| author | paulson | 
| Fri, 25 Aug 2017 13:01:13 +0100 | |
| changeset 66509 | 65b6d48fc9a9 | 
| parent 64604 | 2bf8cfc98c4d | 
| child 68644 | 242d298526a3 | 
| permissions | -rw-r--r-- | 
| 62479 | 1  | 
(* Title: HOL/Nonstandard_Analysis/HSeries.thy  | 
2  | 
Author: Jacques D. Fleuriot  | 
|
3  | 
Copyright: 1998 University of Cambridge  | 
|
| 27468 | 4  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
58878 
diff
changeset
 | 
5  | 
Converted to Isar and polished by lcp  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
58878 
diff
changeset
 | 
6  | 
*)  | 
| 27468 | 7  | 
|
| 64604 | 8  | 
section \<open>Finite Summation and Infinite Series for Hyperreals\<close>  | 
| 27468 | 9  | 
|
10  | 
theory HSeries  | 
|
| 64604 | 11  | 
imports HSEQ  | 
| 27468 | 12  | 
begin  | 
13  | 
||
| 64604 | 14  | 
definition sumhr :: "hypnat \<times> hypnat \<times> (nat \<Rightarrow> real) \<Rightarrow> hypreal"  | 
15  | 
  where "sumhr = (\<lambda>(M,N,f). starfun2 (\<lambda>m n. sum f {m..<n}) M N)"
 | 
|
16  | 
||
17  | 
definition NSsums :: "(nat \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool" (infixr "NSsums" 80)  | 
|
18  | 
  where "f NSsums s = (\<lambda>n. sum f {..<n}) \<longlonglongrightarrow>\<^sub>N\<^sub>S s"
 | 
|
| 27468 | 19  | 
|
| 64604 | 20  | 
definition NSsummable :: "(nat \<Rightarrow> real) \<Rightarrow> bool"  | 
21  | 
where "NSsummable f \<longleftrightarrow> (\<exists>s. f NSsums s)"  | 
|
| 27468 | 22  | 
|
| 64604 | 23  | 
definition NSsuminf :: "(nat \<Rightarrow> real) \<Rightarrow> real"  | 
24  | 
where "NSsuminf f = (THE s. f NSsums s)"  | 
|
| 27468 | 25  | 
|
| 64604 | 26  | 
lemma sumhr_app: "sumhr (M, N, f) = ( *f2* (\<lambda>m n. sum f {m..<n})) M N"
 | 
27  | 
by (simp add: sumhr_def)  | 
|
| 27468 | 28  | 
|
| 64604 | 29  | 
text \<open>Base case in definition of @{term sumr}.\<close>
 | 
30  | 
lemma sumhr_zero [simp]: "\<And>m. sumhr (m, 0, f) = 0"  | 
|
31  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 32  | 
|
| 64604 | 33  | 
text \<open>Recursive case in definition of @{term sumr}.\<close>
 | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
58878 
diff
changeset
 | 
34  | 
lemma sumhr_if:  | 
| 64604 | 35  | 
"\<And>m n. sumhr (m, n + 1, f) = (if n + 1 \<le> m then 0 else sumhr (m, n, f) + ( *f* f) n)"  | 
36  | 
unfolding sumhr_app by transfer simp  | 
|
37  | 
||
38  | 
lemma sumhr_Suc_zero [simp]: "\<And>n. sumhr (n + 1, n, f) = 0"  | 
|
39  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 40  | 
|
| 64604 | 41  | 
lemma sumhr_eq_bounds [simp]: "\<And>n. sumhr (n, n, f) = 0"  | 
42  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 43  | 
|
| 64604 | 44  | 
lemma sumhr_Suc [simp]: "\<And>m. sumhr (m, m + 1, f) = ( *f* f) m"  | 
45  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 46  | 
|
| 64604 | 47  | 
lemma sumhr_add_lbound_zero [simp]: "\<And>k m. sumhr (m + k, k, f) = 0"  | 
48  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 49  | 
|
| 64604 | 50  | 
lemma sumhr_add: "\<And>m n. sumhr (m, n, f) + sumhr (m, n, g) = sumhr (m, n, \<lambda>i. f i + g i)"  | 
51  | 
unfolding sumhr_app by transfer (rule sum.distrib [symmetric])  | 
|
| 27468 | 52  | 
|
| 64604 | 53  | 
lemma sumhr_mult: "\<And>m n. hypreal_of_real r * sumhr (m, n, f) = sumhr (m, n, \<lambda>n. r * f n)"  | 
54  | 
unfolding sumhr_app by transfer (rule sum_distrib_left)  | 
|
| 27468 | 55  | 
|
| 64604 | 56  | 
lemma sumhr_split_add: "\<And>n p. n < p \<Longrightarrow> sumhr (0, n, f) + sumhr (n, p, f) = sumhr (0, p, f)"  | 
57  | 
unfolding sumhr_app by transfer (simp add: sum_add_nat_ivl)  | 
|
| 27468 | 58  | 
|
| 64604 | 59  | 
