src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy
author hoelzl
Tue, 26 Mar 2013 12:20:59 +0100
changeset 51528 66c3a7589de7
parent 51478 270b21f3ae0a
child 53185 752e05d09708
permissions -rw-r--r--
Series.thy is based on Limits.thy and not Deriv.thy
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     2
(* ========================================================================= *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     3
(* Results connected with topological dimension.                             *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     4
(*                                                                           *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     5
(* At the moment this is just Brouwer's fixpoint theorem. The proof is from  *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     6
(* Kuhn: "some combinatorial lemmas in topology", IBM J. v4. (1960) p. 518   *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     7
(* See "http://www.research.ibm.com/journal/rd/045/ibmrd0405K.pdf".          *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     8
(*                                                                           *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
     9
(* The script below is quite messy, but at least we avoid formalizing any    *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    10
(* topological machinery; we don't even use barycentric subdivision; this is *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    11
(* the big advantage of Kuhn's proof over the usual Sperner's lemma one.     *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    12
(*                                                                           *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    13
(*              (c) Copyright, John Harrison 1998-2008                       *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    14
(* ========================================================================= *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    15
33759
b369324fc244 Added the contributions of Robert Himmelmann to CONTRIBUTIONS and NEWS
hoelzl
parents: 33758
diff changeset
    16
(* Author:                     John Harrison
b369324fc244 Added the contributions of Robert Himmelmann to CONTRIBUTIONS and NEWS
hoelzl
parents: 33758
diff changeset
    17
   Translation from HOL light: Robert Himmelmann, TU Muenchen *)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    18
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    19
header {* Results connected with topological dimension. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    20
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    21
theory Brouwer_Fixpoint
36432
1ad1cfeaec2d move proof of Fashoda meet theorem into separate file
huffman
parents: 36431
diff changeset
    22
  imports Convex_Euclidean_Space
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    23
begin
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    24
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    25
(** move this **)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    26
lemma divide_nonneg_nonneg:assumes "a \<ge> 0" "b \<ge> 0" shows "0 \<le> a / (b::real)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    27
  apply(cases "b=0") defer apply(rule divide_nonneg_pos) using assms by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    28
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    29
lemma brouwer_compactness_lemma:
50884
2b21b4e2d7cb differentiate (cover) compactness and sequential compactness
hoelzl
parents: 50526
diff changeset
    30
  fixes f :: "'a::metric_space \<Rightarrow> 'b::euclidean_space"
2b21b4e2d7cb differentiate (cover) compactness and sequential compactness
hoelzl
parents: 50526
diff changeset
    31
  assumes "compact s" "continuous_on s f" "\<not> (\<exists>x\<in>s. (f x = 0))"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    32
  obtains d where "0 < d" "\<forall>x\<in>s. d \<le> norm(f x)"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    33
proof (cases "s={}")
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    34
  case False
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    35
  have "continuous_on s (norm \<circ> f)"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    36
    by (rule continuous_on_intros continuous_on_norm assms(2))+
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    37
  with False obtain x where x: "x\<in>s" "\<forall>y\<in>s. (norm \<circ> f) x \<le> (norm \<circ> f) y"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    38
    using continuous_attains_inf[OF assms(1), of "norm \<circ> f"] unfolding o_def by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    39
  have "(norm \<circ> f) x > 0" using assms(3) and x(1) by auto
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    40
  then show ?thesis by (rule that) (insert x(2), auto simp: o_def)
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    41
next
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    42
  case True
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    43
  show thesis by (rule that [of 1]) (auto simp: True)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    44
qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    45
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    46
lemma kuhn_labelling_lemma:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    47
  fixes P Q :: "'a::euclidean_space \<Rightarrow> bool"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    48
  assumes "(\<forall>x. P x \<longrightarrow> P (f x))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    49
    and "\<forall>x. P x \<longrightarrow> (\<forall>i\<in>Basis. Q i \<longrightarrow> 0 \<le> x\<bullet>i \<and> x\<bullet>i \<le> 1)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    50
  shows "\<exists>l. (\<forall>x.\<forall>i\<in>Basis. l x i \<le> (1::nat)) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    51
             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (x\<bullet>i = 0) \<longrightarrow> (l x i = 0)) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    52
             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (x\<bullet>i = 1) \<longrightarrow> (l x i = 1)) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    53
             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x\<bullet>i \<le> f(x)\<bullet>i) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    54
             (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x)\<bullet>i \<le> x\<bullet>i)"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    55
proof -
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    56
  have and_forall_thm:"\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    57
    by auto
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
    58
  have *: "\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    59
    by auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    60
  show ?thesis
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    61
    unfolding and_forall_thm Ball_def
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    62
    apply(subst choice_iff[THEN sym])+
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    63
    apply rule
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    64
    apply rule
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    65
  proof -
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    66
    case (goal1 x)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    67
    let ?R = "\<lambda>y. (P x \<and> Q xa \<and> x \<bullet> xa = 0 \<longrightarrow> y = (0::nat)) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    68
        (P x \<and> Q xa \<and> x \<bullet> xa = 1 \<longrightarrow> y = 1) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    69
        (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x \<bullet> xa \<le> f x \<bullet> xa) \<and>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    70
        (P x \<and> Q xa \<and> y = 1 \<longrightarrow> f x \<bullet> xa \<le> x \<bullet> xa)"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    71
    {
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    72
      assume "P x" "Q xa" "xa\<in>Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    73
      then have "0 \<le> f x \<bullet> xa \<and> f x \<bullet> xa \<le> 1"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    74
        using assms(2)[rule_format,of "f x" xa]
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    75
        apply (drule_tac assms(1)[rule_format])
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    76
        apply auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    77
        done
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    78
    }
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
    79
    then have "xa\<in>Basis \<Longrightarrow> ?R 0 \<or> ?R 1" by auto
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    80
    then show ?case by auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    81
  qed
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    82
qed
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    83
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    84
 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    85
subsection {* The key "counting" observation, somewhat abstracted. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    86
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    87
lemma setsum_Un_disjoint':
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    88
  assumes "finite A" "finite B" "A \<inter> B = {}" "A \<union> B = C"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    89
  shows "setsum g C = setsum g A + setsum g B"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    90
  using setsum_Un_disjoint[OF assms(1-3)] and assms(4) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    91
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    92
lemma kuhn_counting_lemma: assumes "finite faces" "finite simplices"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    93
  "\<forall>f\<in>faces. bnd f  \<longrightarrow> (card {s \<in> simplices. face f s} = 1)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    94
  "\<forall>f\<in>faces. \<not> bnd f \<longrightarrow> (card {s \<in> simplices. face f s} = 2)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    95
  "\<forall>s\<in>simplices. compo s  \<longrightarrow> (card {f \<in> faces. face f s \<and> compo' f} = 1)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    96
  "\<forall>s\<in>simplices. \<not> compo s \<longrightarrow> (card {f \<in> faces. face f s \<and> compo' f} = 0) \<or>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    97
                             (card {f \<in> faces. face f s \<and> compo' f} = 2)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
    98
    "odd(card {f \<in> faces. compo' f \<and> bnd f})"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
    99
  shows "odd(card {s \<in> simplices. compo s})"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   100
proof -
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   101
  have "\<And>x. {f\<in>faces. compo' f \<and> bnd f \<and> face f x} \<union> {f\<in>faces. compo' f \<and> \<not>bnd f \<and> face f x} =
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   102
      {f\<in>faces. compo' f \<and> face f x}"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   103
    "\<And>x. {f \<in> faces. compo' f \<and> bnd f \<and> face f x} \<inter> {f \<in> faces. compo' f \<and> \<not> bnd f \<and> face f x} = {}"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   104
    by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   105
  hence lem1:"setsum (\<lambda>s. (card {f \<in> faces. face f s \<and> compo' f})) simplices =
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   106
      setsum (\<lambda>s. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f s}) simplices +
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   107
      setsum (\<lambda>s. card {f \<in> {f \<in> faces. compo' f \<and> \<not> (bnd f)}. face f s}) simplices"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   108
    unfolding setsum_addf[THEN sym]
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   109
    apply -
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   110
    apply(rule setsum_cong2)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   111
    using assms(1)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   112
    apply (auto simp add: card_Un_Int, auto simp add:conj_commute)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   113
    done
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   114
  have lem2:"setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f j}) simplices = 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   115
              1 * card {f \<in> faces. compo' f \<and> bnd f}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   116
       "setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> \<not> bnd f}. face f j}) simplices = 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   117
              2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   118
    apply(rule_tac[!] setsum_multicount)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   119
    using assms
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   120
    apply auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   121
    done
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   122
  have lem3:"setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) simplices =
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   123
    setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices.   compo s}+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   124
    setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. \<not> compo s}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   125
    apply(rule setsum_Un_disjoint') using assms(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   126
  have lem4:"setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. compo s}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   127
    = setsum (\<lambda>s. 1) {s \<in> simplices. compo s}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   128
    apply(rule setsum_cong2) using assms(5) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   129
  have lem5: "setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f}) {s \<in> simplices. \<not> compo s} =
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   130
    setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f})
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   131
           {s \<in> simplices. (\<not> compo s) \<and> (card {f \<in> faces. face f s \<and> compo' f} = 0)} +
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   132
    setsum (\<lambda>s. card {f \<in> faces. face f s \<and> compo' f})
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   133
           {s \<in> simplices. (\<not> compo s) \<and> (card {f \<in> faces. face f s \<and> compo' f} = 2)}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   134
    apply(rule setsum_Un_disjoint') using assms(2,6) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   135
  have *:"int (\<Sum>s\<in>{s \<in> simplices. compo s}. card {f \<in> faces. face f s \<and> compo' f}) =
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   136
    int (card {f \<in> faces. compo' f \<and> bnd f} + 2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}) - 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   137
    int (card {s \<in> simplices. \<not> compo s \<and> card {f \<in> faces. face f s \<and> compo' f} = 2} * 2)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   138
    using lem1[unfolded lem3 lem2 lem5] by auto
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   139
  have even_minus_odd:"\<And>x y. even x \<Longrightarrow> odd (y::int) \<Longrightarrow> odd (x - y)"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   140
    using assms by auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   141
  have odd_minus_even:"\<And>x y. odd x \<Longrightarrow> even (y::int) \<Longrightarrow> odd (x - y)"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   142
    using assms by auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   143
  show ?thesis
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   144
    unfolding even_nat_def card_eq_setsum and lem4[THEN sym] and *[unfolded card_eq_setsum]
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   145
    unfolding card_eq_setsum[THEN sym]
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   146
    apply (rule odd_minus_even)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   147
    unfolding of_nat_add
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   148
    apply(rule odd_plus_even)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   149
    apply(rule assms(7)[unfolded even_nat_def])
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   150
    unfolding int_mult
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   151
    apply auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   152
    done
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   153
qed
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   154
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   155
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   156
subsection {* The odd/even result for faces of complete vertices, generalized. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   157
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   158
lemma card_1_exists: "card s = 1 \<longleftrightarrow> (\<exists>!x. x \<in> s)"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   159
  unfolding One_nat_def
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   160
  apply rule
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   161
  apply (drule card_eq_SucD)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   162
  defer
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   163
  apply (erule ex1E)
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   164
proof -
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   165
  fix x assume as:"x \<in> s" "\<forall>y. y \<in> s \<longrightarrow> y = x"
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   166
  have *: "s = insert x {}"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   167
    apply (rule set_eqI, rule) unfolding singleton_iff
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   168
    apply (rule as(2)[rule_format]) using as(1)
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   169
    apply auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   170
    done
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   171
  show "card s = Suc 0" unfolding * using card_insert by auto
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   172
qed auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   173
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   174
lemma card_2_exists: "card s = 2 \<longleftrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. x \<noteq> y \<and> (\<forall>z\<in>s. (z = x) \<or> (z = y)))"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   175
proof
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   176
  assume "card s = 2"
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   177
  then obtain x y where obt:"s = {x, y}" "x\<noteq>y" unfolding numeral_2_eq_2
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   178
    apply - apply (erule exE conjE | drule card_eq_SucD)+ apply auto done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   179
  show "\<exists>x\<in>s. \<exists>y\<in>s. x \<noteq> y \<and> (\<forall>z\<in>s. z = x \<or> z = y)" using obt by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   180
next
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   181
  assume "\<exists>x\<in>s. \<exists>y\<in>s. x \<noteq> y \<and> (\<forall>z\<in>s. z = x \<or> z = y)"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   182
  then obtain x y where "x\<in>s" "y\<in>s" "x \<noteq> y" "\<forall>z\<in>s. z = x \<or> z = y" by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   183
  then have "s = {x, y}" by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   184
  with `x \<noteq> y` show "card s = 2" by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   185
qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   186
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   187
lemma image_lemma_0:
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   188
  assumes "card {a\<in>s. f ` (s - {a}) = t - {b}} = n"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   189
  shows "card {s'. \<exists>a\<in>s. (s' = s - {a}) \<and> (f ` s' = t - {b})} = n"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   190
proof -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   191
  have *:"{s'. \<exists>a\<in>s. (s' = s - {a}) \<and> (f ` s' = t - {b})} = (\<lambda>a. s - {a}) ` {a\<in>s. f ` (s - {a}) = t - {b}}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   192
    by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   193
  show ?thesis unfolding * unfolding assms[THEN sym] apply(rule card_image) unfolding inj_on_def 
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   194
    apply (rule, rule, rule) unfolding mem_Collect_eq apply auto done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   195
qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   196
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   197
lemma image_lemma_1:
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   198
  assumes "finite s" "finite t" "card s = card t" "f ` s = t" "b \<in> t"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   199
  shows "card {s'. \<exists>a\<in>s. s' = s - {a} \<and>  f ` s' = t - {b}} = 1"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   200
proof -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   201
  obtain a where a: "b = f a" "a\<in>s" using assms(4-5) by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   202
  have inj: "inj_on f s" apply (rule eq_card_imp_inj_on) using assms(1-4) apply auto done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   203
  have *: "{a \<in> s. f ` (s - {a}) = t - {b}} = {a}" apply (rule set_eqI) unfolding singleton_iff
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   204
    apply (rule, rule inj[unfolded inj_on_def, rule_format])
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   205
    unfolding a using a(2) and assms and inj[unfolded inj_on_def] apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   206
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   207
  show ?thesis apply (rule image_lemma_0) unfolding * apply auto done
49374
b08c6312782b tuned proofs;
wenzelm
parents: 44890
diff changeset
   208
qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   209
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   210
lemma image_lemma_2:
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   211
  assumes "finite s" "finite t" "card s = card t" "f ` s \<subseteq> t" "f ` s \<noteq> t" "b \<in> t"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   212
  shows "(card {s'. \<exists>a\<in>s. (s' = s - {a}) \<and> f ` s' = t - {b}} = 0) \<or>
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   213
         (card {s'. \<exists>a\<in>s. (s' = s - {a}) \<and> f ` s' = t - {b}} = 2)"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   214
proof (cases "{a\<in>s. f ` (s - {a}) = t - {b}} = {}")
