime by (subst sym, auto simp: div_gcd_coprime)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   920
  hence "(gcd a b) ^ n = (gcd a b) ^ n * ..." by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   921
  also note gcd_mult_distrib
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   922
  also have "normalisation_factor ((gcd a b)^n) = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   923
    by (simp add: normalisation_factor_pow A)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   924
  also have "(gcd a b)^n * (a div gcd a b)^n = a^n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   925
    by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   926
  also have "(gcd a b)^n * (b div gcd a b)^n = b^n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   927
    by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   928
  finally show ?thesis by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   929
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   930
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   931
lemma coprime_common_divisor: 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   932
  "gcd a b = 1 \<Longrightarrow> a dvd a \<Longrightarrow> a dvd b \<Longrightarrow> is_unit a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
   933
  apply (subgoal_tac "a dvd gcd a b")
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
   934
  apply simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   935
  apply (erule (1) gcd_greatest)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   936
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   937
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   938
lemma division_decomp: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   939
  assumes dc: "a dvd b * c"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   940
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   941
proof (cases "gcd a b = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   942
  assume "gcd a b = 0"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   943
  hence "a = 0 \<and> b = 0" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   944
  hence "a = 0 * c \<and> 0 dvd b \<and> c dvd c" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   945
  then show ?thesis by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   946
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   947
  let ?d = "gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   948
  assume "?d \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   949
  from gcd_coprime_exists[OF this]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   950
    obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   951
    by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   952
  from ab'(1) have "a' dvd a" unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   953
  with dc have "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   954
  from dc ab'(1,2) have "a'*?d dvd (b'*?d) * c" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   955
  hence "?d * a' dvd ?d * (b' * c)" by (simp add: mult_ac)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   956
  with `?d \<noteq> 0` have "a' dvd b' * c" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   957
  with coprime_dvd_mult[OF ab'(3)] 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   958
    have "a' dvd c" by (subst (asm) ac_simps, blast)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   959
  with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" by (simp add: mult_ac)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   960
  then show ?thesis by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   961
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   962
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   963
lemma pow_divs_pow:
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   964
  assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   965
  shows "a dvd b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   966
proof (cases "gcd a b = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   967
  assume "gcd a b = 0"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   968
  then show ?thesis by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   969
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   970
  let ?d = "gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   971
  assume "?d \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   972
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   973
  from `?d \<noteq> 0` have zn: "?d ^ n \<noteq> 0" by (rule power_not_zero)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   974
  from gcd_coprime_exists[OF `?d \<noteq> 0`]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   975
    obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   976
    by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   977
  from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   978
    by (simp add: ab'(1,2)[symmetric])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   979
  hence "?d^n * a'^n dvd ?d^n * b'^n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   980
    by (simp only: power_mult_distrib ac_simps)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
   981
  with zn have "a'^n dvd b'^n" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   982
  hence "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   983
  hence "a' dvd b'^m * b'" by (simp add: m ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   984
  with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   985
    have "a' dvd b'" by (subst (asm) ac_simps, blast)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   986
  hence "a'*?d dvd b'*?d" by (rule mult_dvd_mono, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   987
  with ab'(1,2) show ?thesis by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   988
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   989
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   990
lemma pow_divs_eq [simp]:
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   991
  "n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   992
  by (auto intro: pow_divs_pow dvd_power_same)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   993
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
   994
lemma divs_mult:
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   995
  assumes mr: "m dvd r" and nr: "n dvd r" and mn: "gcd m n = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   996
  shows "m * n dvd r"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   997
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   998
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
   999
    unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1000
  from mr n' have "m dvd n'*n" by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1001
  hence "m dvd n'" using coprime_dvd_mult_iff[OF mn] by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1002
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1003
  with n' have "r = m * n * k" by (simp add: mult_ac)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1004
  then show ?thesis unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1005
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1006
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1007
lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1008
  by (subst add_commute, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1009
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1010
lemma setprod_coprime [rule_format]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1011
  "(\<forall>i\<in>A. gcd (f i) a = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) a = 1"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1012
  apply (cases "finite A")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1013
  apply (induct set: finite)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1014
  apply (auto simp add: gcd_mult_cancel)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1015
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1016
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1017
lemma coprime_divisors: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1018
  assumes "d dvd a" "e dvd b" "gcd a b = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1019
  shows "gcd d e = 1" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1020
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1021
  from assms obtain k l where "a = d * k" "b = e * l"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1022
    unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1023
  with assms have "gcd (d * k) (e * l) = 1" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1024
  hence "gcd (d * k) e = 1" by (rule coprime_lmult)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1025
  also have "gcd (d * k) e = gcd e (d * k)" by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1026
  finally have "gcd e d = 1" by (rule coprime_lmult)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1027
  then show ?thesis by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1028
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1029
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1030
lemma invertible_coprime:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1031
  assumes "a * b mod m = 1"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1032
  shows "coprime a m"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1033
proof -
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1034
  from assms have "coprime m (a * b mod m)"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1035
    by simp
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1036
  then have "coprime m (a * b)"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1037
    by simp
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1038
  then have "coprime m a"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1039
    by (rule coprime_lmult)
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1040
  then show ?thesis
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1041
    by (simp add: ac_simps)
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1042
qed
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1043
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1044
lemma lcm_gcd:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1045
  "lcm a b = a * b div (gcd a b * normalisation_factor (a*b))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1046
  by (simp only: lcm_lcm_eucl gcd_gcd_eucl lcm_eucl_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1047
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1048
lemma lcm_gcd_prod:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1049
  "lcm a b * gcd a b = a * b div normalisation_factor (a*b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1050
proof (cases "a * b = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1051
  let ?nf = normalisation_factor
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1052
  assume "a * b \<noteq> 0"
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1053
  hence "gcd a b \<noteq> 0" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1054
  from lcm_gcd have "lcm a b * gcd a b = gcd a b * (a * b div (?nf (a*b) * gcd a b))" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1055
    by (simp add: mult_ac)
60432
68d75cff8809 given up trivial definition
haftmann
parents: 60431
diff changeset
  1056
  also from `a * b \<noteq> 0` have "... = a * b div ?nf (a*b)"
68d75cff8809 given up trivial definition
haftmann
parents: 60431
diff changeset
  1057
    by (simp add: div_mult_swap mult.commute)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1058
  finally show ?thesis .
