| author | wenzelm | 
| Sun, 17 Sep 2000 22:19:02 +0200 | |
| changeset 10007 | 64bf7da1994a | 
| parent 9912 | 4b02467a4412 | 
| child 10195 | 325b6279ae4f | 
| permissions | -rw-r--r-- | 
| 3366 | 1 | (* Title: HOL/Divides.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | The division operators div, mod and the divides relation "dvd" | |
| 7 | *) | |
| 8 | ||
| 9 | ||
| 10 | (** Less-then properties **) | |
| 11 | ||
| 9108 | 12 | bind_thm ("wf_less_trans", [eq_reflection, wf_pred_nat RS wf_trancl] MRS 
 | 
| 13 | def_wfrec RS trans); | |
| 3366 | 14 | |
| 5069 | 15 | Goal "(%m. m mod n) = wfrec (trancl pred_nat) \ | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 16 | \ (%f j. if j<n | n=0 then j else f (j-n))"; | 
| 4089 | 17 | by (simp_tac (simpset() addsimps [mod_def]) 1); | 
| 3366 | 18 | qed "mod_eq"; | 
| 19 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 20 | Goal "(%m. m div n) = wfrec (trancl pred_nat) \ | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 21 | \ (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 22 | by (simp_tac (simpset() addsimps [div_def]) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 23 | qed "div_eq"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 24 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 25 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 26 | (** Aribtrary definitions for division by zero. Useful to simplify | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 27 | certain equations **) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 28 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 29 | Goal "a div 0 = (0::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 30 | by (rtac (div_eq RS wf_less_trans) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 31 | by (Asm_simp_tac 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 32 | qed "DIVISION_BY_ZERO_DIV"; (*NOT for adding to default simpset*) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 33 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 34 | Goal "a mod 0 = (a::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 35 | by (rtac (mod_eq RS wf_less_trans) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 36 | by (Asm_simp_tac 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 37 | qed "DIVISION_BY_ZERO_MOD"; (*NOT for adding to default simpset*) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 38 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 39 | fun div_undefined_case_tac s i = | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 40 | case_tac s i THEN | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 41 | Full_simp_tac (i+1) THEN | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 42 | asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_DIV, | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 43 | DIVISION_BY_ZERO_MOD]) i; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 44 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 45 | (*** Remainder ***) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 46 | |
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 47 | Goal "m<n ==> m mod n = (m::nat)"; | 
| 3366 | 48 | by (rtac (mod_eq RS wf_less_trans) 1); | 
| 49 | by (Asm_simp_tac 1); | |
| 50 | qed "mod_less"; | |
| 8393 | 51 | Addsimps [mod_less]; | 
| 3366 | 52 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 53 | Goal "~ m < (n::nat) ==> m mod n = (m-n) mod n"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 54 | by (div_undefined_case_tac "n=0" 1); | 
| 3366 | 55 | by (rtac (mod_eq RS wf_less_trans) 1); | 
| 4089 | 56 | by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1); | 
| 3366 | 57 | qed "mod_geq"; | 
| 58 | ||
| 5415 | 59 | (*Avoids the ugly ~m<n above*) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 60 | Goal "(n::nat) <= m ==> m mod n = (m-n) mod n"; | 
| 5415 | 61 | by (asm_simp_tac (simpset() addsimps [mod_geq, not_less_iff_le]) 1); | 
| 62 | qed "le_mod_geq"; | |