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   215
  case True
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   216
  then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   217
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   218
    apply (rule disjI1, rule image_lemma_0) using assms(1) apply auto done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   219
next
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   220
  let ?M = "{a\<in>s. f ` (s - {a}) = t - {b}}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   221
  case False
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   222
  then obtain a where "a\<in>?M" by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   223
  then have a: "a\<in>s" "f ` (s - {a}) = t - {b}" by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   224
  have "f a \<in> t - {b}" using a and assms by auto
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   225
  then have "\<exists>c \<in> s - {a}. f a = f c" unfolding image_iff[symmetric] and a by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   226
  then obtain c where c:"c \<in> s" "a \<noteq> c" "f a = f c" by auto
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   227
  then have *: "f ` (s - {c}) = f ` (s - {a})"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   228
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   229
    apply (rule set_eqI, rule)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   230
  proof -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   231
    fix x
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   232
    assume "x \<in> f ` (s - {a})"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   233
    then obtain y where y: "f y = x" "y\<in>s- {a}" by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   234
    then show "x \<in> f ` (s - {c})"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   235
      unfolding image_iff
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   236
      apply (rule_tac x = "if y = c then a else y" in bexI)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   237
      using c a apply auto done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   238
  qed auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   239
  have "c\<in>?M" unfolding mem_Collect_eq and * using a and c(1) by auto
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   240
  show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   241
    apply (rule disjI2, rule image_lemma_0) unfolding card_2_exists
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   242
    apply (rule bexI[OF _ `a\<in>?M`], rule bexI[OF _ `c\<in>?M`],rule,rule `a\<noteq>c`)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   243
  proof (rule, unfold mem_Collect_eq, erule conjE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   244
    fix z
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   245
    assume as: "z \<in> s" "f ` (s - {z}) = t - {b}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   246
    have inj: "inj_on f (s - {z})"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   247
      apply (rule eq_card_imp_inj_on)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   248
      unfolding as using as(1) and assms apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   249
      done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   250
    show "z = a \<or> z = c"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   251
    proof (rule ccontr)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   252
      assume "\<not> ?thesis"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   253
      then show False
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   254
        using inj[unfolded inj_on_def, THEN bspec[where x=a], THEN bspec[where x=c]]
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   255
        using `a\<in>s` `c\<in>s` `f a = f c` `a\<noteq>c` apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   256
        done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   257
    qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   258
  qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   259
qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   260
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   261
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   262
subsection {* Combine this with the basic counting lemma. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   263
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   264
lemma kuhn_complete_lemma:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   265
  assumes "finite simplices"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   266
    "\<forall>f s. face f s \<longleftrightarrow> (\<exists>a\<in>s. f = s - {a})"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   267
    "\<forall>s\<in>simplices. card s = n + 2" "\<forall>s\<in>simplices. (rl ` s) \<subseteq> {0..n+1}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   268
    "\<forall>f\<in> {f. \<exists>s\<in>simplices. face f s}. bnd f  \<longrightarrow> (card {s\<in>simplices. face f s} = 1)"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   269
    "\<forall>f\<in> {f. \<exists>s\<in>simplices. face f s}. \<not>bnd f \<longrightarrow> (card {s\<in>simplices. face f s} = 2)"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   270
    "odd(card {f\<in>{f. \<exists>s\<in>simplices. face f s}. rl ` f = {0..n} \<and> bnd f})"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   271
  shows "odd (card {s\<in>simplices. (rl ` s = {0..n+1})})" 
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   272
  apply (rule kuhn_counting_lemma)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   273
  defer
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   274
  apply (rule assms)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   275
  prefer 3
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   276
  apply (rule assms)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   277
proof (rule_tac[1-2] ballI impI)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   278
  have *: "{f. \<exists>s\<in>simplices. \<exists>a\<in>s. f = s - {a}} = (\<Union>s\<in>simplices. {f. \<exists>a\<in>s. (f = s - {a})})"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   279
    by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   280
  have **: "\<forall>s\<in>simplices. card s = n + 2 \<and> finite s"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   281
    using assms(3) by (auto intro: card_ge_0_finite)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   282
  show "finite {f. \<exists>s\<in>simplices. face f s}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   283
    unfolding assms(2)[rule_format] and *
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   284
    apply (rule finite_UN_I[OF assms(1)]) using ** apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   285
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   286
  have *: "\<And>P f s. s\<in>simplices \<Longrightarrow> (f \<in> {f. \<exists>s\<in>simplices. \<exists>a\<in>s. f = s - {a}}) \<and>
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   287
    (\<exists>a\<in>s. (f = s - {a})) \<and> P f \<longleftrightarrow> (\<exists>a\<in>s. (f = s - {a}) \<and> P f)" by auto
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   288
  fix s assume s: "s\<in>simplices"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   289
  let ?S = "{f \<in> {f. \<exists>s\<in>simplices. face f s}. face f s \<and> rl ` f = {0..n}}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   290
  have "{0..n + 1} - {n + 1} = {0..n}" by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   291
  then have S: "?S = {s'. \<exists>a\<in>s. s' = s - {a} \<and> rl ` s' = {0..n + 1} - {n + 1}}"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   292
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   293
    apply (rule set_eqI)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   294
    unfolding assms(2)[rule_format] mem_Collect_eq and *[OF s, unfolded mem_Collect_eq, where P="\<lambda>x. rl ` x = {0..n}"]
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   295
    apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   296
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   297
  show "rl ` s = {0..n+1} \<Longrightarrow> card ?S = 1" "rl ` s \<noteq> {0..n+1} \<Longrightarrow> card ?S = 0 \<or> card ?S = 2"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   298
    unfolding S
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   299
    apply(rule_tac[!] image_lemma_1 image_lemma_2)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   300
    using ** assms(4) and s apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   301
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   302
qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   303
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   304
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   305
subsection {*We use the following notion of ordering rather than pointwise indexing. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   306
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   307
definition "kle n x y \<longleftrightarrow> (\<exists>k\<subseteq>{1..n::nat}. (\<forall>j. y(j) = x(j) + (if j \<in> k then (1::nat) else 0)))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   308
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   309
lemma kle_refl[intro]: "kle n x x" unfolding kle_def by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   310
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   311
lemma kle_antisym: "kle n x y \<and> kle n y x \<longleftrightarrow> (x = y)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   312
  unfolding kle_def apply rule apply(rule ext) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   313
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   314
lemma pointwise_minimal_pointwise_maximal: fixes s::"(nat\<Rightarrow>nat) set"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   315
  assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. (\<forall>j. x j \<le> y j) \<or> (\<forall>j. y j \<le> x j)"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   316
  shows "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<le> x j" "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. x j \<le> a j"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   317
  using assms unfolding atomize_conj
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   318
proof (induct s rule:finite_induct)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   319
  fix x and F::"(nat\<Rightarrow>nat) set"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   320
  assume as:"finite F" "x \<notin> F" 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   321
    "\<lbrakk>F \<noteq> {}; \<forall>x\<in>F. \<forall>y\<in>F. (\<forall>j. x j \<le> y j) \<or> (\<forall>j. y j \<le> x j)\<rbrakk>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   322
        \<Longrightarrow> (\<exists>a\<in>F. \<forall>x\<in>F. \<forall>j. a j \<le> x j) \<and> (\<exists>a\<in>F. \<forall>x\<in>F. \<forall>j. x j \<le> a j)" "insert x F \<noteq> {}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   323
    "\<forall>xa\<in>insert x F. \<forall>y\<in>insert x F. (\<forall>j. xa j \<le> y j) \<or> (\<forall>j. y j \<le> xa j)"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   324
  show "(\<exists>a\<in>insert x F. \<forall>x\<in>insert x F. \<forall>j. a j \<le> x j) \<and> (\<exists>a\<in>insert x F. \<forall>x\<in>insert x F. \<forall>j. x j \<le> a j)"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   325
  proof (cases "F = {}")
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   326
    case True
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   327
    then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   328
      apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   329
      apply (rule, rule_tac[!] x=x in bexI)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   330
      apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   331
      done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   332
  next
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   333
    case False
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   334
    obtain a b where a: "a\<in>insert x F" "\<forall>x\<in>F. \<forall>j. a j \<le> x j" and
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   335
      b: "b\<in>insert x F" "\<forall>x\<in>F. \<forall>j. x j \<le> b j" using as(3)[OF False] using as(5) by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   336
    have "\<exists>a\<in>insert x F. \<forall>x\<in>insert x F. \<forall>j. a j \<le> x j"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   337
      using as(5)[rule_format,OF a(1) insertI1]
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   338
      apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   339
    proof (erule disjE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   340
      assume "\<forall>j. a j \<le> x j"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   341
      then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   342
        apply (rule_tac x=a in bexI) using a apply auto done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   343
    next
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   344
      assume "\<forall>j. x j \<le> a j"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   345
      then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   346
        apply (rule_tac x=x in bexI)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   347
        apply (rule, rule) using a apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   348
        apply (erule_tac x=xa in ballE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   349
        apply (erule_tac x=j in allE)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   350
        apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   351
        done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   352
    qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   353
    moreover
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   354
    have "\<exists>b\<in>insert x F. \<forall>x\<in>insert x F. \<forall>j. x j \<le> b j"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   355
      using as(5)[rule_format,OF b(1) insertI1] apply-
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   356
    proof (erule disjE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   357
      assume "\<forall>j. x j \<le> b j"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   358
      then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   359
        apply(rule_tac x=b in bexI) using b
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   360
        apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   361
        done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   362
    next
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   363
      assume "\<forall>j. b j \<le> x j"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   364
      then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   365
        apply (rule_tac x=x in bexI)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   366
        apply (rule, rule) using b apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   367
        apply (erule_tac x=xa in ballE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   368
        apply (erule_tac x=j in allE)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   369
        apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   370
        done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   371
    qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   372
    ultimately show ?thesis by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   373
  qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   374
qed auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   375
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   376
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   377
lemma kle_imp_pointwise: "kle n x y \<Longrightarrow> (\<forall>j. x j \<le> y j)" unfolding kle_def by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   378
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   379
lemma pointwise_antisym:
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   380
  fixes x :: "nat \<Rightarrow> nat"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   381
  shows "(\<forall>j. x j \<le> y j) \<and> (\<forall>j. y j \<le> x j) \<longleftrightarrow> (x = y)"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   382
  apply (rule, rule ext, erule conjE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   383
  apply (erule_tac x=xa in allE)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   384
  apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   385
  done
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   386
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   387
lemma kle_trans:
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   388
  assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   389
  shows "kle n x z"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   390
  using assms
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   391
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   392
    apply (erule disjE)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   393
    apply assumption
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   394
proof -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   395
  case goal1
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   396
  then have "x = z"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   397
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   398
    apply (rule ext)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   399
    apply (drule kle_imp_pointwise)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   400
    apply (erule_tac x=xa in allE)+
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   401
    apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   402
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   403
  then show ?case by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   404
qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   405
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   406
lemma kle_strict:
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   407
  assumes "kle n x y" "x \<noteq> y"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   408
  shows "\<forall>j. x j \<le> y j"  "\<exists>k. 1 \<le> k \<and> k \<le> n \<and> x(k) < y(k)"
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   409
  apply (rule kle_imp_pointwise[OF assms(1)])
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   410
proof -
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   411
  guess k using assms(1)[unfolded kle_def] .. note k = this
49555
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   412
  show "\<exists>k. 1 \<le> k \<and> k \<le> n \<and> x(k) < y(k)"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   413
proof (cases "k={}")
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   414
  case True
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   415
  then have "x = y"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   416
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   417
    apply (rule ext)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   418
    using k apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   419
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   420
  then show ?thesis using assms(2) by auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   421
next
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   422
  case False
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   423
  then have "(SOME k'. k' \<in> k) \<in> k"
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   424
    apply -
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   425
    apply (rule someI_ex)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   426
    apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   427
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   428
  then show ?thesis
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   429
    apply (rule_tac x = "SOME k'. k' \<in> k" in exI)
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   430
    using k apply auto
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   431
    done
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   432
  qed
fb2128470345 tuned proofs;
wenzelm
parents: 49374
diff changeset
   433
qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   434
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   435
lemma kle_minimal: assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   436
  shows "\<exists>a\<in>s. \<forall>x\<in>s. kle n a x" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   437
  have "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<le> x j" apply(rule pointwise_minimal_pointwise_maximal(1)[OF assms(1-2)])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   438
    apply(rule,rule) apply(drule_tac assms(3)[rule_format],assumption) using kle_imp_pointwise by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   439
  then guess a .. note a=this show ?thesis apply(rule_tac x=a in bexI) proof fix x assume "x\<in>s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   440
    show "kle n a x" using assms(3)[rule_format,OF a(1) `x\<in>s`] apply- proof(erule disjE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   441
      assume "kle n x a" hence "x = a" apply- unfolding pointwise_antisym[THEN sym]
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   442
        apply(drule kle_imp_pointwise) using a(2)[rule_format,OF `x\<in>s`] by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   443
      thus ?thesis using kle_refl by auto  qed qed(insert a, auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   444
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   445
lemma kle_maximal: assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   446
  shows "\<exists>a\<in>s. \<forall>x\<in>s. kle n x a" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   447
  have "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<ge> x j" apply(rule pointwise_minimal_pointwise_maximal(2)[OF assms(1-2)])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   448
    apply(rule,rule) apply(drule_tac assms(3)[rule_format],assumption) using kle_imp_pointwise by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   449
  then guess a .. note a=this show ?thesis apply(rule_tac x=a in bexI) proof fix x assume "x\<in>s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   450
    show "kle n x a" using assms(3)[rule_format,OF a(1) `x\<in>s`] apply- proof(erule disjE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   451
      assume "kle n a x" hence "x = a" apply- unfolding pointwise_antisym[THEN sym]
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   452
        apply(drule kle_imp_pointwise) using a(2)[rule_format,OF `x\<in>s`] by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   453
      thus ?thesis using kle_refl by auto  qed qed(insert a, auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   454
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   455
lemma kle_strict_set: assumes "kle n x y" "x \<noteq> y"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   456
  shows "1 \<le> card {k\<in>{1..n}. x k < y k}" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   457
  guess i using kle_strict(2)[OF assms] ..