lemma sumhr_split_diff: "n < p \<Longrightarrow> sumhr (0, p, f) - sumhr (0, n, f) = sumhr (n, p, f)"  | 
60  | 
by (drule sumhr_split_add [symmetric, where f = f]) simp  | 
|
| 27468 | 61  | 
|
| 64604 | 62  | 
lemma sumhr_hrabs: "\<And>m n. \<bar>sumhr (m, n, f)\<bar> \<le> sumhr (m, n, \<lambda>i. \<bar>f i\<bar>)"  | 
63  | 
unfolding sumhr_app by transfer (rule sum_abs)  | 
|
| 27468 | 64  | 
|
| 64604 | 65  | 
text \<open>Other general version also needed.\<close>  | 
| 27468 | 66  | 
lemma sumhr_fun_hypnat_eq:  | 
| 64604 | 67  | 
"(\<forall>r. m \<le> r \<and> r < n \<longrightarrow> f r = g r) \<longrightarrow>  | 
68  | 
sumhr (hypnat_of_nat m, hypnat_of_nat n, f) =  | 
|
69  | 
sumhr (hypnat_of_nat m, hypnat_of_nat n, g)"  | 
|
70  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 71  | 
|
| 64604 | 72  | 
lemma sumhr_const: "\<And>n. sumhr (0, n, \<lambda>i. r) = hypreal_of_hypnat n * hypreal_of_real r"  | 
73  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 74  | 
|
| 64604 | 75  | 
lemma sumhr_less_bounds_zero [simp]: "\<And>m n. n < m \<Longrightarrow> sumhr (m, n, f) = 0"  | 
76  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 77  | 
|
| 64604 | 78  | 
lemma sumhr_minus: "\<And>m n. sumhr (m, n, \<lambda>i. - f i) = - sumhr (m, n, f)"  | 
79  | 
unfolding sumhr_app by transfer (rule sum_negf)  | 
|
| 27468 | 80  | 
|
81  | 
lemma sumhr_shift_bounds:  | 
|
| 64604 | 82  | 
"\<And>m n. sumhr (m + hypnat_of_nat k, n + hypnat_of_nat k, f) =  | 
83  | 
sumhr (m, n, \<lambda>i. f (i + k))"  | 
|
84  | 
unfolding sumhr_app by transfer (rule sum_shift_bounds_nat_ivl)  | 
|
| 27468 | 85  | 
|
86  | 
||
| 64604 | 87  | 
subsection \<open>Nonstandard Sums\<close>  | 
| 27468 | 88  | 
|
| 64604 | 89  | 
text \<open>Infinite sums are obtained by summing to some infinite hypernatural  | 
90  | 
  (such as @{term whn}).\<close>
 | 
|
91  | 
lemma sumhr_hypreal_of_hypnat_omega: "sumhr (0, whn, \<lambda>i. 1) = hypreal_of_hypnat whn"  | 
|
92  | 
by (simp add: sumhr_const)  | 
|
| 27468 | 93  | 
|
| 64604 | 94  | 
lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, \<lambda>i. 1) = \<omega> - 1"  | 
95  | 
apply (simp add: sumhr_const)  | 
|
96  | 
(* FIXME: need lemma: hypreal_of_hypnat whn = \<omega> - 1 *)  | 
|
97  | 
(* maybe define \<omega> = hypreal_of_hypnat whn + 1 *)  | 
|
98  | 
apply (unfold star_class_defs omega_def hypnat_omega_def of_hypnat_def star_of_def)  | 
|
99  | 
apply (simp add: starfun_star_n starfun2_star_n)  | 
|
100  | 
done  | 
|
| 27468 | 101  | 
|
| 64604 | 102  | 
lemma sumhr_minus_one_realpow_zero [simp]: "\<And>N. sumhr (0, N + N, \<lambda>i. (-1) ^ (i + 1)) = 0"  | 
103  | 
unfolding sumhr_app  | 
|
104  | 
apply transfer  | 
|
105  | 
apply (simp del: power_Suc add: mult_2 [symmetric])  | 
|
106  | 
apply (induct_tac N)  | 
|
107  | 
apply simp_all  | 
|
108  | 
done  | 
|
| 27468 | 109  | 
|
110  | 
lemma sumhr_interval_const:  | 
|
| 64604 | 111  | 
"(\<forall>n. m \<le> Suc n \<longrightarrow> f n = r) \<and> m \<le> na \<Longrightarrow>  | 
112  | 
sumhr (hypnat_of_nat m, hypnat_of_nat na, f) = hypreal_of_nat (na - m) * hypreal_of_real r"  | 
|
113  | 
unfolding sumhr_app by transfer simp  | 
|
| 27468 | 114  | 
|
| 64604 | 115  | 
lemma starfunNat_sumr: "\<And>N. ( *f* (\<lambda>n. sum f {0..<n})) N = sumhr (0, N, f)"
 | 
116  | 
unfolding sumhr_app by transfer (rule refl)  | 
|
| 27468 | 117  | 
|
| 64604 | 118  | 
lemma sumhr_hrabs_approx [simp]: "sumhr (0, M, f) \<approx> sumhr (0, N, f) \<Longrightarrow> \<bar>sumhr (M, N, f)\<bar> \<approx> 0"  | 
119  | 
using linorder_less_linear [where x = M and y = N]  | 
|
120  | 
apply auto  | 
|
121  | 
apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])  | 