| 63 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 64 | Goal "m mod (n::nat) = (if m<n then m else (m-n) mod n)"; | 
| 8393 | 65 | by (asm_simp_tac (simpset() addsimps [mod_geq]) 1); | 
| 4774 | 66 | qed "mod_if"; | 
| 67 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 68 | Goal "m mod 1 = (0::nat)"; | 
| 3366 | 69 | by (induct_tac "m" 1); | 
| 8393 | 70 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_geq]))); | 
| 3366 | 71 | qed "mod_1"; | 
| 72 | Addsimps [mod_1]; | |
| 73 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 74 | Goal "n mod n = (0::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 75 | by (div_undefined_case_tac "n=0" 1); | 
| 8393 | 76 | by (asm_simp_tac (simpset() addsimps [mod_geq]) 1); | 
| 3366 | 77 | qed "mod_self"; | 
| 78 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 79 | Goal "(m+n) mod n = m mod (n::nat)"; | 
| 3366 | 80 | by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1); | 
| 81 | by (stac (mod_geq RS sym) 2); | |
| 4089 | 82 | by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute]))); | 
| 4811 | 83 | qed "mod_add_self2"; | 
| 4810 | 84 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 85 | Goal "(n+m) mod n = m mod (n::nat)"; | 
| 4811 | 86 | by (asm_simp_tac (simpset() addsimps [add_commute, mod_add_self2]) 1); | 
| 87 | qed "mod_add_self1"; | |
| 4810 | 88 | |
| 8783 | 89 | Addsimps [mod_add_self1, mod_add_self2]; | 
| 90 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 91 | Goal "(m + k*n) mod n = m mod (n::nat)"; | 
| 4810 | 92 | by (induct_tac "k" 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 93 | by (ALLGOALS | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 94 | (asm_simp_tac | 
| 8783 | 95 |      (simpset() addsimps [read_instantiate [("y","n")] add_left_commute])));
 | 
| 4811 | 96 | qed "mod_mult_self1"; | 
| 4810 | 97 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 98 | Goal "(m + n*k) mod n = m mod (n::nat)"; | 
| 4811 | 99 | by (asm_simp_tac (simpset() addsimps [mult_commute, mod_mult_self1]) 1); | 
| 100 | qed "mod_mult_self2"; | |
| 4810 | 101 | |
| 4811 | 102 | Addsimps [mod_mult_self1, mod_mult_self2]; | 
| 3366 | 103 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 104 | Goal "(m mod n) * (k::nat) = (m*k) mod (n*k)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 105 | by (div_undefined_case_tac "n=0" 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 106 | by (div_undefined_case_tac "k=0" 1); | 
| 9870 | 107 | by (induct_thm_tac nat_less_induct "m" 1); | 
| 4774 | 108 | by (stac mod_if 1); | 
| 109 | by (Asm_simp_tac 1); | |
| 8393 | 110 | by (asm_simp_tac (simpset() addsimps [mod_geq, | 
| 4774 | 111 | diff_less, diff_mult_distrib]) 1); | 
| 3366 | 112 | qed "mod_mult_distrib"; | 
| 113 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 114 | Goal "(k::nat) * (m mod n) = (k*m) mod (k*n)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 115 | by (asm_simp_tac | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 116 |     (simpset() addsimps [read_instantiate [("m","k")] mult_commute, 
 | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 117 | mod_mult_distrib]) 1); | 
| 3366 | 118 | qed "mod_mult_distrib2"; | 
| 119 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 120 | Goal "(m*n) mod n = (0::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 121 | by (div_undefined_case_tac "n=0" 1); | 
| 3366 | 122 | by (induct_tac "m" 1); | 
| 8393 | 123 | by (Asm_simp_tac 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 124 | by (rename_tac "k" 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 125 | by (cut_inst_tac [("m","k*n"),("n","n")] mod_add_self2 1);
 | 
| 4089 | 126 | by (asm_full_simp_tac (simpset() addsimps [add_commute]) 1); | 
| 3366 | 127 | qed "mod_mult_self_is_0"; | 
| 7082 | 128 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 129 | Goal "(n*m) mod n = (0::nat)"; | 
| 7082 | 130 | by (simp_tac (simpset() addsimps [mult_commute, mod_mult_self_is_0]) 1); | 