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   458
  hence "card {i} \<le> card {k\<in>{1..n}. x k < y k}" apply- apply(rule card_mono) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   459
  thus ?thesis by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   460
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   461
lemma kle_range_combine:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   462
  assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   463
  "m1 \<le> card {k\<in>{1..n}. x k < y k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   464
  "m2 \<le> card {k\<in>{1..n}. y k < z k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   465
  shows "kle n x z \<and> m1 + m2 \<le> card {k\<in>{1..n}. x k < z k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   466
  apply(rule,rule kle_trans[OF assms(1-3)]) proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   467
  have "\<And>j. x j < y j \<Longrightarrow> x j < z j" apply(rule less_le_trans) using kle_imp_pointwise[OF assms(2)] by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   468
  have "\<And>j. y j < z j \<Longrightarrow> x j < z j" apply(rule le_less_trans) using kle_imp_pointwise[OF assms(1)] by auto ultimately
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   469
  have *:"{k\<in>{1..n}. x k < y k} \<union> {k\<in>{1..n}. y k < z k} = {k\<in>{1..n}. x k < z k}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   470
  have **:"{k \<in> {1..n}. x k < y k} \<inter> {k \<in> {1..n}. y k < z k} = {}" unfolding disjoint_iff_not_equal
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   471
    apply(rule,rule,unfold mem_Collect_eq,rule ccontr) apply(erule conjE)+ proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   472
    fix i j assume as:"i \<in> {1..n}" "x i < y i" "j \<in> {1..n}" "y j < z j" "\<not> i \<noteq> j"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   473
    guess kx using assms(1)[unfolded kle_def] .. note kx=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   474
    have "x i < y i" using as by auto hence "i \<in> kx" using as(1) kx apply(rule_tac ccontr) by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   475
    hence "x i + 1 = y i" using kx by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   476
    guess ky using assms(2)[unfolded kle_def] .. note ky=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   477
    have "y i < z i" using as by auto hence "i \<in> ky" using as(1) ky apply(rule_tac ccontr) by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   478
    hence "y i + 1 = z i" using ky by auto ultimately
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   479
    have "z i = x i + 2" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   480
    thus False using assms(3) unfolding kle_def by(auto simp add: split_if_eq1) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   481
  have fin:"\<And>P. finite {x\<in>{1..n::nat}. P x}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   482
  have "m1 + m2 \<le> card {k\<in>{1..n}. x k < y k} + card {k\<in>{1..n}. y k < z k}" using assms(4-5) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   483
  also have "\<dots> \<le>  card {k\<in>{1..n}. x k < z k}" unfolding card_Un_Int[OF fin fin] unfolding * ** by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   484
  finally show " m1 + m2 \<le> card {k \<in> {1..n}. x k < z k}" by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   485
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   486
lemma kle_range_combine_l:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   487
  assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x" "m \<le> card {k\<in>{1..n}. y(k) < z(k)}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   488
  shows "kle n x z \<and> m \<le> card {k\<in>{1..n}. x(k) < z(k)}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   489
  using kle_range_combine[OF assms(1-3) _ assms(4), of 0] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   490
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   491
lemma kle_range_combine_r:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   492
  assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x" "m \<le> card {k\<in>{1..n}. x k < y k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   493
  shows "kle n x z \<and> m \<le> card {k\<in>{1..n}. x(k) < z(k)}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   494
  using kle_range_combine[OF assms(1-3) assms(4), of 0] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   495
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   496
lemma kle_range_induct:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   497
  assumes "card s = Suc m" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   498
  shows "\<exists>x\<in>s. \<exists>y\<in>s. kle n x y \<and> m \<le> card {k\<in>{1..n}. x k < y k}" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   499
have "finite s" "s\<noteq>{}" using assms(1) by (auto intro: card_ge_0_finite)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   500
thus ?thesis using assms apply- proof(induct m arbitrary: s)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   501
  case 0 thus ?case using kle_refl by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   502
  case (Suc m) then obtain a where a:"a\<in>s" "\<forall>x\<in>s. kle n a x" using kle_minimal[of s n] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   503
  show ?case proof(cases "s \<subseteq> {a}") case False
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   504
    hence "card (s - {a}) = Suc m" "s - {a} \<noteq> {}" using card_Diff_singleton[OF _ a(1)] Suc(4) `finite s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   505
    then obtain x b where xb:"x\<in>s - {a}" "b\<in>s - {a}" "kle n x b" "m \<le> card {k \<in> {1..n}. x k < b k}" 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   506
      using Suc(1)[of "s - {a}"] using Suc(5) `finite s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   507
    have "1 \<le> card {k \<in> {1..n}. a k < x k}" "m \<le> card {k \<in> {1..n}. x k < b k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   508
      apply(rule kle_strict_set) apply(rule a(2)[rule_format]) using a and xb by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   509
    thus ?thesis apply(rule_tac x=a in bexI, rule_tac x=b in bexI) 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   510
      using kle_range_combine[OF a(2)[rule_format] xb(3) Suc(5)[rule_format], of 1 "m"] using a(1) xb(1-2) by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   511
    case True hence "s = {a}" using Suc(3) by auto hence "card s = 1" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   512
    hence False using Suc(4) `finite s` by auto thus ?thesis by auto qed qed qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   513
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   514
lemma kle_Suc: "kle n x y \<Longrightarrow> kle (n + 1) x y"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   515
  unfolding kle_def apply(erule exE) apply(rule_tac x=k in exI) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   516
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   517
lemma kle_trans_1: assumes "kle n x y" shows "x j \<le> y j" "y j \<le> x j + 1"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   518
  using assms[unfolded kle_def] by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   519
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   520
lemma kle_trans_2: assumes "kle n a b" "kle n b c" "\<forall>j. c j \<le> a j + 1" shows "kle n a c" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   521
  guess kk1 using assms(1)[unfolded kle_def] .. note kk1=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   522
  guess kk2 using assms(2)[unfolded kle_def] .. note kk2=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   523
  show ?thesis unfolding kle_def apply(rule_tac x="kk1 \<union> kk2" in exI) apply(rule) defer proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   524
    fix i show "c i = a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)" proof(cases "i\<in>kk1 \<union> kk2")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   525
      case True hence "c i \<ge> a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   526
        unfolding kk1[THEN conjunct2,rule_format,of i] kk2[THEN conjunct2,rule_format,of i] by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   527
      moreover have "c i \<le> a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)" using True assms(3) by auto  
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   528
      ultimately show ?thesis by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   529
      case False thus ?thesis using kk1 kk2 by auto qed qed(insert kk1 kk2, auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   530
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   531
lemma kle_between_r: assumes "kle n a b" "kle n b c" "kle n a x" "kle n c x" shows "kle n b x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   532
  apply(rule kle_trans_2[OF assms(2,4)]) proof have *:"\<And>c b x::nat. x \<le> c + 1 \<Longrightarrow> c \<le> b \<Longrightarrow> x \<le> b + 1" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   533
  fix j show "x j \<le> b j + 1" apply(rule *)using kle_trans_1[OF assms(1),of j] kle_trans_1[OF assms(3), of j] by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   534
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   535
lemma kle_between_l: assumes "kle n a b" "kle n b c" "kle n x a" "kle n x c" shows "kle n x b"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   536
  apply(rule kle_trans_2[OF assms(3,1)]) proof have *:"\<And>c b x::nat. c \<le> x + 1 \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> x + 1" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   537
  fix j show "b j \<le> x j + 1" apply(rule *) using kle_trans_1[OF assms(2),of j] kle_trans_1[OF assms(4), of j] by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   538
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   539
lemma kle_adjacent:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   540
  assumes "\<forall>j. b j = (if j = k then a(j) + 1 else a j)" "kle n a x" "kle n x b"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   541
  shows "(x = a) \<or> (x = b)" proof(cases "x k = a k")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   542
  case True show ?thesis apply(rule disjI1,rule ext) proof- fix j
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   543
    have "x j \<le> a j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]] 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   544
      unfolding assms(1)[rule_format] apply-apply(cases "j=k") using True by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   545
    thus "x j = a j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]] by auto qed next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   546
  case False show ?thesis apply(rule disjI2,rule ext) proof- fix j
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   547
    have "x j \<ge> b j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   548
      unfolding assms(1)[rule_format] apply-apply(cases "j=k") using False by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   549
    thus "x j = b j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]] by auto qed qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   550
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   551
subsection {* kuhn's notion of a simplex (a reformulation to avoid so much indexing). *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   552
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   553
definition "ksimplex p n (s::(nat \<Rightarrow> nat) set) \<longleftrightarrow>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   554
        (card s = n + 1 \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   555
        (\<forall>x\<in>s. \<forall>j. x(j) \<le> p) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   556
        (\<forall>x\<in>s. \<forall>j. j\<notin>{1..n} \<longrightarrow> (x j = p)) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   557
        (\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   558
36318
3567d0571932 eliminated spurious schematic statements;
wenzelm
parents: 35729
diff changeset
   559
lemma ksimplexI:"card s = n + 1 \<Longrightarrow>  \<forall>x\<in>s. \<forall>j. x j \<le> p \<Longrightarrow> \<forall>x\<in>s. \<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p \<Longrightarrow> \<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x \<Longrightarrow> ksimplex p n s"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   560
  unfolding ksimplex_def by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   561
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   562
lemma ksimplex_eq: "ksimplex p n (s::(nat \<Rightarrow> nat) set) \<longleftrightarrow>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   563
        (card s = n + 1 \<and> finite s \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   564
        (\<forall>x\<in>s. \<forall>j. x(j) \<le> p) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   565
        (\<forall>x\<in>s. \<forall>j. j\<notin>{1..n} \<longrightarrow> (x j = p)) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   566
        (\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   567
  unfolding ksimplex_def by (auto intro: card_ge_0_finite)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   568
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   569
lemma ksimplex_extrema: assumes "ksimplex p n s" obtains a b where "a \<in> s" "b \<in> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   570
  "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))" proof(cases "n=0")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   571
  case True obtain x where *:"s = {x}" using assms[unfolded ksimplex_eq True,THEN conjunct1]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   572
    unfolding add_0_left card_1_exists by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   573
  show ?thesis apply(rule that[of x x]) unfolding * True by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   574
