| author | wenzelm | 
| Sat, 13 Feb 2016 12:39:00 +0100 | |
| changeset 62290 | 658276428cfc | 
| parent 61762 | d50b993b4fb9 | 
| child 62348 | 9a5f43dac883 | 
| permissions | -rw-r--r-- | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28001diff
changeset | 1 | (* Title: HOL/ex/Sqrt.thy | 
| 45917 | 2 | Author: Markus Wenzel, Tobias Nipkow, TU Muenchen | 
| 13957 | 3 | *) | 
| 4 | ||
| 59031 | 5 | section \<open>Square roots of primes are irrational\<close> | 
| 13957 | 6 | |
| 15149 | 7 | theory Sqrt | 
| 32479 | 8 | imports Complex_Main "~~/src/HOL/Number_Theory/Primes" | 
| 15149 | 9 | begin | 
| 13957 | 10 | |
| 59031 | 11 | text \<open>The square root of any prime number (including 2) is irrational.\<close> | 
| 13957 | 12 | |
| 19086 | 13 | theorem sqrt_prime_irrational: | 
| 31712 | 14 | assumes "prime (p::nat)" | 
| 51708 | 15 | shows "sqrt p \<notin> \<rat>" | 
| 13957 | 16 | proof | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 17 | from \<open>prime p\<close> have p: "1 < p" by (simp add: prime_def) | 
| 51708 | 18 | assume "sqrt p \<in> \<rat>" | 
| 31712 | 19 | then obtain m n :: nat where | 
| 51708 | 20 | n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt p\<bar> = m / n" | 
| 60690 | 21 | and "coprime m n" by (rule Rats_abs_nat_div_natE) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 22 | have eq: "m\<^sup>2 = p * n\<^sup>2" | 
| 13957 | 23 | proof - | 
| 51708 | 24 | from n and sqrt_rat have "m = \<bar>sqrt p\<bar> * n" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 25 | then have "m\<^sup>2 = (sqrt p)\<^sup>2 * n\<^sup>2" | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14305diff
changeset | 26 | by (auto simp add: power2_eq_square) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 27 | also have "(sqrt p)\<^sup>2 = p" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 28 | also have "\<dots> * n\<^sup>2 = p * n\<^sup>2" by simp | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
60690diff
changeset | 29 | finally show ?thesis using of_nat_eq_iff by blast | 
| 13957 | 30 | qed | 
| 31 | have "p dvd m \<and> p dvd n" | |
| 32 | proof | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 33 | from eq have "p dvd m\<^sup>2" .. | 
| 59031 | 34 | with \<open>prime p\<close> show "p dvd m" by (rule prime_dvd_power_nat) | 
| 13957 | 35 | then obtain k where "m = p * k" .. | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
53598diff
changeset | 36 | with eq have "p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2" by (auto simp add: power2_eq_square ac_simps) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 37 | with p have "n\<^sup>2 = p * k\<^sup>2" by (simp add: power2_eq_square) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 38 | then have "p dvd n\<^sup>2" .. | 
| 59031 | 39 | with \<open>prime p\<close> show "p dvd n" by (rule prime_dvd_power_nat) | 
| 13957 | 40 | qed | 
| 60690 | 41 | then have "p dvd gcd m n" by simp | 
| 42 | with \<open>coprime m n\<close> have "p = 1" by simp | |
| 13957 | 43 | with p show False by simp | 
| 44 | qed | |
| 45 | ||
| 51708 | 46 | corollary sqrt_2_not_rat: "sqrt 2 \<notin> \<rat>" | 
| 47 | using sqrt_prime_irrational[of 2] by simp | |
| 13957 | 48 | |
| 49 | ||
| 59031 | 50 | subsection \<open>Variations\<close> | 
| 51 | ||
| 52 | text \<open> | |
| 13957 | 53 | Here is an alternative version of the main proof, using mostly | 