| 131 | qed "mod_mult_self1_is_0"; | |
| 132 | Addsimps [mod_mult_self_is_0, mod_mult_self1_is_0]; | |
| 3366 | 133 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 134 | |
| 3366 | 135 | (*** Quotient ***) | 
| 136 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 137 | Goal "m<n ==> m div n = (0::nat)"; | 
| 3366 | 138 | by (rtac (div_eq RS wf_less_trans) 1); | 
| 139 | by (Asm_simp_tac 1); | |
| 140 | qed "div_less"; | |
| 8393 | 141 | Addsimps [div_less]; | 
| 3366 | 142 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 143 | Goal "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"; | 
| 3366 | 144 | by (rtac (div_eq RS wf_less_trans) 1); | 
| 4089 | 145 | by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1); | 
| 3366 | 146 | qed "div_geq"; | 
| 147 | ||
| 5415 | 148 | (*Avoids the ugly ~m<n above*) | 
| 149 | Goal "[| 0<n; n<=m |] ==> m div n = Suc((m-n) div n)"; | |
| 150 | by (asm_simp_tac (simpset() addsimps [div_geq, not_less_iff_le]) 1); | |
| 151 | qed "le_div_geq"; | |
| 152 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 153 | Goal "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"; | 
| 8393 | 154 | by (asm_simp_tac (simpset() addsimps [div_geq]) 1); | 
| 4774 | 155 | qed "div_if"; | 
| 156 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 157 | |
| 3366 | 158 | (*Main Result about quotient and remainder.*) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 159 | Goal "(m div n)*n + m mod n = (m::nat)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 160 | by (div_undefined_case_tac "n=0" 1); | 
| 9870 | 161 | by (induct_thm_tac nat_less_induct "m" 1); | 
| 4774 | 162 | by (stac mod_if 1); | 
| 163 | by (ALLGOALS (asm_simp_tac | |
| 8393 | 164 | (simpset() addsimps [add_assoc, div_geq, | 
| 5537 | 165 | add_diff_inverse, diff_less]))); | 
| 3366 | 166 | qed "mod_div_equality"; | 
| 167 | ||
| 4358 | 168 | (* a simple rearrangement of mod_div_equality: *) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 169 | Goal "(n::nat) * (m div n) = m - (m mod n)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 170 | by (cut_inst_tac [("m","m"),("n","n")] mod_div_equality 1);
 | 
| 9912 | 171 | by (full_simp_tac (simpset() addsimps mult_ac) 1); | 
| 172 | by (arith_tac 1); | |
| 4358 | 173 | qed "mult_div_cancel"; | 
| 174 | ||
| 5069 | 175 | Goal "m div 1 = m"; | 
| 3366 | 176 | by (induct_tac "m" 1); | 
| 8393 | 177 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [div_geq]))); | 
| 3366 | 178 | qed "div_1"; | 
| 179 | Addsimps [div_1]; | |
| 180 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 181 | Goal "0<n ==> n div n = (1::nat)"; | 
| 8393 | 182 | by (asm_simp_tac (simpset() addsimps [div_geq]) 1); | 
| 3366 | 183 | qed "div_self"; | 
| 184 | ||
| 4811 | 185 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 186 | Goal "0<n ==> (m+n) div n = Suc (m div n)"; | 
| 4811 | 187 | by (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n)" 1); | 
| 188 | by (stac (div_geq RS sym) 2); | |
| 189 | by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute]))); | |
| 190 | qed "div_add_self2"; | |
| 191 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 192 | Goal "0<n ==> (n+m) div n = Suc (m div n)"; | 
| 4811 | 193 | by (asm_simp_tac (simpset() addsimps [add_commute, div_add_self2]) 1); | 
| 194 | qed "div_add_self1"; | |
| 195 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 196 | Goal "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"; | 
| 4811 | 197 | by (induct_tac "k" 1); | 
| 5537 | 198 | by (ALLGOALS (asm_simp_tac (simpset() addsimps add_ac @ [div_add_self1]))); | 
| 4811 | 199 | qed "div_mult_self1"; | 
| 200 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 201 | Goal "0<n ==> (m + n*k) div n = k + m div (n::nat)"; | 
| 4811 | 202 | by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self1]) 1); | 
| 203 | qed "div_mult_self2"; | |
| 204 | ||
| 205 | Addsimps [div_mult_self1, div_mult_self2]; | |