  note assm = assms[unfolded ksimplex_eq]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   575
  case False have "s\<noteq>{}" using assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   576
  obtain a where a:"a\<in>s" "\<forall>x\<in>s. kle n a x" using `s\<noteq>{}` assm using kle_minimal[of s n] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   577
  obtain b where b:"b\<in>s" "\<forall>x\<in>s. kle n x b" using `s\<noteq>{}` assm using kle_maximal[of s n] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   578
  obtain c d where c_d:"c\<in>s" "d\<in>s" "kle n c d" "n \<le> card {k \<in> {1..n}. c k < d k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   579
    using kle_range_induct[of s n n] using assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   580
  have "kle n c b \<and> n \<le> card {k \<in> {1..n}. c k < b k}" apply(rule kle_range_combine_r[where y=d]) using c_d a b by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   581
  hence "kle n a b \<and> n \<le> card {k\<in>{1..n}. a(k) < b(k)}" apply-apply(rule kle_range_combine_l[where y=c]) using a `c\<in>s` `b\<in>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   582
  moreover have "card {1..n} \<ge> card {k\<in>{1..n}. a(k) < b(k)}" apply(rule card_mono) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   583
  ultimately have *:"{k\<in>{1 .. n}. a k < b k} = {1..n}" apply- apply(rule card_subset_eq) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   584
  show ?thesis apply(rule that[OF a(1) b(1)]) defer apply(subst *[THEN sym]) unfolding mem_Collect_eq proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   585
    guess k using a(2)[rule_format,OF b(1),unfolded kle_def] .. note k=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   586
    fix i show "b i = (if i \<in> {1..n} \<and> a i < b i then a i + 1 else a i)" proof(cases "i \<in> {1..n}")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   587
      case True thus ?thesis unfolding k[THEN conjunct2,rule_format] by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   588
      case False have "a i = p" using assm and False `a\<in>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   589
      moreover   have "b i = p" using assm and False `b\<in>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   590
      ultimately show ?thesis by auto qed qed(insert a(2) b(2) assm,auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   591
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   592
lemma ksimplex_extrema_strong:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   593
  assumes "ksimplex p n s" "n \<noteq> 0" obtains a b where "a \<in> s" "b \<in> s" "a \<noteq> b"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   594
  "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   595
  obtain a b where ab:"a \<in> s" "b \<in> s" "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))" 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   596
    apply(rule ksimplex_extrema[OF assms(1)]) by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   597
  have "a \<noteq> b" apply(rule ccontr) unfolding not_not apply(drule cong[of _ _ 1 1]) using ab(4) assms(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   598
  thus ?thesis apply(rule_tac that[of a b]) using ab by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   599
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   600
lemma ksimplexD:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   601
  assumes "ksimplex p n s"
36318
3567d0571932 eliminated spurious schematic statements;
wenzelm
parents: 35729
diff changeset
   602
  shows "card s = n + 1" "finite s" "card s = n + 1" "\<forall>x\<in>s. \<forall>j. x j \<le> p" "\<forall>x\<in>s. \<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   603
  "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x" using assms unfolding ksimplex_eq by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   604
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   605
lemma ksimplex_successor:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   606
  assumes "ksimplex p n s" "a \<in> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   607
  shows "(\<forall>x\<in>s. kle n x a) \<or> (\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. y(j) = (if j = k then a(j) + 1 else a(j)))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   608
proof(cases "\<forall>x\<in>s. kle n x a") case True thus ?thesis by auto next note assm = ksimplexD[OF assms(1)]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   609
  case False then obtain b where b:"b\<in>s" "\<not> kle n b a" "\<forall>x\<in>{x \<in> s. \<not> kle n x a}. kle n b x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   610
    using kle_minimal[of "{x\<in>s. \<not> kle n x a}" n] and assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   611
  hence  **:"1 \<le> card {k\<in>{1..n}. a k < b k}" apply- apply(rule kle_strict_set) using assm(6) and `a\<in>s` by(auto simp add:kle_refl)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   612
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   613
  let ?kle1 = "{x \<in> s. \<not> kle n x a}" have "card ?kle1 > 0" apply(rule ccontr) using assm(2) and False by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   614
  hence sizekle1: "card ?kle1 = Suc (card ?kle1 - 1)" using assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   615
  obtain c d where c_d: "c \<in> s" "\<not> kle n c a" "d \<in> s" "\<not> kle n d a" "kle n c d" "card ?kle1 - 1 \<le> card {k \<in> {1..n}. c k < d k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   616
    using kle_range_induct[OF sizekle1, of n] using assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   617
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   618
  let ?kle2 = "{x \<in> s. kle n x a}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   619
  have "card ?kle2 > 0" apply(rule ccontr) using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   620
  hence sizekle2:"card ?kle2 = Suc (card ?kle2 - 1)" using assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   621
  obtain e f where e_f: "e \<in> s" "kle n e a" "f \<in> s" "kle n f a" "kle n e f" "card ?kle2 - 1 \<le> card {k \<in> {1..n}. e k < f k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   622
    using kle_range_induct[OF sizekle2, of n] using assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   623
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   624
  have "card {k\<in>{1..n}. a k < b k} = 1" proof(rule ccontr) case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   625
    hence as:"card {k\<in>{1..n}. a k < b k} \<ge> 2" using ** by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   626
    have *:"finite ?kle2" "finite ?kle1" "?kle2 \<union> ?kle1 = s" "?kle2 \<inter> ?kle1 = {}" using assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   627
    have "(card ?kle2 - 1) + 2 + (card ?kle1 - 1) = card ?kle2 + card ?kle1" using sizekle1 sizekle2 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   628
    also have "\<dots> = n + 1" unfolding card_Un_Int[OF *(1-2)] *(3-) using assm(3) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   629
    finally have n:"(card ?kle2 - 1) + (2 + (card ?kle1 - 1)) = n + 1" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   630
    have "kle n e a \<and> card {x \<in> s. kle n x a} - 1 \<le> card {k \<in> {1..n}. e k < a k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   631
      apply(rule kle_range_combine_r[where y=f]) using e_f using `a\<in>s` assm(6) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   632
    moreover have "kle n b d \<and> card {x \<in> s. \<not> kle n x a} - 1 \<le> card {k \<in> {1..n}. b k < d k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   633
      apply(rule kle_range_combine_l[where y=c]) using c_d using assm(6) and b by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   634
    hence "kle n a d \<and> 2 + (card {x \<in> s. \<not> kle n x a} - 1) \<le> card {k \<in> {1..n}. a k < d k}" apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   635
      apply(rule kle_range_combine[where y=b]) using as and b assm(6) `a\<in>s` `d\<in>s` apply- by blast+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   636
    ultimately have "kle n e d \<and> (card ?kle2 - 1) + (2 + (card ?kle1 - 1)) \<le> card {k\<in>{1..n}. e k < d k}" apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   637
      apply(rule kle_range_combine[where y=a]) using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`] apply - by blast+ 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   638
    moreover have "card {k \<in> {1..n}. e k < d k} \<le> card {1..n}" apply(rule card_mono) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   639
    ultimately show False unfolding n by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   640
  then guess k unfolding card_1_exists .. note k=this[unfolded mem_Collect_eq]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   641
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   642
  show ?thesis apply(rule disjI2) apply(rule_tac x=b in bexI,rule_tac x=k in bexI) proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   643
    fix j::nat have "kle n a b" using b and assm(6)[rule_format, OF `a\<in>s` `b\<in>s`] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   644
    then guess kk unfolding kle_def .. note kk_raw=this note kk=this[THEN conjunct2,rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   645
    have kkk:"k\<in>kk" apply(rule ccontr) using k(1) unfolding kk by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   646
    show "b j = (if j = k then a j + 1 else a j)" proof(cases "j\<in>kk")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   647
      case True hence "j=k" apply-apply(rule k(2)[rule_format]) using kk_raw kkk by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   648
      thus ?thesis unfolding kk using kkk by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   649
      case False hence "j\<noteq>k" using k(2)[rule_format, of j k] using kk_raw kkk by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   650
      thus ?thesis unfolding kk using kkk using False by auto qed qed(insert k(1) `b\<in>s`, auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   651
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   652
lemma ksimplex_predecessor:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   653
  assumes "ksimplex p n s" "a \<in> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   654
  shows "(\<forall>x\<in>s. kle n a x) \<or> (\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. a(j) = (if j = k then y(j) + 1 else y(j)))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   655
proof(cases "\<forall>x\<in>s. kle n a x") case True thus ?thesis by auto next note assm = ksimplexD[OF assms(1)]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   656
  case False then obtain b where b:"b\<in>s" "\<not> kle n a b" "\<forall>x\<in>{x \<in> s. \<not> kle n a x}. kle n x b" 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   657
    using kle_maximal[of "{x\<in>s. \<not> kle n a x}" n] and assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   658
  hence  **:"1 \<le> card {k\<in>{1..n}. a k > b k}" apply- apply(rule kle_strict_set) using assm(6) and `a\<in>s` by(auto simp add:kle_refl)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   659
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   660
  let ?kle1 = "{x \<in> s. \<not> kle n a x}" have "card ?kle1 > 0" apply(rule ccontr) using assm(2) and False by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   661
  hence sizekle1:"card ?kle1 = Suc (card ?kle1 - 1)" using assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   662
  obtain c d where c_d: "c \<in> s" "\<not> kle n a c" "d \<in> s" "\<not> kle n a d" "kle n d c" "card ?kle1 - 1 \<le> card {k \<in> {1..n}. c k > d k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   663
    using kle_range_induct[OF sizekle1, of n] using assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   664
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   665
  let ?kle2 = "{x \<in> s. kle n a x}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   666
  have "card ?kle2 > 0" apply(rule ccontr) using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   667
  hence sizekle2:"card ?kle2 = Suc (card ?kle2 - 1)" using assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   668
  obtain e f where e_f: "e \<in> s" "kle n a e" "f \<in> s" "kle n a f" "kle n f e" "card ?kle2 - 1 \<le> card {k \<in> {1..n}. e k > f k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   669
    using kle_range_induct[OF sizekle2, of n] using assm by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   670
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   671
  have "card {k\<in>{1..n}. a k > b k} = 1" proof(rule ccontr) case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   672
    hence as:"card {k\<in>{1..n}. a k > b k} \<ge> 2" using ** by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   673
    have *:"finite ?kle2" "finite ?kle1" "?kle2 \<union> ?kle1 = s" "?kle2 \<inter> ?kle1 = {}" using assm(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   674
    have "(card ?kle2 - 1) + 2 + (card ?kle1 - 1) = card ?kle2 + card ?kle1" using sizekle1 sizekle2 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   675
    also have "\<dots> = n + 1" unfolding card_Un_Int[OF *(1-2)] *(3-) using assm(3) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   676
    finally have n:"(card ?kle1 - 1) + 2 + (card ?kle2 - 1) = n + 1" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   677
    have "kle n a e \<and> card {x \<in> s. kle n a x} - 1 \<le> card {k \<in> {1..n}. e k > a k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   678
      apply(rule kle_range_combine_l[where y=f]) using e_f using `a\<in>s` assm(6) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   679
    moreover have "kle n d b \<and> card {x \<in> s. \<not> kle n a x} - 1 \<le> card {k \<in> {1..n}. b k > d k}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   680
      apply(rule kle_range_combine_r[where y=c]) using c_d using assm(6) and b by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   681