| 54 | linear forward-reasoning. While this results in less top-down | |
| 55 | structure, it is probably closer to proofs seen in mathematics. | |
| 59031 | 56 | \<close> | 
| 13957 | 57 | |
| 19086 | 58 | theorem | 
| 31712 | 59 | assumes "prime (p::nat)" | 
| 51708 | 60 | shows "sqrt p \<notin> \<rat>" | 
| 13957 | 61 | proof | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 62 | from \<open>prime p\<close> have p: "1 < p" by (simp add: prime_def) | 
| 51708 | 63 | assume "sqrt p \<in> \<rat>" | 
| 31712 | 64 | then obtain m n :: nat where | 
| 51708 | 65 | n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt p\<bar> = m / n" | 
| 60690 | 66 | and "coprime m n" by (rule Rats_abs_nat_div_natE) | 
| 51708 | 67 | from n and sqrt_rat have "m = \<bar>sqrt p\<bar> * n" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 68 | then have "m\<^sup>2 = (sqrt p)\<^sup>2 * n\<^sup>2" | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14305diff
changeset | 69 | by (auto simp add: power2_eq_square) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 70 | also have "(sqrt p)\<^sup>2 = p" by simp | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 71 | also have "\<dots> * n\<^sup>2 = p * n\<^sup>2" by simp | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
60690diff
changeset | 72 | finally have eq: "m\<^sup>2 = p * n\<^sup>2" using of_nat_eq_iff by blast | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 73 | then have "p dvd m\<^sup>2" .. | 
| 59031 | 74 | with \<open>prime p\<close> have dvd_m: "p dvd m" by (rule prime_dvd_power_nat) | 
| 13957 | 75 | then obtain k where "m = p * k" .. | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
53598diff
changeset | 76 | with eq have "p * n\<^sup>2 = p\<^sup>2 * k\<^sup>2" by (auto simp add: power2_eq_square ac_simps) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 77 | with p have "n\<^sup>2 = p * k\<^sup>2" by (simp add: power2_eq_square) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51708diff
changeset | 78 | then have "p dvd n\<^sup>2" .. | 
| 59031 | 79 | with \<open>prime p\<close> have "p dvd n" by (rule prime_dvd_power_nat) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31712diff
changeset | 80 | with dvd_m have "p dvd gcd m n" by (rule gcd_greatest_nat) | 
| 60690 | 81 | with \<open>coprime m n\<close> have "p = 1" by simp | 
| 13957 | 82 | with p show False by simp | 
| 83 | qed | |
| 84 | ||
| 45917 | 85 | |
| 59031 | 86 | text \<open>Another old chestnut, which is a consequence of the irrationality of 2.\<close> | 
| 45917 | 87 | |
| 59031 | 88 | lemma "\<exists>a b::real. a \<notin> \<rat> \<and> b \<notin> \<rat> \<and> a powr b \<in> \<rat>" (is "\<exists>a b. ?P a b") | 
| 45917 | 89 | proof cases | 
| 90 | assume "sqrt 2 powr sqrt 2 \<in> \<rat>" | |
| 46495 | 91 | then have "?P (sqrt 2) (sqrt 2)" | 
| 51708 | 92 | by (metis sqrt_2_not_rat) | 
| 46495 | 93 | then show ?thesis by blast | 
| 45917 | 94 | next | 
| 95 | assume 1: "sqrt 2 powr sqrt 2 \<notin> \<rat>" | |
| 96 | have "(sqrt 2 powr sqrt 2) powr sqrt 2 = 2" | |
| 46495 | 97 | using powr_realpow [of _ 2] | 
| 98 | by (simp add: powr_powr power2_eq_square [symmetric]) | |
| 99 | then have "?P (sqrt 2 powr sqrt 2) (sqrt 2)" | |
| 51708 | 100 | by (metis 1 Rats_number_of sqrt_2_not_rat) | 
| 46495 | 101 | then show ?thesis by blast | 
| 45917 | 102 | qed | 
| 103 | ||
| 13957 | 104 | end |