| 206 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 207 | (** A dividend of zero **) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 208 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 209 | Goal "0 div m = (0::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 210 | by (div_undefined_case_tac "m=0" 1); | 
| 8393 | 211 | by (Asm_simp_tac 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 212 | qed "div_0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 213 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 214 | Goal "0 mod m = (0::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 215 | by (div_undefined_case_tac "m=0" 1); | 
| 8393 | 216 | by (Asm_simp_tac 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 217 | qed "mod_0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 218 | Addsimps [div_0, mod_0]; | 
| 4811 | 219 | |
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 220 | (* Monotonicity of div in first argument *) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 221 | Goal "ALL m::nat. m <= n --> (m div k) <= (n div k)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 222 | by (div_undefined_case_tac "k=0" 1); | 
| 9870 | 223 | by (induct_thm_tac nat_less_induct "n" 1); | 
| 3718 | 224 | by (Clarify_tac 1); | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 225 | by (case_tac "n<k" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 226 | (* 1 case n<k *) | 
| 8393 | 227 | by (Asm_simp_tac 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 228 | (* 2 case n >= k *) | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 229 | by (case_tac "m<k" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 230 | (* 2.1 case m<k *) | 
| 8393 | 231 | by (Asm_simp_tac 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 232 | (* 2.2 case m>=k *) | 
| 4089 | 233 | by (asm_simp_tac (simpset() addsimps [div_geq, diff_less, diff_le_mono]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 234 | qed_spec_mp "div_le_mono"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 235 | |
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 236 | (* Antimonotonicity of div in second argument *) | 
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 237 | Goal "!!m::nat. [| 0<m; m<=n |] ==> (k div n) <= (k div m)"; | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 238 | by (subgoal_tac "0<n" 1); | 
| 6073 | 239 | by (Asm_simp_tac 2); | 
| 9870 | 240 | by (induct_thm_tac nat_less_induct "k" 1); | 
| 3496 | 241 | by (rename_tac "k" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 242 | by (case_tac "k<n" 1); | 
| 8393 | 243 | by (Asm_simp_tac 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 244 | by (subgoal_tac "~(k<m)" 1); | 
| 6073 | 245 | by (Asm_simp_tac 2); | 
| 4089 | 246 | by (asm_simp_tac (simpset() addsimps [div_geq]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 247 | by (subgoal_tac "(k-n) div n <= (k-m) div n" 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 248 | by (REPEAT (ares_tac [div_le_mono,diff_le_mono2] 2)); | 
| 5318 | 249 | by (rtac le_trans 1); | 
| 5316 | 250 | by (Asm_simp_tac 1); | 
| 251 | by (asm_simp_tac (simpset() addsimps [diff_less]) 1); | |
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 252 | qed "div_le_mono2"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 253 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 254 | Goal "m div n <= (m::nat)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 255 | by (div_undefined_case_tac "n=0" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 256 | by (subgoal_tac "m div n <= m div 1" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 257 | by (Asm_full_simp_tac 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 258 | by (rtac div_le_mono2 1); | 
| 6073 | 259 | by (ALLGOALS Asm_simp_tac); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 260 | qed "div_le_dividend"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 261 | Addsimps [div_le_dividend]; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 262 | |