    hence "kle n d a \<and> (card {x \<in> s. \<not> kle n a x} - 1) + 2 \<le> card {k \<in> {1..n}. a k > d k}" apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   682
      apply(rule kle_range_combine[where y=b]) using as and b assm(6) `a\<in>s` `d\<in>s` by blast+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   683
    ultimately have "kle n d e \<and> (card ?kle1 - 1 + 2) + (card ?kle2 - 1) \<le> card {k\<in>{1..n}. e k > d k}" apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   684
      apply(rule kle_range_combine[where y=a]) using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`] apply - by blast+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   685
    moreover have "card {k \<in> {1..n}. e k > d k} \<le> card {1..n}" apply(rule card_mono) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   686
    ultimately show False unfolding n by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   687
  then guess k unfolding card_1_exists .. note k=this[unfolded mem_Collect_eq]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   688
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   689
  show ?thesis apply(rule disjI2) apply(rule_tac x=b in bexI,rule_tac x=k in bexI) proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   690
    fix j::nat have "kle n b a" using b and assm(6)[rule_format, OF `a\<in>s` `b\<in>s`] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   691
    then guess kk unfolding kle_def .. note kk_raw=this note kk=this[THEN conjunct2,rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   692
    have kkk:"k\<in>kk" apply(rule ccontr) using k(1) unfolding kk by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   693
    show "a j = (if j = k then b j + 1 else b j)" proof(cases "j\<in>kk")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   694
      case True hence "j=k" apply-apply(rule k(2)[rule_format]) using kk_raw kkk by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   695
      thus ?thesis unfolding kk using kkk by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   696
      case False hence "j\<noteq>k" using k(2)[rule_format, of j k] using kk_raw kkk by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   697
      thus ?thesis unfolding kk using kkk using False by auto qed qed(insert k(1) `b\<in>s`, auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   698
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   699
subsection {* The lemmas about simplices that we need. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   700
50027
7747a9f4c358 adjusting proofs as the set_comprehension_pointfree simproc breaks some existing proofs
bulwahn
parents: 49555
diff changeset
   701
(* FIXME: These are clones of lemmas in Library/FuncSet *) 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   702
lemma card_funspace': assumes "finite s" "finite t" "card s = m" "card t = n"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   703
  shows "card {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)} = n ^ m" (is "card (?M s) = _")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   704
  using assms apply - proof(induct m arbitrary: s)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   705
  have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}" apply(rule set_eqI,rule)unfolding mem_Collect_eq apply(rule,rule ext) by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   706
  case 0 thus ?case by(auto simp add: *) next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   707
  case (Suc m) guess a using card_eq_SucD[OF Suc(4)] .. then guess s0
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   708
    apply(erule_tac exE) apply(erule conjE)+ . note as0 = this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   709
  have **:"card s0 = m" using as0 using Suc(2) Suc(4) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   710
  let ?l = "(\<lambda>(b,g) x. if x = a then b else g x)" have *:"?M (insert a s0) = ?l ` {(b,g). b\<in>t \<and> g\<in>?M s0}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
   711
    apply(rule set_eqI,rule) unfolding mem_Collect_eq image_iff apply(erule conjE)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   712
    apply(rule_tac x="(x a, \<lambda>y. if y\<in>s0 then x y else d)" in bexI) apply(rule ext) prefer 3 apply rule defer
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   713
    apply(erule bexE,rule) unfolding mem_Collect_eq apply(erule splitE)+ apply(erule conjE)+ proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   714
    fix x xa xb xc y assume as:"x = (\<lambda>(b, g) x. if x = a then b else g x) xa" "xb \<in> UNIV - insert a s0" "xa = (xc, y)" "xc \<in> t"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   715
      "\<forall>x\<in>s0. y x \<in> t" "\<forall>x\<in>UNIV - s0. y x = d" thus "x xb = d" unfolding as by auto qed auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   716
  have inj:"inj_on ?l {(b,g). b\<in>t \<and> g\<in>?M s0}" unfolding inj_on_def apply(rule,rule,rule) unfolding mem_Collect_eq apply(erule splitE conjE)+ proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   717
    case goal1 note as = this(1,4-)[unfolded goal1 split_conv]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   718
    have "xa = xb" using as(1)[THEN cong[of _ _ a]] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   719
    moreover have "ya = yb" proof(rule ext) fix x show "ya x = yb x" proof(cases "x = a") 
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   720
        case False thus ?thesis using as(1)[THEN cong[of _ _ x x]] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   721
        case True thus ?thesis using as(5,7) using as0(2) by auto qed qed 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   722
    ultimately show ?case unfolding goal1 by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   723
  have "finite s0" using `finite s` unfolding as0 by simp
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   724
  show ?case unfolding as0 * card_image[OF inj] using assms
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   725
    unfolding SetCompr_Sigma_eq apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   726
    unfolding card_cartesian_product
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   727
    using Suc(1)[OF `finite s0` `finite t` ** `card t = n`] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   728
qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   729
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   730
lemma card_funspace: assumes  "finite s" "finite t"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   731
  shows "card {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)} = (card t) ^ (card s)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   732
  using assms by (auto intro: card_funspace')
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   733
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   734
lemma finite_funspace: assumes "finite s" "finite t"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   735
  shows "finite {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)}" (is "finite ?S")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   736
proof (cases "card t > 0")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   737
  case True
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   738
  have "card ?S = (card t) ^ (card s)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   739
    using assms by (auto intro!: card_funspace)
50027
7747a9f4c358 adjusting proofs as the set_comprehension_pointfree simproc breaks some existing proofs
bulwahn
parents: 49555
diff changeset
   740
  thus ?thesis using True by (rule_tac card_ge_0_finite) simp
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   741
next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   742
  case False hence "t = {}" using `finite t` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   743
  show ?thesis
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   744
  proof (cases "s = {}")
44457
d366fa5551ef declare euclidean_simps [simp] at the point they are proved;
huffman
parents: 44282
diff changeset
   745
    have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}" by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   746
    case True thus ?thesis using `t = {}` by (auto simp: *)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   747
  next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   748
    case False thus ?thesis using `t = {}` by simp
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   749
  qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   750
qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   751
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   752
lemma finite_simplices: "finite {s. ksimplex p n s}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   753
  apply(rule finite_subset[of _ "{s. s\<subseteq>{f. (\<forall>i\<in>{1..n}. f i \<in> {0..p}) \<and> (\<forall>i\<in>UNIV-{1..n}. f i = p)}}"])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   754
  unfolding ksimplex_def defer apply(rule finite_Collect_subsets) apply(rule finite_funspace) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   755
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   756
lemma simplex_top_face: assumes "0<p" "\<forall>x\<in>f. x (n + 1) = p"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   757
  shows "(\<exists>s a. ksimplex p (n + 1) s \<and> a \<in> s \<and> (f = s - {a})) \<longleftrightarrow> ksimplex p n f" (is "?ls = ?rs") proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   758
  assume ?ls then guess s .. then guess a apply-apply(erule exE,(erule conjE)+) . note sa=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   759
  show ?rs unfolding ksimplex_def sa(3) apply(rule) defer apply rule defer apply(rule,rule,rule,rule) defer apply(rule,rule) proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   760
    fix x y assume as:"x \<in>s - {a}" "y \<in>s - {a}" have xyp:"x (n + 1) = y (n + 1)"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   761
        using as(1)[unfolded sa(3)[THEN sym], THEN assms(2)[rule_format]]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   762
        using as(2)[unfolded sa(3)[THEN sym], THEN assms(2)[rule_format]] by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   763
    show "kle n x y \<or> kle n y x" proof(cases "kle (n + 1) x y")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   764
      case True then guess k unfolding kle_def .. note k=this hence *:"n+1 \<notin> k" using xyp by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   765
      have "\<not> (\<exists>x\<in>k. x\<notin>{1..n})" apply(rule ccontr) unfolding not_not apply(erule bexE) proof-
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   766
        fix x assume as:"x \<in> k" "x \<notin> {1..n}" have "x \<noteq> n+1" using as and * by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   767
        thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   768
      thus ?thesis apply-apply(rule disjI1) unfolding kle_def using k apply(rule_tac x=k in exI) by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   769
      case False hence "kle (n + 1) y x" using ksimplexD(6)[OF sa(1),rule_format, of x y] using as by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   770
      then guess k unfolding kle_def .. note k=this hence *:"n+1 \<notin> k" using xyp by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   771
      hence "\<not> (\<exists>x\<in>k. x\<notin>{1..n})" apply-apply(rule ccontr) unfolding not_not apply(erule bexE) proof-
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   772
        fix x assume as:"x \<in> k" "x \<notin> {1..n}" have "x \<noteq> n+1" using as and * by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   773
        thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   774
      thus ?thesis apply-apply(rule disjI2) unfolding kle_def using k apply(rule_tac x=k in exI) by auto qed next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   775
    fix x j assume as:"x\<in>s - {a}" "j\<notin>{1..n}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   776
    thus "x j = p" using as(1)[unfolded sa(3)[THEN sym], THEN assms(2)[rule_format]]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   777
      apply(cases "j = n+1") using sa(1)[unfolded ksimplex_def] by auto qed(insert sa ksimplexD[OF sa(1)], auto) next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   778
  assume ?rs note rs=ksimplexD[OF this] guess a b apply(rule ksimplex_extrema[OF `?rs`]) . note ab = this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   779
  def c \<equiv> "\<lambda>i. if i = (n + 1) then p - 1 else a i"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   780
  have "c\<notin>f" apply(rule ccontr) unfolding not_not apply(drule assms(2)[rule_format]) unfolding c_def using assms(1) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   781
  thus ?ls apply(rule_tac x="insert c f" in exI,rule_tac x=c in exI) unfolding ksimplex_def conj_assoc
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   782
    apply(rule conjI) defer apply(rule conjI) defer apply(rule conjI) defer apply(rule conjI) defer  
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   783
  proof(rule_tac[3-5] ballI allI)+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   784
    fix x j assume x:"x \<in> insert c f" thus "x j \<le> p" proof (cases "x=c")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   785
      case True show ?thesis unfolding True c_def apply(cases "j=n+1") using ab(1) and rs(4) by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   786
    qed(insert x rs(4), auto simp add:c_def)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   787
    show "j \<notin> {1..n + 1} \<longrightarrow> x j = p" apply(cases "x=c") using x ab(1) rs(5) unfolding c_def by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   788
    { fix z assume z:"z \<in> insert c f" hence "kle (n + 1) c z" apply(cases "z = c") (*defer apply(rule kle_Suc)*) proof-
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   789
        case False hence "z\<in>f" using z by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   790
        then guess k apply(drule_tac ab(3)[THEN bspec[where x=z], THEN conjunct1]) unfolding kle_def apply(erule exE) .