|
122  | 
apply (auto dest: approx_hrabs simp add: sumhr_split_diff)  | 
|
123  | 
done  | 
|
124  | 
||
125  | 
||
126  | 
subsection \<open>Infinite sums: Standard and NS theorems\<close>  | 
|
| 27468 | 127  | 
|
| 64604 | 128  | 
lemma sums_NSsums_iff: "f sums l \<longleftrightarrow> f NSsums l"  | 
129  | 
by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff)  | 
|
| 27468 | 130  | 
|
| 64604 | 131  | 
lemma summable_NSsummable_iff: "summable f \<longleftrightarrow> NSsummable f"  | 
132  | 
by (simp add: summable_def NSsummable_def sums_NSsums_iff)  | 
|
| 27468 | 133  | 
|
| 64604 | 134  | 
lemma suminf_NSsuminf_iff: "suminf f = NSsuminf f"  | 
135  | 
by (simp add: suminf_def NSsuminf_def sums_NSsums_iff)  | 
|
| 27468 | 136  | 
|
| 64604 | 137  | 
lemma NSsums_NSsummable: "f NSsums l \<Longrightarrow> NSsummable f"  | 
138  | 
unfolding NSsums_def NSsummable_def by blast  | 
|
| 27468 | 139  | 
|
| 64604 | 140  | 
lemma NSsummable_NSsums: "NSsummable f \<Longrightarrow> f NSsums (NSsuminf f)"  | 
141  | 
unfolding NSsummable_def NSsuminf_def NSsums_def  | 
|
142  | 
by (blast intro: theI NSLIMSEQ_unique)  | 
|
| 27468 | 143  | 
|
| 64604 | 144  | 
lemma NSsums_unique: "f NSsums s \<Longrightarrow> s = NSsuminf f"  | 
145  | 
by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique)  | 
|
| 27468 | 146  | 
|
| 64604 | 147  | 
lemma NSseries_zero: "\<forall>m. n \<le> Suc m \<longrightarrow> f m = 0 \<Longrightarrow> f NSsums (sum f {..<n})"
 | 
148  | 
by (auto simp add: sums_NSsums_iff [symmetric] not_le[symmetric] intro!: sums_finite)  | 
|
| 27468 | 149  | 
|
150  | 
lemma NSsummable_NSCauchy:  | 
|
| 64604 | 151  | 
"NSsummable f \<longleftrightarrow> (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. \<bar>sumhr (M, N, f)\<bar> \<approx> 0)"  | 
152  | 
apply (auto simp add: summable_NSsummable_iff [symmetric]  | 
|
153  | 
summable_iff_convergent convergent_NSconvergent_iff atLeast0LessThan[symmetric]  | 
|
154  | 
NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr)  | 
|
155  | 
apply (cut_tac x = M and y = N in linorder_less_linear)  | 
|
156  | 
apply auto  | 
|
157  | 
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])  | 
|
158  | 
apply (rule_tac [2] approx_minus_iff [THEN iffD2])  | 
|
159  | 
apply (auto dest: approx_hrabs_zero_cancel simp: sumhr_split_diff atLeast0LessThan[symmetric])  | 
|
160  | 
done  | 
|
| 27468 | 161  | 
|
| 64604 | 162  | 
text \<open>Terms of a convergent series tend to zero.\<close>  | 
163  | 
lemma NSsummable_NSLIMSEQ_zero: "NSsummable f \<Longrightarrow> f \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"  | 
|
164  | 
apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy)  | 
|
165  | 
apply (drule bspec)  | 
|
166  | 
apply auto  | 
|
167  | 
apply (drule_tac x = "N + 1 " in bspec)  | 
|
168  | 
apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel)  | 
|
169  | 
done  | 
|
| 27468 | 170  | 
|
| 64604 | 171  | 
text \<open>Nonstandard comparison test.\<close>  | 
172  | 
lemma NSsummable_comparison_test: "\<exists>N. \<forall>n. N \<le> n \<longrightarrow> \<bar>f n\<bar> \<le> g n \<Longrightarrow> NSsummable g \<Longrightarrow> NSsummable f"  | 
|
173  | 
apply (fold summable_NSsummable_iff)  | 
|
174  | 
apply (rule summable_comparison_test, simp, assumption)  | 
|
175  | 
done  | 
|
| 27468 | 176  | 
|
177  | 
lemma NSsummable_rabs_comparison_test:  | 
|
| 64604 | 178  | 
"\<exists>N. \<forall>n. N \<le> n \<longrightarrow> \<bar>f n\<bar> \<le> g n \<Longrightarrow> NSsummable g \<Longrightarrow> NSsummable (\<lambda>k. \<bar>f k\<bar>)"  | 
179  | 
by (rule NSsummable_comparison_test) auto  | 
|
| 27468 | 180  | 
|
181  | 
end  |