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 263 | (* Similar for "less than" *) | 
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 264 | Goal "!!n::nat. 1<n ==> (0 < m) --> (m div n < m)"; | 
| 9870 | 265 | by (induct_thm_tac nat_less_induct "m" 1); | 
| 3496 | 266 | by (rename_tac "m" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 267 | by (case_tac "m<n" 1); | 
| 8393 | 268 | by (Asm_full_simp_tac 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 269 | by (subgoal_tac "0<n" 1); | 
| 6073 | 270 | by (Asm_simp_tac 2); | 
| 4089 | 271 | by (asm_full_simp_tac (simpset() addsimps [div_geq]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 272 | by (case_tac "n<m" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 273 | by (subgoal_tac "(m-n) div n < (m-n)" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 274 | by (REPEAT (ares_tac [impI,less_trans_Suc] 1)); | 
| 4089 | 275 | by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1); | 
| 276 | by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1); | |
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 277 | (* case n=m *) | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 278 | by (subgoal_tac "m=n" 1); | 
| 6073 | 279 | by (Asm_simp_tac 2); | 
| 8393 | 280 | by (Asm_simp_tac 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 281 | qed_spec_mp "div_less_dividend"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 282 | Addsimps [div_less_dividend]; | 
| 3366 | 283 | |
| 284 | (*** Further facts about mod (mainly for the mutilated chess board ***) | |
| 285 | ||
| 5278 | 286 | Goal "0<n ==> Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"; | 
| 9870 | 287 | by (induct_thm_tac nat_less_induct "m" 1); | 
| 8860 | 288 | by (case_tac "Suc(na)<n" 1); | 
| 3366 | 289 | (* case Suc(na) < n *) | 
| 8860 | 290 | by (forward_tac [lessI RS less_trans] 1 | 
| 291 | THEN asm_simp_tac (simpset() addsimps [less_not_refl3]) 1); | |
| 3366 | 292 | (* case n <= Suc(na) *) | 
| 5415 | 293 | by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, le_Suc_eq, | 
| 294 | mod_geq]) 1); | |
| 8860 | 295 | by (auto_tac (claset(), | 
| 296 | simpset() addsimps [Suc_diff_le, diff_less, le_mod_geq])); | |
| 3366 | 297 | qed "mod_Suc"; | 
| 298 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 299 | Goal "0<n ==> m mod n < (n::nat)"; | 
| 9870 | 300 | by (induct_thm_tac nat_less_induct "m" 1); | 
| 5498 | 301 | by (case_tac "na<n" 1); | 
| 302 | (*case n le na*) | |
| 303 | by (asm_full_simp_tac (simpset() addsimps [mod_geq, diff_less]) 2); | |
| 3366 | 304 | (*case na<n*) | 
| 8393 | 305 | by (Asm_simp_tac 1); | 
| 3366 | 306 | qed "mod_less_divisor"; | 
| 8698 | 307 | Addsimps [mod_less_divisor]; | 
| 3366 | 308 | |
| 309 | (*** More division laws ***) | |
| 310 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 311 | Goal "0<n ==> (m*n) div n = (m::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 312 | by (cut_inst_tac [("m", "m*n"),("n","n")] mod_div_equality 1);
 | 
| 9912 | 313 | by Auto_tac; | 
| 3366 | 314 | qed "div_mult_self_is_m"; | 
| 7082 | 315 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 316 | Goal "0<n ==> (n*m) div n = (m::nat)"; | 
| 7082 | 317 | by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self_is_m]) 1); | 
| 318 | qed "div_mult_self1_is_m"; | |
| 319 | Addsimps [div_mult_self_is_m, div_mult_self1_is_m]; | |
| 3366 | 320 | |
| 321 | (*Cancellation law for division*) | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 322 | Goal "0<k ==> (k*m) div (k*n) = m div (n::nat)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 323 | by (div_undefined_case_tac "n=0" 1); | 
| 9870 | 324 | by (induct_thm_tac nat_less_induct "m" 1); | 
| 3366 | 325 | by (case_tac "na<n" 1); | 
| 8393 | 326 | by (asm_simp_tac (simpset() addsimps [zero_less_mult_iff, mult_less_mono2]) 1); | 
| 3366 | 327 | by (subgoal_tac "~ k*na < k*n" 1); | 