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   791
        thus "kle (n + 1) c z" unfolding kle_def apply(rule_tac x="insert (n + 1) k" in exI) unfolding c_def
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   792
          using ab using rs(5)[rule_format,OF ab(1),of "n + 1"] assms(1) by auto qed auto } note * = this
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   793
    fix y assume y:"y \<in> insert c f" show "kle (n + 1) x y \<or> kle (n + 1) y x" proof(cases "x = c \<or> y = c")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   794
      case False hence **:"x\<in>f" "y\<in>f" using x y by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   795
      show ?thesis using rs(6)[rule_format,OF **] by(auto dest: kle_Suc) qed(insert * x y, auto)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   796
  qed(insert rs, auto) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   797
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   798
lemma ksimplex_fix_plane:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   799
  assumes "a \<in> s" "j\<in>{1..n::nat}" "\<forall>x\<in>s - {a}. x j = q" "a0 \<in> s" "a1 \<in> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   800
  "\<forall>i. a1 i = ((if i\<in>{1..n} then a0 i + 1 else a0 i)::nat)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   801
  shows "(a = a0) \<or> (a = a1)" proof- have *:"\<And>P A x y. \<forall>x\<in>A. P x \<Longrightarrow> x\<in>A \<Longrightarrow> y\<in>A \<Longrightarrow> P x \<and> P y" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   802
  show ?thesis apply(rule ccontr) using *[OF assms(3), of a0 a1] unfolding assms(6)[THEN spec[where x=j]]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   803
    using assms(1-2,4-5) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   804
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   805
lemma ksimplex_fix_plane_0:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   806
  assumes "a \<in> s" "j\<in>{1..n::nat}" "\<forall>x\<in>s - {a}. x j = 0" "a0 \<in> s" "a1 \<in> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   807
  "\<forall>i. a1 i = ((if i\<in>{1..n} then a0 i + 1 else a0 i)::nat)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   808
  shows "a = a1" apply(rule ccontr) using ksimplex_fix_plane[OF assms]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   809
  using assms(3)[THEN bspec[where x=a1]] using assms(2,5)  
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   810
  unfolding assms(6)[THEN spec[where x=j]] by simp
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   811
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   812
lemma ksimplex_fix_plane_p:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   813
  assumes "ksimplex p n s" "a \<in> s" "j\<in>{1..n}" "\<forall>x\<in>s - {a}. x j = p" "a0 \<in> s" "a1 \<in> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   814
  "\<forall>i. a1 i = (if i\<in>{1..n} then a0 i + 1 else a0 i)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   815
  shows "a = a0" proof(rule ccontr) note s = ksimplexD[OF assms(1),rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   816
  assume as:"a \<noteq> a0" hence *:"a0 \<in> s - {a}" using assms(5) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   817
  hence "a1 = a" using ksimplex_fix_plane[OF assms(2-)] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   818
  thus False using as using assms(3,5) and assms(7)[rule_format,of j]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   819
    unfolding assms(4)[rule_format,OF *] using s(4)[OF assms(6), of j] by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   820
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   821
lemma ksimplex_replace_0:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   822
  assumes "ksimplex p n s" "a \<in> s" "n \<noteq> 0" "j\<in>{1..n}" "\<forall>x\<in>s - {a}. x j = 0"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   823
  shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   824
  have *:"\<And>s' a a'. s' - {a'} = s - {a} \<Longrightarrow> a' = a \<Longrightarrow> a' \<in> s' \<Longrightarrow> a \<in> s \<Longrightarrow> (s' = s)" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   825
  have **:"\<And>s' a'. ksimplex p n s' \<Longrightarrow> a' \<in> s' \<Longrightarrow> s' - {a'} = s - {a} \<Longrightarrow> s' = s" proof- case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   826
    guess a0 a1 apply(rule ksimplex_extrema_strong[OF assms(1,3)]) . note exta = this[rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   827
    have a:"a = a1" apply(rule ksimplex_fix_plane_0[OF assms(2,4-5)]) using exta(1-2,5) by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   828
    guess b0 b1 apply(rule ksimplex_extrema_strong[OF goal1(1) assms(3)]) . note extb = this[rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   829
    have a':"a' = b1" apply(rule ksimplex_fix_plane_0[OF goal1(2) assms(4), of b0]) unfolding goal1(3) using assms extb goal1 by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   830
    have "b0 = a0" unfolding kle_antisym[THEN sym, of b0 a0 n] using exta extb using goal1(3) unfolding a a' by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   831
    hence "b1 = a1" apply-apply(rule ext) unfolding exta(5) extb(5) by auto ultimately
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   832
    show "s' = s" apply-apply(rule *[of _ a1 b1]) using exta(1-2) extb(1-2) goal1 by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   833
  show ?thesis unfolding card_1_exists apply-apply(rule ex1I[of _ s])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   834
    unfolding mem_Collect_eq defer apply(erule conjE bexE)+ apply(rule_tac a'=b in **) using assms(1,2) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   835
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   836
lemma ksimplex_replace_1:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   837
  assumes "ksimplex p n s" "a \<in> s" "n \<noteq> 0" "j\<in>{1..n}" "\<forall>x\<in>s - {a}. x j = p"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   838
  shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   839
  have lem:"\<And>a a' s'. s' - {a'} = s - {a} \<Longrightarrow> a' = a \<Longrightarrow> a' \<in> s' \<Longrightarrow> a \<in> s \<Longrightarrow> s' = s" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   840
  have lem:"\<And>s' a'. ksimplex p n s' \<Longrightarrow> a'\<in>s' \<Longrightarrow> s' - {a'} = s - {a} \<Longrightarrow> s' = s" proof- case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   841
    guess a0 a1 apply(rule ksimplex_extrema_strong[OF assms(1,3)]) . note exta = this[rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   842
    have a:"a = a0" apply(rule ksimplex_fix_plane_p[OF assms(1-2,4-5) exta(1,2)]) unfolding exta by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   843
    guess b0 b1 apply(rule ksimplex_extrema_strong[OF goal1(1) assms(3)]) . note extb = this[rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   844
    have a':"a' = b0" apply(rule ksimplex_fix_plane_p[OF goal1(1-2) assms(4), of _ b1]) unfolding goal1 extb using extb(1,2) assms(5) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   845
    moreover have *:"b1 = a1" unfolding kle_antisym[THEN sym, of b1 a1 n] using exta extb using goal1(3) unfolding a a' by blast moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   846
    have "a0 = b0" apply(rule ext) proof- case goal1 show "a0 x = b0 x"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   847
        using *[THEN cong, of x x] unfolding exta extb apply-apply(cases "x\<in>{1..n}") by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   848
    ultimately show "s' = s" apply-apply(rule lem[OF goal1(3) _ goal1(2) assms(2)]) by auto qed 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   849
  show ?thesis unfolding card_1_exists apply(rule ex1I[of _ s]) unfolding mem_Collect_eq apply(rule,rule assms(1))
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   850
    apply(rule_tac x=a in bexI) prefer 3 apply(erule conjE bexE)+ apply(rule_tac a'=b in lem) using assms(1-2) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   851
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   852
lemma ksimplex_replace_2:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   853
  assumes "ksimplex p n s" "a \<in> s" "n \<noteq> 0" "~(\<exists>j\<in>{1..n}. \<forall>x\<in>s - {a}. x j = 0)" "~(\<exists>j\<in>{1..n}. \<forall>x\<in>s - {a}. x j = p)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   854
  shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 2" (is "card ?A = 2")  proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   855
  have lem1:"\<And>a a' s s'. s' - {a'} = s - {a} \<Longrightarrow> a' = a \<Longrightarrow> a' \<in> s' \<Longrightarrow> a \<in> s \<Longrightarrow> s' = s" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   856
  have lem2:"\<And>a b. a\<in>s \<Longrightarrow> b\<noteq>a \<Longrightarrow> s \<noteq> insert b (s - {a})" proof case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   857
    hence "a\<in>insert b (s - {a})" by auto hence "a\<in> s - {a}" unfolding insert_iff using goal1 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   858
    thus False by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   859
  guess a0 a1 apply(rule ksimplex_extrema_strong[OF assms(1,3)]) . note a0a1=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   860
  { assume "a=a0"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   861
    have *:"\<And>P Q. (P \<or> Q) \<Longrightarrow> \<not> P \<Longrightarrow> Q" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   862
    have "\<exists>x\<in>s. \<not> kle n x a0" apply(rule_tac x=a1 in bexI) proof assume as:"kle n a1 a0"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   863
      show False using kle_imp_pointwise[OF as,THEN spec[where x=1]] unfolding a0a1(5)[THEN spec[where x=1]]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   864
        using assms(3) by auto qed(insert a0a1,auto)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   865
    hence "\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. y j = (if j = k then a0 j + 1 else a0 j)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   866
      apply(rule_tac *[OF ksimplex_successor[OF assms(1-2),unfolded `a=a0`]]) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   867
    then guess a2 .. from this(2) guess k .. note k=this note a2=`a2\<in>s`
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   868
    def a3 \<equiv> "\<lambda>j. if j = k then a1 j + 1 else a1 j"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   869
    have "a3 \<notin> s" proof assume "a3\<in>s" hence "kle n a3 a1" using a0a1(4) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   870
      thus False apply(drule_tac kle_imp_pointwise) unfolding a3_def
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   871
        apply(erule_tac x=k in allE) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   872
    hence "a3 \<noteq> a0" "a3 \<noteq> a1" using a0a1 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   873
    have "a2 \<noteq> a0" using k(2)[THEN spec[where x=k]] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   874
    have lem3:"\<And>x. x\<in>(s - {a0}) \<Longrightarrow> kle n a2 x" proof(rule ccontr) case goal1 hence as:"x\<in>s" "x\<noteq>a0" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   875
      have "kle n a2 x \<or> kle n x a2" using ksimplexD(6)[OF assms(1)] and as `a2\<in>s` by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   876
      have "kle n a0 x" using a0a1(4) as by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   877
      ultimately have "x = a0 \<or> x = a2" apply-apply(rule kle_adjacent[OF k(2)]) using goal1(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   878
      hence "x = a2" using as by auto thus False using goal1(2) using kle_refl by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   879
    let ?s = "insert a3 (s - {a0})" have "ksimplex p n ?s" apply(rule ksimplexI) proof(rule_tac[2-] ballI,rule_tac[4] ballI)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   880
      show "card ?s = n + 1" using ksimplexD(2-3)[OF assms(1)]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   881
        using `a3\<noteq>a0` `a3\<notin>s` `a0\<in>s` by(auto simp add:card_insert_if)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   882
      fix x assume x:"x \<in> insert a3 (s - {a0})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   883
      show "\<forall>j. x j \<le> p" proof(rule,cases "x = a3")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   884
        fix j case False thus "x j\<le>p" using x ksimplexD(4)[OF assms(1)] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   885
        fix j case True show "x j\<le>p" unfolding True proof(cases "j=k") 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   886
          case False thus "a3 j \<le>p" unfolding True a3_def using `a1\<in>s` ksimplexD(4)[OF assms(1)] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   887
          guess a4 using assms(5)[unfolded bex_simps ball_simps,rule_format,OF k(1)] .. note a4=this
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   888
          have "a2 k \<le> a4 k" using lem3[OF a4(1)[unfolded `a=a0`],THEN kle_imp_pointwise] by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   889
          also have "\<dots> < p" using ksimplexD(4)[OF assms(1),rule_format,of a4 k] using a4 by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   890
          finally have *:"a0 k + 1 < p" unfolding k(2)[rule_format] by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   891
          case True thus "a3 j \<le>p" unfolding a3_def unfolding a0a1(5)[rule_format]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   892
            using k(1) k(2)assms(5) using * by simp qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   893
      show "\<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p" proof(rule,rule,cases "x=a3") fix j::nat assume j:"j\<notin>{1..n}"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   894
        { case False thus "x j = p" using j x ksimplexD(5)[OF assms(1)] by auto }
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   895
        case True show "x j = p" unfolding True a3_def using j k(1) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   896
          using ksimplexD(5)[OF assms(1),rule_format,OF `a1\<in>s` j] by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   897
      fix y assume y:"y\<in>insert a3 (s - {a0})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   898
      have lem4:"\<And>x. x\<in>s \<Longrightarrow> x\<noteq>a0 \<Longrightarrow> kle n x a3" proof- case goal1
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   899
        guess kk using a0a1(4)[rule_format,OF `x\<in>s`,THEN conjunct2,unfolded kle_def] 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   900
          apply-apply(erule exE,erule conjE) . note kk=this
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   901
        have "k\<notin>kk" proof assume "k\<in>kk"
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   902
          hence "a1 k = x k + 1" using kk by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   903
          hence "a0 k = x k" unfolding a0a1(5)[rule_format] using k(1) by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   904
          hence "a2 k = x k + 1" unfolding k(2)[rule_format] by auto moreover
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   905
          have "a2 k \<le> x k" using lem3[of x,THEN kle_imp_pointwise] goal1 by auto 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   906
          ultimately show False by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   907
        thus ?case unfolding kle_def apply(rule_tac x="insert k kk" in exI) using kk(1)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   908
          unfolding a3_def kle_def kk(2)[rule_format] using k(1) by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   909
      show "kle n x y \<or> kle n y x" proof(cases "y=a3")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   910
        case True show ?thesis unfolding True apply(cases "x=a3") defer apply(rule disjI1,rule lem4)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   911
          using x by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   912
        case False show ?thesis proof(cases "x=a3") case True show ?thesis unfolding True
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   913
            apply(rule disjI2,rule lem4) using y False by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   914
          case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format]) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   915
            using x y `y\<noteq>a3` by auto qed qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   916
    hence "insert a3 (s - {a0}) \<in> ?A" unfolding mem_Collect_eq apply-apply(rule,assumption)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   917
      apply(rule_tac x="a3" in bexI) unfolding `a=a0` using `a3\<notin>s` by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   918
    have "s \<in> ?A" using assms(1,2) by auto ultimately have  "?A \<supseteq> {s, insert a3 (s - {a0})}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   919