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1059
qed (auto simp add: lcm_gcd)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1060
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1061
lemma lcm_dvd1 [iff]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1062
  "a dvd lcm a b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1063
proof (cases "a*b = 0")
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1064
  assume "a * b \<noteq> 0"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1065
  hence "gcd a b \<noteq> 0" by simp
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1066
  let ?c = "1 div normalisation_factor (a * b)"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1067
  from `a * b \<noteq> 0` have [simp]: "is_unit (normalisation_factor (a * b))" by simp
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1068
  from lcm_gcd_prod[of a b] have "lcm a b * gcd a b = a * ?c * b"
60432
68d75cff8809 given up trivial definition
haftmann
parents: 60431
diff changeset
  1069
    by (simp add: div_mult_swap unit_div_commute)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1070
  hence "lcm a b * gcd a b div gcd a b = a * ?c * b div gcd a b" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1071
  with `gcd a b \<noteq> 0` have "lcm a b = a * ?c * b div gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1072
    by (subst (asm) div_mult_self2_is_id, simp_all)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1073
  also have "... = a * (?c * b div gcd a b)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1074
    by (metis div_mult_swap gcd_dvd2 mult_assoc)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1075
  finally show ?thesis by (rule dvdI)
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1076
qed (auto simp add: lcm_gcd)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1077
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1078
lemma lcm_least:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1079
  "\<lbrakk>a dvd k; b dvd k\<rbrakk> \<Longrightarrow> lcm a b dvd k"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1080
proof (cases "k = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1081
  let ?nf = normalisation_factor
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1082
  assume "k \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1083
  hence "is_unit (?nf k)" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1084
  hence "?nf k \<noteq> 0" by (metis not_is_unit_0)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1085
  assume A: "a dvd k" "b dvd k"
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1086
  hence "gcd a b \<noteq> 0" using `k \<noteq> 0` by auto
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1087
  from A obtain r s where ar: "k = a * r" and bs: "k = b * s" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1088
    unfolding dvd_def by blast
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1089
  with `k \<noteq> 0` have "r * s \<noteq> 0"
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1090
    by auto (drule sym [of 0], simp)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1091
  hence "is_unit (?nf (r * s))" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1092
  let ?c = "?nf k div ?nf (r*s)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1093
  from `is_unit (?nf k)` and `is_unit (?nf (r * s))` have "is_unit ?c" by (rule unit_div)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1094
  hence "?c \<noteq> 0" using not_is_unit_0 by fast 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1095
  from ar bs have "k * k * gcd s r = ?nf k * k * gcd (k * s) (k * r)"
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1096
    by (subst mult_assoc, subst gcd_mult_distrib[of k s r], simp only: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1097
  also have "... = ?nf k * k * gcd ((r*s) * a) ((r*s) * b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1098
    by (subst (3) `k = a * r`, subst (3) `k = b * s`, simp add: algebra_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1099
  also have "... = ?c * r*s * k * gcd a b" using `r * s \<noteq> 0`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1100
    by (subst gcd_mult_distrib'[symmetric], simp add: algebra_simps unit_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1101
  finally have "(a*r) * (b*s) * gcd s r = ?c * k * r * s * gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1102
    by (subst ar[symmetric], subst bs[symmetric], simp add: mult_ac)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1103
  hence "a * b * gcd s r * (r * s) = ?c * k * gcd a b * (r * s)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1104
    by (simp add: algebra_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1105
  hence "?c * k * gcd a b = a * b * gcd s r" using `r * s \<noteq> 0`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1106
    by (metis div_mult_self2_is_id)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1107
  also have "... = lcm a b * gcd a b * gcd s r * ?nf (a*b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1108
    by (subst lcm_gcd_prod[of a b], metis gcd_mult_distrib gcd_mult_distrib') 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1109
  also have "... = lcm a b * gcd s r * ?nf (a*b) * gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1110
    by (simp add: algebra_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1111
  finally have "k * ?c = lcm a b * gcd s r * ?nf (a*b)" using `gcd a b \<noteq> 0`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1112
    by (metis mult.commute div_mult_self2_is_id)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1113
  hence "k = lcm a b * (gcd s r * ?nf (a*b)) div ?c" using `?c \<noteq> 0`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1114
    by (metis div_mult_self2_is_id mult_assoc) 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1115
  also have "... = lcm a b * (gcd s r * ?nf (a*b) div ?c)" using `is_unit ?c`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1116
    by (simp add: unit_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1117
  finally show ?thesis by (rule dvdI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1118
qed simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1119
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1120
lemma lcm_zero:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1121
  "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1122
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1123
  let ?nf = normalisation_factor
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1124
  {
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1125
    assume "a \<noteq> 0" "b \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1126
    hence "a * b div ?nf (a * b) \<noteq> 0" by (simp add: no_zero_divisors)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1127
    moreover from `a \<noteq> 0` and `b \<noteq> 0` have "gcd a b \<noteq> 0" by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1128
    ultimately have "lcm a b \<noteq> 0" using lcm_gcd_prod[of a b] by (intro notI, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1129
  } moreover {
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1130
    assume "a = 0 \<or> b = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1131
    hence "lcm a b = 0" by (elim disjE, simp_all add: lcm_gcd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1132
  }
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1133
  ultimately show ?thesis by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1134
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1135
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1136
lemmas lcm_0_iff = lcm_zero
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1137
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1138
lemma gcd_lcm: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1139
  assumes "lcm a b \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1140
  shows "gcd a b = a * b div (lcm a b * normalisation_factor (a * b))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1141
proof-
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1142
  from assms have "gcd a b \<noteq> 0" by (simp add: lcm_zero)
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1143
  let ?c = "normalisation_factor (a * b)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1144
  from `lcm a b \<noteq> 0` have "?c \<noteq> 0" by (intro notI, simp add: lcm_zero no_zero_divisors)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1145
  hence "is_unit ?c" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1146
  from lcm_gcd_prod [of a b] have "gcd a b = a * b div ?c div lcm a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1147
    by (subst (2) div_mult_self2_is_id[OF `lcm a b \<noteq> 0`, symmetric], simp add: mult_ac)
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1148
  also from `is_unit ?c` have "... = a * b div (lcm a b * ?c)"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1149
    by (metis `?c \<noteq> 0` div_mult_mult1 dvd_mult_div_cancel mult_commute normalisation_factor_dvd')
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1150
  finally show ?thesis .