| 328 | by (asm_simp_tac | |
| 4089 | 329 | (simpset() addsimps [zero_less_mult_iff, div_geq, | 
| 5415 | 330 | diff_mult_distrib2 RS sym, diff_less]) 1); | 
| 4089 | 331 | by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, | 
| 3366 | 332 | le_refl RS mult_le_mono]) 1); | 
| 333 | qed "div_cancel"; | |
| 334 | Addsimps [div_cancel]; | |
| 335 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 336 | (*mod_mult_distrib2 above is the counterpart for remainder*) | 
| 3366 | 337 | |
| 338 | ||
| 339 | (************************************************) | |
| 340 | (** Divides Relation **) | |
| 341 | (************************************************) | |
| 342 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 343 | Goalw [dvd_def] "m dvd (0::nat)"; | 
| 4089 | 344 | by (blast_tac (claset() addIs [mult_0_right RS sym]) 1); | 
| 3366 | 345 | qed "dvd_0_right"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 346 | AddIffs [dvd_0_right]; | 
| 3366 | 347 | |
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 348 | Goalw [dvd_def] "0 dvd m ==> m = (0::nat)"; | 
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 349 | by Auto_tac; | 
| 3366 | 350 | qed "dvd_0_left"; | 
| 351 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 352 | Goalw [dvd_def] "1 dvd (k::nat)"; | 
| 3366 | 353 | by (Simp_tac 1); | 
| 354 | qed "dvd_1_left"; | |
| 355 | AddIffs [dvd_1_left]; | |
| 356 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 357 | Goalw [dvd_def] "m dvd (m::nat)"; | 
| 4089 | 358 | by (blast_tac (claset() addIs [mult_1_right RS sym]) 1); | 
| 3366 | 359 | qed "dvd_refl"; | 
| 360 | Addsimps [dvd_refl]; | |
| 361 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 362 | Goalw [dvd_def] "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"; | 
| 4089 | 363 | by (blast_tac (claset() addIs [mult_assoc] ) 1); | 
| 3366 | 364 | qed "dvd_trans"; | 
| 365 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 366 | Goalw [dvd_def] "[| m dvd n; n dvd m |] ==> m = (n::nat)"; | 
| 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 367 | by (force_tac (claset() addDs [mult_eq_self_implies_10], | 
| 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 368 | simpset() addsimps [mult_assoc, mult_eq_1_iff]) 1); | 
| 3366 | 369 | qed "dvd_anti_sym"; | 
| 370 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 371 | Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"; | 
| 4089 | 372 | by (blast_tac (claset() addIs [add_mult_distrib2 RS sym]) 1); | 
| 3366 | 373 | qed "dvd_add"; | 
| 374 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 375 | Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"; | 
| 4089 | 376 | by (blast_tac (claset() addIs [diff_mult_distrib2 RS sym]) 1); | 
| 3366 | 377 | qed "dvd_diff"; | 
| 378 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 379 | Goal "[| k dvd (m-n); k dvd n; n<=m |] ==> k dvd (m::nat)"; | 
| 3457 | 380 | by (etac (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1); | 
| 4089 | 381 | by (blast_tac (claset() addIs [dvd_add]) 1); | 
| 3366 | 382 | qed "dvd_diffD"; | 
| 383 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 384 | Goalw [dvd_def] "k dvd n ==> k dvd (m*n :: nat)"; | 
| 4089 | 385 | by (blast_tac (claset() addIs [mult_left_commute]) 1); | 
| 3366 | 386 | qed "dvd_mult"; | 
| 387 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 388 | Goal "k dvd m ==> k dvd (m*n :: nat)"; | 
| 3366 | 389 | by (stac mult_commute 1); | 
| 390 | by (etac dvd_mult 1); | |
| 391 | qed "dvd_mult2"; | |
| 392 | ||
| 393 | (* k dvd (m*k) *) | |
| 394 | AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2]; | |
| 395 | ||
| 7493 | 396 | Goal "k dvd (n + k) = k dvd (n::nat)"; | 
| 7499 | 397 | by (rtac iffI 1); | 
| 398 | by (etac dvd_add 2); | |
| 399 | by (rtac dvd_refl 2); | |
| 7493 | 400 | by (subgoal_tac "n = (n+k)-k" 1); | 
| 401 | by (Simp_tac 2); | |
| 7499 | 402 | by (etac ssubst 1); | 
| 403 | by (etac dvd_diff 1); | |