    moreover have "?A \<subseteq> {s, insert a3 (s - {a0})}" apply(rule) unfolding mem_Collect_eq proof(erule conjE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   920
      fix s' assume as:"ksimplex p n s'" and "\<exists>b\<in>s'. s' - {b} = s - {a}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   921
      from this(2) guess a' .. note a'=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   922
      guess a_min a_max apply(rule ksimplex_extrema_strong[OF as assms(3)]) . note min_max=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   923
      have *:"\<forall>x\<in>s' - {a'}. x k = a2 k" unfolding a' proof fix x assume x:"x\<in>s-{a}"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   924
        hence "kle n a2 x" apply-apply(rule lem3) using `a=a0` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   925
        hence "a2 k \<le> x k" apply(drule_tac kle_imp_pointwise) by auto moreover
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   926
        have "x k \<le> a2 k" unfolding k(2)[rule_format] using a0a1(4)[rule_format,of x,THEN conjunct1] 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   927
          unfolding kle_def using x by auto ultimately show "x k = a2 k" by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   928
      have **:"a'=a_min \<or> a'=a_max" apply(rule ksimplex_fix_plane[OF a'(1) k(1) *]) using min_max by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   929
      show "s' \<in> {s, insert a3 (s - {a0})}" proof(cases "a'=a_min")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   930
        case True have "a_max = a1" unfolding kle_antisym[THEN sym,of a_max a1 n] apply(rule)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   931
          apply(rule a0a1(4)[rule_format,THEN conjunct2]) defer  proof(rule min_max(4)[rule_format,THEN conjunct2])
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   932
          show "a1\<in>s'" using a' unfolding `a=a0` using a0a1 by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   933
          show "a_max \<in> s" proof(rule ccontr) assume "a_max\<notin>s"
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   934
            hence "a_max = a'" using a' min_max by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   935
            thus False unfolding True using min_max by auto qed qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   936
        hence "\<forall>i. a_max i = a1 i" by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   937
        hence "a' = a" unfolding True `a=a0` apply-apply(subst fun_eq_iff,rule)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   938
          apply(erule_tac x=x in allE) unfolding a0a1(5)[rule_format] min_max(5)[rule_format]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   939
        proof- case goal1 thus ?case apply(cases "x\<in>{1..n}") by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   940
        hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   941
        thus ?thesis by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   942
        case False hence as:"a' = a_max" using ** by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   943
        have "a_min = a2" unfolding kle_antisym[THEN sym, of _ _ n] apply rule
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   944
          apply(rule min_max(4)[rule_format,THEN conjunct1]) defer proof(rule lem3)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   945
          show "a_min \<in> s - {a0}" unfolding a'(2)[THEN sym,unfolded `a=a0`] 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   946
            unfolding as using min_max(1-3) by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   947
          have "a2 \<noteq> a" unfolding `a=a0` using k(2)[rule_format,of k] by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   948
          hence "a2 \<in> s - {a}" using a2 by auto thus "a2 \<in> s'" unfolding a'(2)[THEN sym] by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   949
        hence "\<forall>i. a_min i = a2 i" by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   950
        hence "a' = a3" unfolding as `a=a0` apply-apply(subst fun_eq_iff,rule)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   951
          apply(erule_tac x=x in allE) unfolding a0a1(5)[rule_format] min_max(5)[rule_format]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   952
          unfolding a3_def k(2)[rule_format] unfolding a0a1(5)[rule_format] proof- case goal1
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   953
          show ?case unfolding goal1 apply(cases "x\<in>{1..n}") defer apply(cases "x=k")
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   954
            using `k\<in>{1..n}` by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   955
        hence "s' = insert a3 (s - {a0})" apply-apply(rule lem1) defer apply assumption
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   956
          apply(rule a'(1)) unfolding a' `a=a0` using `a3\<notin>s` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   957
        thus ?thesis by auto qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   958
    ultimately have *:"?A = {s, insert a3 (s - {a0})}" by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   959
    have "s \<noteq> insert a3 (s - {a0})" using `a3\<notin>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   960
    hence ?thesis unfolding * by auto } moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   961
  { assume "a=a1"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   962
    have *:"\<And>P Q. (P \<or> Q) \<Longrightarrow> \<not> P \<Longrightarrow> Q" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   963
    have "\<exists>x\<in>s. \<not> kle n a1 x" apply(rule_tac x=a0 in bexI) proof assume as:"kle n a1 a0"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   964
      show False using kle_imp_pointwise[OF as,THEN spec[where x=1]] unfolding a0a1(5)[THEN spec[where x=1]]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   965
        using assms(3) by auto qed(insert a0a1,auto)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   966
    hence "\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. a1 j = (if j = k then y j + 1 else y j)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   967
      apply(rule_tac *[OF ksimplex_predecessor[OF assms(1-2),unfolded `a=a1`]]) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   968
    then guess a2 .. from this(2) guess k .. note k=this note a2=`a2\<in>s`
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   969
    def a3 \<equiv> "\<lambda>j. if j = k then a0 j - 1 else a0 j"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   970
    have "a2 \<noteq> a1" using k(2)[THEN spec[where x=k]] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   971
    have lem3:"\<And>x. x\<in>(s - {a1}) \<Longrightarrow> kle n x a2" proof(rule ccontr) case goal1 hence as:"x\<in>s" "x\<noteq>a1" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   972
      have "kle n a2 x \<or> kle n x a2" using ksimplexD(6)[OF assms(1)] and as `a2\<in>s` by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   973
      have "kle n x a1" using a0a1(4) as by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   974
      ultimately have "x = a2 \<or> x = a1" apply-apply(rule kle_adjacent[OF k(2)]) using goal1(2) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   975
      hence "x = a2" using as by auto thus False using goal1(2) using kle_refl by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   976
    have "a0 k \<noteq> 0" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   977
      guess a4 using assms(4)[unfolded bex_simps ball_simps,rule_format,OF `k\<in>{1..n}`] .. note a4=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   978
      have "a4 k \<le> a2 k" using lem3[OF a4(1)[unfolded `a=a1`],THEN kle_imp_pointwise] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   979
      moreover have "a4 k > 0" using a4 by auto ultimately have "a2 k > 0" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   980
      hence "a1 k > 1" unfolding k(2)[rule_format] by simp
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   981
      thus ?thesis unfolding a0a1(5)[rule_format] using k(1) by simp qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   982
    hence lem4:"\<forall>j. a0 j = (if j=k then a3 j + 1 else a3 j)" unfolding a3_def by simp
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   983
    have "\<not> kle n a0 a3" apply(rule ccontr) unfolding not_not apply(drule kle_imp_pointwise)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   984
      unfolding lem4[rule_format] apply(erule_tac x=k in allE) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   985
    hence "a3 \<notin> s" using a0a1(4) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   986
    hence "a3 \<noteq> a1" "a3 \<noteq> a0" using a0a1 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   987
    let ?s = "insert a3 (s - {a1})" have "ksimplex p n ?s" apply(rule ksimplexI) proof(rule_tac[2-] ballI,rule_tac[4] ballI)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   988
      show "card ?s = n+1" using ksimplexD(2-3)[OF assms(1)]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   989
        using `a3\<noteq>a0` `a3\<notin>s` `a1\<in>s` by(auto simp add:card_insert_if)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   990
      fix x assume x:"x \<in> insert a3 (s - {a1})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   991
      show "\<forall>j. x j \<le> p" proof(rule,cases "x = a3")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   992
        fix j case False thus "x j\<le>p" using x ksimplexD(4)[OF assms(1)] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   993
        fix j case True show "x j\<le>p" unfolding True proof(cases "j=k") 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   994
          case False thus "a3 j \<le>p" unfolding True a3_def using `a0\<in>s` ksimplexD(4)[OF assms(1)] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
   995
          guess a4 using assms(5)[unfolded bex_simps ball_simps,rule_format,OF k(1)] .. note a4=this
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   996
          case True have "a3 k \<le> a0 k" unfolding lem4[rule_format] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   997
          also have "\<dots> \<le> p" using ksimplexD(4)[OF assms(1),rule_format,of a0 k] a0a1 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   998
          finally show "a3 j \<le> p" unfolding True by auto qed qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
   999
      show "\<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p" proof(rule,rule,cases "x=a3") fix j::nat assume j:"j\<notin>{1..n}"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1000
        { case False thus "x j = p" using j x ksimplexD(5)[OF assms(1)] by auto }
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1001
        case True show "x j = p" unfolding True a3_def using j k(1) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1002
          using ksimplexD(5)[OF assms(1),rule_format,OF `a0\<in>s` j] by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1003
      fix y assume y:"y\<in>insert a3 (s - {a1})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1004
      have lem4:"\<And>x. x\<in>s \<Longrightarrow> x\<noteq>a1 \<Longrightarrow> kle n a3 x" proof- case goal1 hence *:"x\<in>s - {a1}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1005
        have "kle n a3 a2" proof- have "kle n a0 a1" using a0a1 by auto then guess kk unfolding kle_def ..
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1006
          thus ?thesis unfolding kle_def apply(rule_tac x=kk in exI) unfolding lem4[rule_format] k(2)[rule_format]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1007
            apply(rule)defer proof(rule) case goal1 thus ?case apply-apply(erule conjE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1008
              apply(erule_tac[!] x=j in allE) apply(cases "j\<in>kk") apply(case_tac[!] "j=k") by auto qed auto qed moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1009
        have "kle n a3 a0" unfolding kle_def lem4[rule_format] apply(rule_tac x="{k}" in exI) using k(1) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1010
        ultimately show ?case apply-apply(rule kle_between_l[of _ a0 _ a2]) using lem3[OF *]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1011
          using a0a1(4)[rule_format,OF goal1(1)] by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1012
      show "kle n x y \<or> kle n y x" proof(cases "y=a3")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1013
        case True show ?thesis unfolding True apply(cases "x=a3") defer apply(rule disjI2,rule lem4)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1014
          using x by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1015
        case False show ?thesis proof(cases "x=a3") case True show ?thesis unfolding True
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1016
            apply(rule disjI1,rule lem4) using y False by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1017
          case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format]) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1018
            using x y `y\<noteq>a3` by auto qed qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1019
    hence "insert a3 (s - {a1}) \<in> ?A" unfolding mem_Collect_eq apply-apply(rule,assumption)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1020
      apply(rule_tac x="a3" in bexI) unfolding `a=a1` using `a3\<notin>s` by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1021
    have "s \<in> ?A" using assms(1,2) by auto ultimately have  "?A \<supseteq> {s, insert a3 (s - {a1})}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1022
    moreover have "?A \<subseteq> {s, insert a3 (s - {a1})}" apply(rule) unfolding mem_Collect_eq proof(erule conjE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1023
      fix s' assume as:"ksimplex p n s'" and "\<exists>b\<in>s'. s' - {b} = s - {a}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1024
      from this(2) guess a' .. note a'=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1025
      guess a_min a_max apply(rule ksimplex_extrema_strong[OF as assms(3)]) . note min_max=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1026
      have *:"\<forall>x\<in>s' - {a'}. x k = a2 k" unfolding a' proof fix x assume x:"x\<in>s-{a}"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1027
        hence "kle n x a2" apply-apply(rule lem3) using `a=a1` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1028
        hence "x k \<le> a2 k" apply(drule_tac kle_imp_pointwise) by auto moreover
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1029
        { have "a2 k \<le> a0 k" using k(2)[rule_format,of k] unfolding a0a1(5)[rule_format] using k(1) by simp
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1030
          also have "\<dots> \<le> x k" using a0a1(4)[rule_format,of x,THEN conjunct1,THEN kle_imp_pointwise] x by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1031
          finally have "a2 k \<le> x k" . } ultimately show "x k = a2 k" by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1032
      have **:"a'=a_min \<or> a'=a_max" apply(rule ksimplex_fix_plane[OF a'(1) k(1) *]) using min_max by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1033
      have "a2 \<noteq> a1" proof assume as:"a2 = a1"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1034
        show False using k(2) unfolding as apply(erule_tac x=k in allE) by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1035
      hence a2':"a2 \<in> s' - {a'}" unfolding a' using a2 unfolding `a=a1` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1036
      show "s' \<in> {s, insert a3 (s - {a1})}" proof(cases "a'=a_min")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1037
        case True have "a_max \<in> s - {a1}" using min_max unfolding a'(2)[unfolded `a=a1`,THEN sym] True by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1038
        hence "a_max = a2" unfolding kle_antisym[THEN sym,of a_max a2 n] apply-apply(rule)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1039
          apply(rule lem3,assumption) apply(rule min_max(4)[rule_format,THEN conjunct2]) using a2' by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1040
        hence a_max:"\<forall>i. a_max i = a2 i" by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1041
        have *:"\<forall>j. a2 j = (if j\<in>{1..n} then a3 j + 1 else a3 j)" 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1042
          using k(2) unfolding lem4[rule_format] a0a1(5)[rule_format] apply-apply(rule,erule_tac x=j in allE)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1043
        proof- case goal1 thus ?case apply(cases "j\<in>{1..n}",case_tac[!] "j=k") by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1044
        have "\<forall>i. a_min i = a3 i" using a_max apply-apply(rule,erule_tac x=i in allE)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1045
          unfolding min_max(5)[rule_format] *[rule_format] proof- case goal1
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1046
          thus ?case apply(cases "i\<in>{1..n}") by auto qed hence "a_min = a3" unfolding fun_eq_iff .