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1151
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1152
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1153
lemma normalisation_factor_lcm [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1154
  "normalisation_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1155
proof (cases "a = 0 \<or> b = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1156
  case True then show ?thesis
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1157
    by (auto simp add: lcm_gcd) 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1158
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1159
  case False
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1160
  let ?nf = normalisation_factor
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1161
  from lcm_gcd_prod[of a b] 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1162
    have "?nf (lcm a b) * ?nf (gcd a b) = ?nf (a*b) div ?nf (a*b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1163
    by (metis div_by_0 div_self normalisation_correct normalisation_factor_0 normalisation_factor_mult)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1164
  also have "... = (if a*b = 0 then 0 else 1)"
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1165
    by simp
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58889
diff changeset
  1166
  finally show ?thesis using False by simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1167
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1168
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1169
lemma lcm_dvd2 [iff]: "b dvd lcm a b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1170
  using lcm_dvd1 [of b a] by (simp add: lcm_gcd ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1171
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1172
lemma lcmI:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1173
  "\<lbrakk>a dvd k; b dvd k; \<And>l. a dvd l \<Longrightarrow> b dvd l \<Longrightarrow> k dvd l;
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1174
    normalisation_factor k = (if k = 0 then 0 else 1)\<rbrakk> \<Longrightarrow> k = lcm a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1175
  by (intro normed_associated_imp_eq) (auto simp: associated_def intro: lcm_least)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1176
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1177
sublocale lcm!: abel_semigroup lcm
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1178
proof
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1179
  fix a b c
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1180
  show "lcm (lcm a b) c = lcm a (lcm b c)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1181
  proof (rule lcmI)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1182
    have "a dvd lcm a b" and "lcm a b dvd lcm (lcm a b) c" by simp_all
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1183
    then show "a dvd lcm (lcm a b) c" by (rule dvd_trans)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1184
    
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1185
    have "b dvd lcm a b" and "lcm a b dvd lcm (lcm a b) c" by simp_all
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1186
    hence "b dvd lcm (lcm a b) c" by (rule dvd_trans)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1187
    moreover have "c dvd lcm (lcm a b) c" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1188
    ultimately show "lcm b c dvd lcm (lcm a b) c" by (rule lcm_least)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1189
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1190
    fix l assume "a dvd l" and "lcm b c dvd l"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1191
    have "b dvd lcm b c" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1192
    from this and `lcm b c dvd l` have "b dvd l" by (rule dvd_trans)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1193
    have "c dvd lcm b c" by simp
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1194
    from this and `lcm b c dvd l` have "c dvd l" by (rule dvd_trans)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1195
    from `a dvd l` and `b dvd l` have "lcm a b dvd l" by (rule lcm_least)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1196
    from this and `c dvd l` show "lcm (lcm a b) c dvd l" by (rule lcm_least)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1197
  qed (simp add: lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1198
next
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1199
  fix a b
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1200
  show "lcm a b = lcm b a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1201
    by (simp add: lcm_gcd ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1202
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1203
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1204
lemma dvd_lcm_D1:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1205
  "lcm m n dvd k \<Longrightarrow> m dvd k"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1206
  by (rule dvd_trans, rule lcm_dvd1, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1207
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1208
lemma dvd_lcm_D2:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1209
  "lcm m n dvd k \<Longrightarrow> n dvd k"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1210
  by (rule dvd_trans, rule lcm_dvd2, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1211
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1212
lemma gcd_dvd_lcm [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1213
  "gcd a b dvd lcm a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1214
  by (metis dvd_trans gcd_dvd2 lcm_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1215
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1216
lemma lcm_1_iff:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1217
  "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1218
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1219
  assume "lcm a b = 1"
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1220
  then show "is_unit a \<and> is_unit b" by auto
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1221
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1222
  assume "is_unit a \<and> is_unit b"
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1223
  hence "a dvd 1" and "b dvd 1" by simp_all
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1224
  hence "is_unit (lcm a b)" by (rule lcm_least)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1225
  hence "lcm a b = normalisation_factor (lcm a b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1226
    by (subst normalisation_factor_unit, simp_all)
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1227
  also have "\<dots> = 1" using `is_unit a \<and> is_unit b`
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1228
    by auto
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1229
  finally show "lcm a b = 1" .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1230
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1231
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1232
lemma lcm_0_left [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1233
  "lcm 0 a = 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1234
  by (rule sym, rule lcmI, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1235
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1236
lemma lcm_0 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1237
  "lcm a 0 = 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1238
  by (rule sym, rule lcmI, simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1239
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1240
lemma lcm_unique:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1241
  "a dvd d \<and> b dvd d \<and> 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1242
  normalisation_factor d = (if d = 0 then 0 else 1) \<and>
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1243
  (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1244
  by (rule, auto intro: lcmI simp: lcm_least lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1245
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1246
lemma dvd_lcm_I1 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1247
  "k dvd m \<Longrightarrow> k dvd lcm m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1248
  by (metis lcm_dvd1 dvd_trans)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1249
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1250
lemma dvd_lcm_I2 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1251
  "k dvd n \<Longrightarrow> k dvd lcm m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1252
  by (metis lcm_dvd2 dvd_trans)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1253
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1254
lemma lcm_1_left [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1255
  "lcm 1 a = a div normalisation_factor a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1256
  by (cases "a = 0") (simp, rule sym, rule lcmI, simp_all)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1257
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1258
lemma lcm_1_right [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1259
  "lcm a 1 = a div normalisation_factor a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1260
  using lcm_1_left [of a] by (simp add: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1261
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1262
lemma lcm_coprime:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1263
  "gcd a b = 1 \<Longrightarrow> lcm a b = a * b div normalisation_factor (a*b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1264