| 404 | by (rtac dvd_refl 1); | |
| 7493 | 405 | qed "dvd_reduce"; | 
| 406 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 407 | Goalw [dvd_def] "!!n::nat. [| f dvd m; f dvd n; 0<n |] ==> f dvd (m mod n)"; | 
| 3718 | 408 | by (Clarify_tac 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 409 | by (Full_simp_tac 1); | 
| 3366 | 410 | by (res_inst_tac | 
| 411 |     [("x", "(((k div ka)*ka + k mod ka) - ((f*k) div (f*ka)) * ka)")] 
 | |
| 412 | exI 1); | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 413 | by (asm_simp_tac | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 414 | (simpset() addsimps [diff_mult_distrib2, mod_mult_distrib2 RS sym, | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 415 | add_mult_distrib2]) 1); | 
| 3366 | 416 | qed "dvd_mod"; | 
| 417 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 418 | Goal "[| (k::nat) dvd (m mod n); k dvd n |] ==> k dvd m"; | 
| 3366 | 419 | by (subgoal_tac "k dvd ((m div n)*n + m mod n)" 1); | 
| 4089 | 420 | by (asm_simp_tac (simpset() addsimps [dvd_add, dvd_mult]) 2); | 
| 4356 | 421 | by (asm_full_simp_tac (simpset() addsimps [mod_div_equality]) 1); | 
| 3366 | 422 | qed "dvd_mod_imp_dvd"; | 
| 423 | ||
| 9881 | 424 | Goalw [dvd_def] "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd (m mod n)"; | 
| 425 | by (div_undefined_case_tac "n=0" 1); | |
| 426 | by (Clarify_tac 1); | |
| 427 | by (Full_simp_tac 1); | |
| 428 | by (rename_tac "j" 1); | |
| 429 | by (res_inst_tac | |
| 430 |     [("x", "(((k div j)*j + k mod j) - ((f*k) div (f*j)) * j)")] 
 | |
| 431 | exI 1); | |
| 432 | by (asm_simp_tac | |
| 433 | (simpset() addsimps [diff_mult_distrib2, mod_mult_distrib2 RS sym, | |
| 434 | add_mult_distrib2]) 1); | |
| 435 | qed "dvd_mod"; | |
| 436 | ||
| 437 | Goal "k dvd n ==> (k::nat) dvd (m mod n) = k dvd m"; | |
| 438 | by (blast_tac (claset() addIs [dvd_mod_imp_dvd, dvd_mod]) 1); | |
| 439 | qed "dvd_mod_iff"; | |
| 440 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 441 | Goalw [dvd_def] "!!k::nat. [| (k*m) dvd (k*n); 0<k |] ==> m dvd n"; | 
| 3366 | 442 | by (etac exE 1); | 
| 4089 | 443 | by (asm_full_simp_tac (simpset() addsimps mult_ac) 1); | 
| 3366 | 444 | qed "dvd_mult_cancel"; | 
| 445 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 446 | Goalw [dvd_def] "[| i dvd m; j dvd n|] ==> (i*j) dvd (m*n :: nat)"; | 
| 3718 | 447 | by (Clarify_tac 1); | 
| 3366 | 448 | by (res_inst_tac [("x","k*ka")] exI 1);
 | 
| 4089 | 449 | by (asm_simp_tac (simpset() addsimps mult_ac) 1); | 
| 3366 | 450 | qed "mult_dvd_mono"; | 
| 451 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 452 | Goalw [dvd_def] "(i*j :: nat) dvd k ==> i dvd k"; | 
| 4089 | 453 | by (full_simp_tac (simpset() addsimps [mult_assoc]) 1); | 
| 3366 | 454 | by (Blast_tac 1); | 
| 455 | qed "dvd_mult_left"; | |
| 456 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 457 | Goalw [dvd_def] "[| k dvd n; 0 < n |] ==> k <= (n::nat)"; | 
| 3718 | 458 | by (Clarify_tac 1); | 
| 4089 | 459 | by (ALLGOALS (full_simp_tac (simpset() addsimps [zero_less_mult_iff]))); | 
| 3457 | 460 | by (etac conjE 1); | 
| 461 | by (rtac le_trans 1); | |
| 462 | by (rtac (le_refl RS mult_le_mono) 2); | |
| 3366 | 463 | by (etac Suc_leI 2); | 
| 464 | by (Simp_tac 1); | |
| 465 | qed "dvd_imp_le"; | |
| 466 | ||
| 8935 
548901d05a0e
added type constraint ::nat because 0 is now overloaded
 paulson parents: 
8860diff
changeset | 467 | Goalw [dvd_def] "!!k::nat. (k dvd n) = (n mod k = 0)"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 468 | by (div_undefined_case_tac "k=0" 1); | 
| 3724 | 469 | by Safe_tac; | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 470 | by (asm_simp_tac (simpset() addsimps [mult_commute]) 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 471 | by (res_inst_tac [("t","n"),("n1","k")] (mod_div_equality RS subst) 1);
 | 
| 3366 | 472 | by (stac mult_commute 1); | 
| 473 | by (Asm_simp_tac 1); | |
| 474 | qed "dvd_eq_mod_eq_0"; |