  by (subst lcm_gcd) simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1265
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1266
lemma lcm_proj1_if_dvd: 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1267
  "b dvd a \<Longrightarrow> lcm a b = a div normalisation_factor a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1268
  by (cases "a = 0") (simp, rule sym, rule lcmI, simp_all)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1269
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1270
lemma lcm_proj2_if_dvd: 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1271
  "a dvd b \<Longrightarrow> lcm a b = b div normalisation_factor b"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1272
  using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1273
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1274
lemma lcm_proj1_iff:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1275
  "lcm m n = m div normalisation_factor m \<longleftrightarrow> n dvd m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1276
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1277
  assume A: "lcm m n = m div normalisation_factor m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1278
  show "n dvd m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1279
  proof (cases "m = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1280
    assume [simp]: "m \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1281
    from A have B: "m = lcm m n * normalisation_factor m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1282
      by (simp add: unit_eq_div2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1283
    show ?thesis by (subst B, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1284
  qed simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1285
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1286
  assume "n dvd m"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1287
  then show "lcm m n = m div normalisation_factor m" by (rule lcm_proj1_if_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1288
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1289
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1290
lemma lcm_proj2_iff:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1291
  "lcm m n = n div normalisation_factor n \<longleftrightarrow> m dvd n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1292
  using lcm_proj1_iff [of n m] by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1293
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1294
lemma euclidean_size_lcm_le1: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1295
  assumes "a \<noteq> 0" and "b \<noteq> 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1296
  shows "euclidean_size a \<le> euclidean_size (lcm a b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1297
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1298
  have "a dvd lcm a b" by (rule lcm_dvd1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1299
  then obtain c where A: "lcm a b = a * c" unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1300
  with `a \<noteq> 0` and `b \<noteq> 0` have "c \<noteq> 0" by (auto simp: lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1301
  then show ?thesis by (subst A, intro size_mult_mono)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1302
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1303
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1304
lemma euclidean_size_lcm_le2:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1305
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> euclidean_size b \<le> euclidean_size (lcm a b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1306
  using euclidean_size_lcm_le1 [of b a] by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1307
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1308
lemma euclidean_size_lcm_less1:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1309
  assumes "b \<noteq> 0" and "\<not>b dvd a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1310
  shows "euclidean_size a < euclidean_size (lcm a b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1311
proof (rule ccontr)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1312
  from assms have "a \<noteq> 0" by auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1313
  assume "\<not>euclidean_size a < euclidean_size (lcm a b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1314
  with `a \<noteq> 0` and `b \<noteq> 0` have "euclidean_size (lcm a b) = euclidean_size a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1315
    by (intro le_antisym, simp, intro euclidean_size_lcm_le1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1316
  with assms have "lcm a b dvd a" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1317
    by (rule_tac dvd_euclidean_size_eq_imp_dvd) (auto simp: lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1318
  hence "b dvd a" by (rule dvd_lcm_D2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1319
  with `\<not>b dvd a` show False by contradiction
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1320
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1321
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1322
lemma euclidean_size_lcm_less2:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1323
  assumes "a \<noteq> 0" and "\<not>a dvd b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1324
  shows "euclidean_size b < euclidean_size (lcm a b)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1325
  using assms euclidean_size_lcm_less1 [of a b] by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1326
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1327
lemma lcm_mult_unit1:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1328
  "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1329
  apply (rule lcmI)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1330
  apply (rule dvd_trans[of _ "b * a"], simp, rule lcm_dvd1)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1331
  apply (rule lcm_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1332
  apply (rule lcm_least, simp add: unit_simps, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1333
  apply (subst normalisation_factor_lcm, simp add: lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1334
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1335
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1336
lemma lcm_mult_unit2:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1337
  "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1338
  using lcm_mult_unit1 [of a c b] by (simp add: ac_simps)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1339
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1340
lemma lcm_div_unit1:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1341
  "is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1342
  by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1343
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1344
lemma lcm_div_unit2:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1345
  "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1346
  by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1347
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1348
lemma lcm_left_idem:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1349
  "lcm a (lcm a b) = lcm a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1350
  apply (rule lcmI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1351
  apply simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1352
  apply (subst lcm.assoc [symmetric], rule lcm_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1353
  apply (rule lcm_least, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1354
  apply (erule (1) lcm_least)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1355
  apply (auto simp: lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1356
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1357
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1358
lemma lcm_right_idem:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1359
  "lcm (lcm a b) b = lcm a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1360
  apply (rule lcmI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1361
  apply (subst lcm.assoc, rule lcm_dvd1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1362
  apply (rule lcm_dvd2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1363
  apply (rule lcm_least, erule (1) lcm_least, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1364
  apply (auto simp: lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1365
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1366
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1367
lemma comp_fun_idem_lcm: "comp_fun_idem lcm"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1368
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1369
  fix a b show "lcm a \<circ> lcm b = lcm b \<circ> lcm a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1370
    by (simp add: fun_eq_iff ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1371
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1372
  fix a show "lcm a \<circ> lcm a = lcm a" unfolding o_def
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1373
    by (intro ext, simp add: lcm_left_idem)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1374
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1375
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1376
lemma dvd_Lcm [simp]: "a \<in> A \<Longrightarrow> a dvd Lcm A"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1377
  and Lcm_dvd [simp]: "(\<forall>a\<in>A. a dvd l') \<Longrightarrow> Lcm A dvd l'"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1378
  and normalisation_factor_Lcm [simp]: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1379
          "normalisation_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1380
proof -
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1381
  have "(\<forall>a\<in>A. a dvd Lcm A) \<and> (\<forall>l'. (\<forall>a\<in>A. a dvd l') \<longrightarrow> Lcm A dvd l') \<and>
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1382
    normalisation_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" (is ?thesis)
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1383
  proof (cases "\<exists>l. l \<noteq>  0 \<and> (\<forall>a\<in>A. a dvd l)")
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1384
    case False
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1385
    hence "Lcm A = 0" by (auto simp: Lcm_Lcm_eucl Lcm_eucl_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1386
    with False show ?thesis by auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1387
  next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1388
    case True
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1389
    then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1390
    def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1391
    def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1392
    have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1393
      apply (subst n_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1394
      apply (rule LeastI[of _ "euclidean_size l\<^sub>0"])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1395
      apply (rule exI[of _ l\<^sub>0])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1396
      apply (simp add: l\<^sub>0_props)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1397
      done
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1398
    from someI_ex[OF this] have "l \<noteq> 0" and "\<forall>a\<in>A. a dvd l" and "euclidean_size l = n" 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1399
      unfolding l_def by simp_all
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1400
    {
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1401
      fix l' assume "\<forall>a\<in>A. a dvd l'"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1402
      with `\<forall>a\<in>A. a dvd l` have "\<forall>a\<in>A. a dvd gcd l l'" by (auto intro: gcd_greatest)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1403
      moreover from `l \<noteq> 0` have "gcd l l' \<noteq> 0" by simp
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1404
      ultimately have "\<exists>b. b \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd b) \<and> euclidean_size b = euclidean_size (gcd l l')"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1405
        by (intro exI[of _ "gcd l l'"], auto)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1406
      hence "euclidean_size (gcd l l') \<ge> n" by (subst n_def) (rule Least_le)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1407
      moreover have "euclidean_size (gcd l l') \<le> n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1408
      proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1409
        have "gcd l l' dvd l" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1410
        then obtain a where "l = gcd l l' * a" unfolding dvd_def by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1411
        with `l \<noteq> 0` have "a \<noteq> 0" by auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1412
        hence "euclidean_size (gcd l l') \<le> euclidean_size (gcd l l' * a)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1413
          by (rule size_mult_mono)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1414
        also have "gcd l l' * a = l" using `l = gcd l l' * a` ..
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1415
        also note `euclidean_size l = n`
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1416
        finally show "euclidean_size (gcd l l') \<le> n" .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1417
      qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1418
      ultimately have "euclidean_size l = euclidean_size (gcd l l')" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1419
        by (intro le_antisym, simp_all add: `euclidean_size l = n`)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1420
      with `l \<noteq> 0` have "l dvd gcd l l'" by (blast intro: dvd_euclidean_size_eq_imp_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1421
      hence "l dvd l'" by (blast dest: dvd_gcd_D2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1422
    }
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1423
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1424
    with `(\<forall>a\<in>A. a dvd l)` and normalisation_factor_is_unit[OF `l \<noteq> 0`] and `l \<noteq> 0`
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1425
      have "(\<forall>a\<in>A. a dvd l div normalisation_factor l) \<and> 
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1426
        (\<forall>l'. (\<forall>a\<in>A. a dvd l') \<longrightarrow> l div normalisation_factor l dvd l') \<and>
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1427
        normalisation_factor (l div normalisation_factor l) = 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1428
        (if l div normalisation_factor l = 0 then 0 else 1)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1429
      by (auto simp: unit_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1430
    also from True have "l div normalisation_factor l = Lcm A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1431
      by (simp add: Lcm_Lcm_eucl Lcm_eucl_def Let_def n_def l_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1432
    finally show ?thesis .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1433
  qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1434
  note A = this
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1435
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1436
  {fix a assume "a \<in> A" then show "a dvd Lcm A" using A by blast}
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1437
  {fix l' assume "\<forall>a\<in>A. a dvd l'" then show "Lcm A dvd l'" using A by blast}
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1438
  from A show "normalisation_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1439
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1440
    
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1441
lemma LcmI:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1442
  "(\<And>a. a\<in>A \<Longrightarrow> a dvd l) \<Longrightarrow> (\<And>l'. (\<forall>a\<in>A. a dvd l') \<Longrightarrow> l dvd l') \<Longrightarrow>
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1443
      normalisation_factor l = (if l = 0 then 0 else 1) \<Longrightarrow> l = Lcm A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1444
  by (intro normed_associated_imp_eq)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1445
    (auto intro: Lcm_dvd dvd_Lcm simp: associated_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1446
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1447
lemma Lcm_subset:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1448
  "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1449
  by (blast intro: Lcm_dvd dvd_Lcm)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1450
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1451
lemma Lcm_Un:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1452
  "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1453
  apply (rule lcmI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1454
  apply (blast intro: Lcm_subset)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1455
  apply (blast intro: Lcm_subset)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1456
  apply (intro Lcm_dvd ballI, elim UnE)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1457
  apply (rule dvd_trans, erule dvd_Lcm, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1458
  apply (rule dvd_trans, erule dvd_Lcm, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1459
  apply simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1460
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1461
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1462
lemma Lcm_1_iff:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1463
  "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1464
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1465
  assume "Lcm A = 1"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1466
  then show "\<forall>a\<in>A. is_unit a" by auto
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1467
qed (rule LcmI [symmetric], auto)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1468
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1469
lemma Lcm_no_units:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1470
  "Lcm A = Lcm (A - {a. is_unit a})"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1471
proof -
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1472
  have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A" by blast
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1473
  hence "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1474
    by (simp add: Lcm_Un[symmetric])
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1475
  also have "Lcm {a\<in>A. is_unit a} = 1" by (simp add: Lcm_1_iff)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1476
  finally show ?thesis by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1477
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1478
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1479
lemma Lcm_empty [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1480
  "Lcm {} = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1481
  by (simp add: Lcm_1_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1482
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1483
lemma Lcm_eq_0 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1484
  "0 \<in> A \<Longrightarrow> Lcm A = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1485
  by (drule dvd_Lcm) simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1486
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1487
lemma Lcm0_iff':
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1488
  "Lcm A = 0 \<longleftrightarrow> \<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1489
proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1490
  assume "Lcm A = 0"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1491
  show "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1492
  proof
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1493
    assume ex: "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1494
    then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1495
    def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1496
    def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1497
    have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1498
      apply (subst n_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1499
      apply (rule LeastI[of _ "euclidean_size l\<^sub>0"])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1500
      apply (rule exI[of _ l\<^sub>0])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1501
      apply (simp add: l\<^sub>0_props)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1502
      done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1503
    from someI_ex[OF this] have "l \<noteq> 0" unfolding l_def by simp_all
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1504
    hence "l div normalisation_factor l \<noteq> 0" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1505
    also from ex have "l div normalisation_factor l = Lcm A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1506
       by (simp only: Lcm_Lcm_eucl Lcm_eucl_def n_def l_def if_True Let_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1507
    finally show False using `Lcm A = 0` by contradiction
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1508
  qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1509
qed (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1510
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1511
lemma Lcm0_iff [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1512
  "finite A \<Longrightarrow> Lcm A = 0 \<longleftrightarrow> 0 \<in> A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1513
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1514
  assume "finite A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1515
  have "0 \<in> A \<Longrightarrow> Lcm A = 0"  by (intro dvd_0_left dvd_Lcm)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1516
  moreover {
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1517
    assume "0 \<notin> A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1518
    hence "\<Prod>A \<noteq> 0" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1519
      apply (induct rule: finite_induct[OF `finite A`]) 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1520
      apply simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1521
      apply (subst setprod.insert, assumption, assumption)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1522
      apply (rule no_zero_divisors)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1523
      apply blast+
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1524
      done
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1525
    moreover from `finite A` have "\<forall>a\<in>A. a dvd \<Prod>A" by blast
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1526
    ultimately have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)" by blast
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1527
    with Lcm0_iff' have "Lcm A \<noteq> 0" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1528
  }
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1529
  ultimately show "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1530
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1531
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1532
lemma Lcm_no_multiple:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1533
  "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not>a dvd m)) \<Longrightarrow> Lcm A = 0"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1534
proof -
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1535
  assume "\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not>a dvd m)"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1536
  hence "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" by blast
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1537
  then show "Lcm A = 0" by (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1538
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1539
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1540
lemma Lcm_insert [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1541
  "Lcm (insert a A) = lcm a (Lcm A)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1542
proof (rule lcmI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1543
  fix l assume "a dvd l" and "Lcm A dvd l"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1544
  hence "\<forall>a\<in>A. a dvd l" by (blast intro: dvd_trans dvd_Lcm)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1545
  with `a dvd l` show "Lcm (insert a A) dvd l" by (force intro: Lcm_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1546
qed (auto intro: Lcm_dvd dvd_Lcm)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1547
 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1548
lemma Lcm_finite:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1549
  assumes "finite A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1550
  shows "Lcm A = Finite_Set.fold lcm 1 A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1551
  by (induct rule: finite.induct[OF `finite A`])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1552
    (simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_lcm])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1553
60431
db9c67b760f1 dropped warnings by dropping ineffective code declarations
haftmann
parents: 60430
diff changeset
  1554
lemma Lcm_set [code_unfold]:
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1555
  "Lcm (set xs) = fold lcm xs 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1556
  using comp_fun_idem.fold_set_fold[OF comp_fun_idem_lcm] Lcm_finite by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1557
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1558
lemma Lcm_singleton [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1559
  "Lcm {a} = a div normalisation_factor a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1560
  by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1561
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1562
lemma Lcm_2 [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1563
  "Lcm {a,b} = lcm a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1564
  by (simp only: Lcm_insert Lcm_empty lcm_1_right)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1565
    (cases "b = 0", simp, rule lcm_div_unit2, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1566
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1567
lemma Lcm_coprime:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1568
  assumes "finite A" and "A \<noteq> {}" 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1569
  assumes "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1570
  shows "Lcm A = \<Prod>A div normalisation_factor (\<Prod>A)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1571
using assms proof (induct rule: finite_ne_induct)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1572
  case (insert a A)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1573
  have "Lcm (insert a A) = lcm a (Lcm A)" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1574
  also from insert have "Lcm A = \<Prod>A div normalisation_factor (\<Prod>A)" by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1575
  also have "lcm a \<dots> = lcm a (\<Prod>A)" by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1576
  also from insert have "gcd a (\<Prod>A) = 1" by (subst gcd.commute, intro setprod_coprime) auto
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1577
  with insert have "lcm a (\<Prod>A) = \<Prod>(insert a A) div normalisation_factor (\<Prod>(insert a A))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1578
    by (simp add: lcm_coprime)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1579
  finally show ?case .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1580
qed simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1581
      
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1582
lemma Lcm_coprime':
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1583
  "card A \<noteq> 0 \<Longrightarrow> (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1584
    \<Longrightarrow> Lcm A = \<Prod>A div normalisation_factor (\<Prod>A)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1585
  by (rule Lcm_coprime) (simp_all add: card_eq_0_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1586
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1587
lemma Gcd_Lcm:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1588
  "Gcd A = Lcm {d. \<forall>a\<in>A. d dvd a}"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1589
  by (simp add: Gcd_Gcd_eucl Lcm_Lcm_eucl Gcd_eucl_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1590
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1591
lemma Gcd_dvd [simp]: "a \<in> A \<Longrightarrow> Gcd A dvd a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1592
  and dvd_Gcd [simp]: "(\<forall>a\<in>A. g' dvd a) \<Longrightarrow> g' dvd Gcd A"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1593
  and normalisation_factor_Gcd [simp]: 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1594
    "normalisation_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1595
proof -
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1596
  fix a assume "a \<in> A"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1597
  hence "Lcm {d. \<forall>a\<in>A. d dvd a} dvd a" by (intro Lcm_dvd) blast
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1598
  then show "Gcd A dvd a" by (simp add: Gcd_Lcm)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1599
next
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1600
  fix g' assume "\<forall>a\<in>A. g' dvd a"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1601
  hence "g' dvd Lcm {d. \<forall>a\<in>A. d dvd a}" by (intro dvd_Lcm) blast
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1602
  then show "g' dvd Gcd A" by (simp add: Gcd_Lcm)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1603
next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1604
  show "normalisation_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1605
    by (simp add: Gcd_Lcm)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1606
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1607
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1608
lemma GcdI:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1609
  "(\<And>a. a\<in>A \<Longrightarrow> l dvd a) \<Longrightarrow> (\<And>l'. (\<forall>a\<in>A. l' dvd a) \<Longrightarrow> l' dvd l) \<Longrightarrow>
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1610
    normalisation_factor l = (if l = 0 then 0 else 1) \<Longrightarrow> l = Gcd A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1611
  by (intro normed_associated_imp_eq)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1612
    (auto intro: Gcd_dvd dvd_Gcd simp: associated_def)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1613
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1614
lemma Lcm_Gcd:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1615
  "Lcm A = Gcd {m. \<forall>a\<in>A. a dvd m}"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1616
  by (rule LcmI[symmetric]) (auto intro: dvd_Gcd Gcd_dvd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1617
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1618
lemma Gcd_0_iff:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1619
  "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1620
  apply (rule iffI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1621
  apply (rule subsetI, drule Gcd_dvd, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1622
  apply (auto intro: GcdI[symmetric])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1623
  done
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1624
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1625
lemma Gcd_empty [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1626
  "Gcd {} = 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1627
  by (simp add: Gcd_0_iff)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1628
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1629
lemma Gcd_1:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1630
  "1 \<in> A \<Longrightarrow> Gcd A = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1631
  by (intro GcdI[symmetric]) (auto intro: Gcd_dvd dvd_Gcd)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1632
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1633
lemma Gcd_insert [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1634
  "Gcd (insert a A) = gcd a (Gcd A)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1635
proof (rule gcdI)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1636
  fix l assume "l dvd a" and "l dvd Gcd A"
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1637
  hence "\<forall>a\<in>A. l dvd a" by (blast intro: dvd_trans Gcd_dvd)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1638
  with `l dvd a` show "l dvd Gcd (insert a A)" by (force intro: Gcd_dvd)
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1639
qed auto
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1640
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1641
lemma Gcd_finite:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1642
  assumes "finite A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1643
  shows "Gcd A = Finite_Set.fold gcd 0 A"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1644
  by (induct rule: finite.induct[OF `finite A`])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1645
    (simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_gcd])
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1646
60431
db9c67b760f1 dropped warnings by dropping ineffective code declarations
haftmann
parents: 60430
diff changeset
  1647
lemma Gcd_set [code_unfold]:
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1648
  "Gcd (set xs) = fold gcd xs 0"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1649
  using comp_fun_idem.fold_set_fold[OF comp_fun_idem_gcd] Gcd_finite by (simp add: ac_simps)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1650
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1651
lemma Gcd_singleton [simp]: "Gcd {a} = a div normalisation_factor a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1652
  by (simp add: gcd_0)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1653
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1654
lemma Gcd_2 [simp]: "Gcd {a,b} = gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1655
  by (simp only: Gcd_insert Gcd_empty gcd_0) (cases "b = 0", simp, rule gcd_div_unit2, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1656
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1657
end
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1658
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1659
text {*
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1660
  A Euclidean ring is a Euclidean semiring with additive inverses. It provides a 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1661
  few more lemmas; in particular, Bezout's lemma holds for any Euclidean ring.
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1662
*}
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1663
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1664
class euclidean_ring = euclidean_semiring + idom
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1665
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1666
class euclidean_ring_gcd = euclidean_semiring_gcd + idom
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1667
begin
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1668
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1669
subclass euclidean_ring ..
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1670
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1671
lemma gcd_neg1 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1672
  "gcd (-a) b = gcd a b"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1673
  by (rule sym, rule gcdI, simp_all add: gcd_greatest)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1674
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1675
lemma gcd_neg2 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1676
  "gcd a (-b) = gcd a b"
59009
348561aa3869 generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents: 58953
diff changeset
  1677
  by (rule sym, rule gcdI, simp_all add: gcd_greatest)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1678
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1679
lemma gcd_neg_numeral_1 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1680
  "gcd (- numeral n) a = gcd (numeral n) a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1681
  by (fact gcd_neg1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1682
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1683
lemma gcd_neg_numeral_2 [simp]:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1684
  "gcd a (- numeral n) = gcd a (numeral n)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1685
  by (fact gcd_neg2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1686
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1687
lemma gcd_diff1: "gcd (m - n) n = gcd m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1688
  by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric],  subst gcd_add1, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1689
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1690
lemma gcd_diff2: "gcd (n - m) n = gcd m n"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1691
  by (subst gcd_neg1[symmetric], simp only: minus_diff_eq gcd_diff1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1692
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1693
lemma coprime_minus_one [simp]: "gcd (n - 1) n = 1"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1694
proof -
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1695
  have "gcd (n - 1) n = gcd n (n - 1)" by (fact gcd.commute)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1696
  also have "\<dots> = gcd ((n - 1) + 1) (n - 1)" by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1697
  also have "\<dots> = 1" by (rule coprime_plus_one)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1698
  finally show ?thesis .
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1699
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1700
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1701
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1702
  by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1703
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1704
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1705
  by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1706
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1707
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1708
  by (fact lcm_neg1)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1709
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1710
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1711
  by (fact lcm_neg2)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1712
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1713
function euclid_ext :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a \<times> 'a" where
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1714
  "euclid_ext a b = 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1715
     (if b = 0 then 
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1716
        let c = 1 div normalisation_factor a in (c, 0, a * c)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1717
      else 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1718
        case euclid_ext b (a mod b) of
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1719
            (s,t,c) \<Rightarrow> (t, s - t * (a div b), c))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1720
  by (pat_completeness, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1721
  termination by (relation "measure (euclidean_size \<circ> snd)", simp_all)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1722
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1723
declare euclid_ext.simps [simp del]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1724
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1725
lemma euclid_ext_0: 
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1726
  "euclid_ext a 0 = (1 div normalisation_factor a, 0, a div normalisation_factor a)"
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1727
  by (subst euclid_ext.simps) (simp add: Let_def)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1728
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1729
lemma euclid_ext_non_0:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1730
  "b \<noteq> 0 \<Longrightarrow> euclid_ext a b = (case euclid_ext b (a mod b) of 
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1731
    (s,t,c) \<Rightarrow> (t, s - t * (a div b), c))"
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1732
  by (subst euclid_ext.simps) simp
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1733
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1734
definition euclid_ext' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1735
where
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1736
  "euclid_ext' a b = (case euclid_ext a b of (s, t, _) \<Rightarrow> (s, t))"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1737
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1738
lemma euclid_ext_gcd [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1739
  "(case euclid_ext a b of (_,_,t) \<Rightarrow> t) = gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1740
proof (induct a b rule: euclid_ext.induct)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1741
  case (1 a b)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1742
  then show ?case
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1743
  proof (cases "b = 0")
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1744
    case True
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1745
      then show ?thesis by  
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1746
        (simp add: euclid_ext_0 unit_div mult_ac unit_simps gcd_0)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1747
    next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1748
    case False with 1 show ?thesis
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1749
      by (simp add: euclid_ext_non_0 ac_simps split: prod.split prod.split_asm)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1750
    qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1751
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1752
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1753
lemma euclid_ext_gcd' [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1754
  "euclid_ext a b = (r, s, t) \<Longrightarrow> t = gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1755
  by (insert euclid_ext_gcd[of a b], drule (1) subst, simp)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1756
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1757
lemma euclid_ext_correct:
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1758
  "case euclid_ext a b of (s,t,c) \<Rightarrow> s*a + t*b = c"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1759
proof (induct a b rule: euclid_ext.induct)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1760
  case (1 a b)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1761
  show ?case
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1762
  proof (cases "b = 0")
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1763
    case True
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1764
    then show ?thesis by (simp add: euclid_ext_0 mult_ac)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1765
  next
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1766
    case False
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1767
    obtain s t c where stc: "euclid_ext b (a mod b) = (s,t,c)"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1768
      by (cases "euclid_ext b (a mod b)", blast)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1769
    from 1 have "c = s * b + t * (a mod b)" by (simp add: stc False)
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1770
    also have "... = t*((a div b)*b + a mod b) + (s - t * (a div b))*b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1771
      by (simp add: algebra_simps) 
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1772
    also have "(a div b)*b + a mod b = a" using mod_div_equality .
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1773
    finally show ?thesis
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1774
      by (subst euclid_ext.simps, simp add: False stc)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1775
    qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1776
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1777
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1778
lemma euclid_ext'_correct:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1779
  "fst (euclid_ext' a b) * a + snd (euclid_ext' a b) * b = gcd a b"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1780
proof-
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1781
  obtain s t c where "euclid_ext a b = (s,t,c)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1782
    by (cases "euclid_ext a b", blast)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1783
  with euclid_ext_correct[of a b] euclid_ext_gcd[of a b]
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1784
    show ?thesis unfolding euclid_ext'_def by simp
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1785
qed
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1786
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1787
lemma bezout: "\<exists>s t. s * a + t * b = gcd a b"
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1788
  using euclid_ext'_correct by blast
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1789
60433
720f210c5b1d tuned lemmas and proofs
haftmann
parents: 60432
diff changeset
  1790
lemma euclid_ext'_0 [simp]: "euclid_ext' a 0 = (1 div normalisation_factor a, 0)" 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1791
  by (simp add: bezw_def euclid_ext'_def euclid_ext_0)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1792
60430
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1793
lemma euclid_ext'_non_0: "b \<noteq> 0 \<Longrightarrow> euclid_ext' a b = (snd (euclid_ext' b (a mod b)),
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1794
  fst (euclid_ext' b (a mod b)) - snd (euclid_ext' b (a mod b)) * (a div b))"
ce559c850a27 standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents: 59061
diff changeset
  1795
  by (cases "euclid_ext b (a mod b)") 
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1796
    (simp add: euclid_ext'_def euclid_ext_non_0)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1797
  
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1798
end
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1799
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1800
instantiation nat :: euclidean_semiring
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1801
begin
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1802
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1803
definition [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1804
  "euclidean_size_nat = (id :: nat \<Rightarrow> nat)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1805
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1806
definition [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1807
  "normalisation_factor_nat (n::nat) = (if n = 0 then 0 else 1 :: nat)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1808
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1809
instance proof
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1810
qed simp_all
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1811
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1812
end
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1813
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1814
instantiation int :: euclidean_ring
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1815
begin
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1816
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1817
definition [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1818
  "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1819
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1820
definition [simp]:
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1821
  "normalisation_factor_int = (sgn :: int \<Rightarrow> int)"
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1822
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1823
instance proof
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1824
  case goal2 then show ?case by (auto simp add: abs_mult nat_mult_distrib)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1825
next
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1826
  case goal3 then show ?case by (simp add: zsgn_def)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1827
next
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1828
  case goal5 then show ?case by (auto simp: zsgn_def)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1829
next
59061
67771d267ff2 prefer abbrev for is_unit
haftmann
parents: 59010
diff changeset
  1830
  case goal6 then show ?case by (auto split: abs_split simp: zsgn_def)
58023
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1831
qed (auto simp: sgn_times split: abs_split)
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1832
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1833
end
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1834
62826b36ac5e generic euclidean algorithm (due to Manuel Eberl)
haftmann
parents:
diff changeset
  1835
end