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1047
        hence "s' = insert a3 (s - {a1})" using a' unfolding `a=a1` True by auto thus ?thesis by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1048
        case False hence as:"a'=a_max" using ** by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1049
        have "a_min = a0" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1050
          apply(rule min_max(4)[rule_format,THEN conjunct1]) defer apply(rule a0a1(4)[rule_format,THEN conjunct1]) proof-
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1051
          have "a_min \<in> s - {a1}" using min_max(1,3) unfolding a'(2)[THEN sym,unfolded `a=a1`] as by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1052
          thus "a_min \<in> s" by auto have "a0 \<in> s - {a1}" using a0a1(1-3) by auto thus "a0 \<in> s'"
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1053
            unfolding a'(2)[THEN sym,unfolded `a=a1`] by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1054
        hence "\<forall>i. a_max i = a1 i" unfolding a0a1(5)[rule_format] min_max(5)[rule_format] by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1055
        hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` unfolding as `a=a1` unfolding fun_eq_iff by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1056
        thus ?thesis by auto qed qed 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1057
    ultimately have *:"?A = {s, insert a3 (s - {a1})}" by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1058
    have "s \<noteq> insert a3 (s - {a1})" using `a3\<notin>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1059
    hence ?thesis unfolding * by auto } moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1060
  { assume as:"a\<noteq>a0" "a\<noteq>a1" have "\<not> (\<forall>x\<in>s. kle n a x)" proof case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1061
      have "a=a0" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1062
        using goal1 a0a1 assms(2) by auto thus False using as by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1063
    hence "\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. a j = (if j = k then y j + 1 else y j)" using  ksimplex_predecessor[OF assms(1-2)] by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1064
    then guess u .. from this(2) guess k .. note k = this[rule_format] note u = `u\<in>s`
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1065
    have "\<not> (\<forall>x\<in>s. kle n x a)" proof case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1066
      have "a=a1" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1067
        using goal1 a0a1 assms(2) by auto thus False using as by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1068
    hence "\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. y j = (if j = k then a j + 1 else a j)" using  ksimplex_successor[OF assms(1-2)] by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1069
    then guess v .. from this(2) guess l .. note l = this[rule_format] note v = `v\<in>s`
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1070
    def a' \<equiv> "\<lambda>j. if j = l then u j + 1 else u j"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1071
    have kl:"k \<noteq> l" proof assume "k=l" have *:"\<And>P. (if P then (1::nat) else 0) \<noteq> 2" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1072
      thus False using ksimplexD(6)[OF assms(1),rule_format,OF u v] unfolding kle_def
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1073
        unfolding l(2) k(2) `k=l` apply-apply(erule disjE)apply(erule_tac[!] exE conjE)+
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1074
        apply(erule_tac[!] x=l in allE)+ by(auto simp add: *) qed
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1075
    hence aa':"a'\<noteq>a" apply-apply rule unfolding fun_eq_iff unfolding a'_def k(2)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1076
      apply(erule_tac x=l in allE) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1077
    have "a' \<notin> s" apply(rule) apply(drule ksimplexD(6)[OF assms(1),rule_format,OF `a\<in>s`]) proof(cases "kle n a a'")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1078
      case goal2 hence "kle n a' a" by auto thus False apply(drule_tac kle_imp_pointwise)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1079
        apply(erule_tac x=l in allE) unfolding a'_def k(2) using kl by auto next
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1080
      case True thus False apply(drule_tac kle_imp_pointwise)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1081
        apply(erule_tac x=k in allE) unfolding a'_def k(2) using kl by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1082
    have kle_uv:"kle n u a" "kle n u a'" "kle n a v" "kle n a' v" unfolding kle_def apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1083
      apply(rule_tac[1] x="{k}" in exI,rule_tac[2] x="{l}" in exI)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1084
      apply(rule_tac[3] x="{l}" in exI,rule_tac[4] x="{k}" in exI)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1085
      unfolding l(2) k(2) a'_def using l(1) k(1) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1086
    have uxv:"\<And>x. kle n u x \<Longrightarrow> kle n x v \<Longrightarrow> (x = u) \<or> (x = a) \<or> (x = a') \<or> (x = v)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1087
    proof- case goal1 thus ?case proof(cases "x k = u k", case_tac[!] "x l = u l")
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1088
      assume as:"x l = u l" "x k = u k"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1089
      have "x = u" unfolding fun_eq_iff
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1090
        using goal1(2)[THEN kle_imp_pointwise,unfolded l(2)] unfolding k(2) apply-
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1091
        using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1092
        thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as by auto qed thus ?case by auto next
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1093
      assume as:"x l \<noteq> u l" "x k = u k"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1094
      have "x = a'" unfolding fun_eq_iff unfolding a'_def
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1095
        using goal1(2)[THEN kle_imp_pointwise] unfolding l(2) k(2) apply-
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1096
        using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1097
        thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as by auto qed thus ?case by auto next
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1098
      assume as:"x l = u l" "x k \<noteq> u k"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1099
      have "x = a" unfolding fun_eq_iff
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1100
        using goal1(2)[THEN kle_imp_pointwise] unfolding l(2) k(2) apply-
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1101
        using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1102
        thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as by auto qed thus ?case by auto next
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1103
      assume as:"x l \<noteq> u l" "x k \<noteq> u k"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1104
      have "x = v" unfolding fun_eq_iff
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1105
        using goal1(2)[THEN kle_imp_pointwise] unfolding l(2) k(2) apply-
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1106
        using goal1(1)[THEN kle_imp_pointwise] apply-apply rule apply(erule_tac x=xa in allE)+ proof- case goal1
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1107
        thus ?case apply(cases "x=l") apply(case_tac[!] "x=k") using as `k\<noteq>l` by auto qed thus ?case by auto qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1108
    have uv:"kle n u v" apply(rule kle_trans[OF kle_uv(1,3)]) using ksimplexD(6)[OF assms(1)] using u v by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1109
    have lem3:"\<And>x. x\<in>s \<Longrightarrow> kle n v x \<Longrightarrow> kle n a' x" apply(rule kle_between_r[of _ u _ v])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1110
      prefer 3 apply(rule kle_trans[OF uv]) defer apply(rule ksimplexD(6)[OF assms(1),rule_format])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1111
      using kle_uv `u\<in>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1112
    have lem4:"\<And>x. x\<in>s \<Longrightarrow> kle n x u \<Longrightarrow> kle n x a'" apply(rule kle_between_l[of _ u _ v])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1113
      prefer 4 apply(rule kle_trans[OF _ uv]) defer apply(rule ksimplexD(6)[OF assms(1),rule_format])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1114
      using kle_uv `v\<in>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1115
    have lem5:"\<And>x. x\<in>s \<Longrightarrow> x\<noteq>a \<Longrightarrow> kle n x a' \<or> kle n a' x" proof- case goal1 thus ?case
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1116
      proof(cases "kle n v x \<or> kle n x u") case True thus ?thesis using goal1 by(auto intro:lem3 lem4) next
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1117
        case False hence *:"kle n u x" "kle n x v" using ksimplexD(6)[OF assms(1)] using goal1 `u\<in>s` `v\<in>s` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1118
        show ?thesis using uxv[OF *] using kle_uv using goal1 by auto qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1119
    have "ksimplex p n (insert a' (s - {a}))" apply(rule ksimplexI) proof(rule_tac[2-] ballI,rule_tac[4] ballI)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1120
      show "card (insert a' (s - {a})) = n + 1" using ksimplexD(2-3)[OF assms(1)]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1121
        using `a'\<noteq>a` `a'\<notin>s` `a\<in>s` by(auto simp add:card_insert_if)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1122
      fix x assume x:"x \<in> insert a' (s - {a})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1123
      show "\<forall>j. x j \<le> p" proof(rule,cases "x = a'")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1124
        fix j case False thus "x j\<le>p" using x ksimplexD(4)[OF assms(1)] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1125
        fix j case True show "x j\<le>p" unfolding True proof(cases "j=l") 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1126
          case False thus "a' j \<le>p" unfolding True a'_def using `u\<in>s` ksimplexD(4)[OF assms(1)] by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1127
          case True have *:"a l = u l" "v l = a l + 1" using k(2)[of l] l(2)[of l] `k\<noteq>l` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1128
          have "u l + 1 \<le> p" unfolding *[THEN sym] using ksimplexD(4)[OF assms(1)] using `v\<in>s` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1129
          thus "a' j \<le>p" unfolding a'_def True by auto qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1130
      show "\<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p" proof(rule,rule,cases "x=a'") fix j::nat assume j:"j\<notin>{1..n}"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1131
        { case False thus "x j = p" using j x ksimplexD(5)[OF assms(1)] by auto }
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1132
        case True show "x j = p" unfolding True a'_def using j l(1) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1133
          using ksimplexD(5)[OF assms(1),rule_format,OF `u\<in>s` j] by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1134
      fix y assume y:"y\<in>insert a' (s - {a})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1135
      show "kle n x y \<or> kle n y x" proof(cases "y=a'")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1136
        case True show ?thesis unfolding True apply(cases "x=a'") defer apply(rule lem5) using x by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1137
        case False show ?thesis proof(cases "x=a'") case True show ?thesis unfolding True
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1138
            using lem5[of y] using y by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1139
          case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format]) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1140
            using x y `y\<noteq>a'` by auto qed qed qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1141
    hence "insert a' (s - {a}) \<in> ?A" unfolding mem_Collect_eq apply-apply(rule,assumption)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1142
      apply(rule_tac x="a'" in bexI) using aa' `a'\<notin>s` by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1143
    have "s \<in> ?A" using assms(1,2) by auto ultimately have  "?A \<supseteq> {s, insert a' (s - {a})}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1144
    moreover have "?A \<subseteq> {s, insert a' (s - {a})}" apply(rule) unfolding mem_Collect_eq proof(erule conjE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1145
      fix s' assume as:"ksimplex p n s'" and "\<exists>b\<in>s'. s' - {b} = s - {a}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1146
      from this(2) guess a'' .. note a''=this
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1147
      have "u\<noteq>v" unfolding fun_eq_iff unfolding l(2) k(2) by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1148
      hence uv':"\<not> kle n v u" using uv using kle_antisym by auto
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1149
      have "u\<noteq>a" "v\<noteq>a" unfolding fun_eq_iff k(2) l(2) by auto 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1150
      hence uvs':"u\<in>s'" "v\<in>s'" using `u\<in>s` `v\<in>s` using a'' by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1151
      have lem6:"a \<in> s' \<or> a' \<in> s'" proof(cases "\<forall>x\<in>s'. kle n x u \<or> kle n v x")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1152
        case False then guess w unfolding ball_simps .. note w=this
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1153
        hence "kle n u w" "kle n w v" using ksimplexD(6)[OF as] uvs' by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1154
        hence "w = a' \<or> w = a" using uxv[of w] uvs' w by auto thus ?thesis using w by auto next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1155
        case True have "\<not> (\<forall>x\<in>s'. kle n x u)" unfolding ball_simps apply(rule_tac x=v in bexI)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1156
          using uv `u\<noteq>v` unfolding kle_antisym[of n u v,THEN sym] using `v\<in>s'` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1157
        hence "\<exists>y\<in>s'. \<exists>k\<in>{1..n}. \<forall>j. y j = (if j = k then u j + 1 else u j)" using ksimplex_successor[OF as `u\<in>s'`] by blast
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1158
        then guess w .. note w=this from this(2) guess kk .. note kk=this[rule_format]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1159
        have "\<not> kle n w u" apply-apply(rule,drule kle_imp_pointwise) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1160
          apply(erule_tac x=kk in allE) unfolding kk by auto 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1161
        hence *:"kle n v w" using True[rule_format,OF w(1)] by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1162
        hence False proof(cases "kk\<noteq>l") case True thus False using *[THEN kle_imp_pointwise, unfolded l(2) kk k(2)]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1163
            apply(erule_tac x=l in allE) using `k\<noteq>l` by auto  next
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1164
          case False hence "kk\<noteq>k" using `k\<noteq>l` by auto thus False using *[THEN kle_imp_pointwise, unfolded l(2) kk k(2)]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1165
            apply(erule_tac x=k in allE) using `k\<noteq>l` by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1166
        thus ?thesis by auto qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1167
      thus "s' \<in> {s, insert a' (s - {a})}" proof(cases "a\<in>s'")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1168
        case True hence "s' = s" apply-apply(rule lem1[OF a''(2)]) using a'' `a\<in>s` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1169
        thus ?thesis by auto next case False hence "a'\<in>s'" using lem6 by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1170
        hence "s' = insert a' (s - {a})" apply-apply(rule lem1[of _ a'' _ a'])
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1171
          unfolding a''(2)[THEN sym] using a'' using `a'\<notin>s` by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1172
        thus ?thesis by auto qed qed 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1173
    ultimately have *:"?A = {s, insert a' (s - {a})}" by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1174
    have "s \<noteq> insert a' (s - {a})" using `a'\<notin>s` by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1175
    hence ?thesis unfolding * by auto } 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1176
  ultimately show ?thesis by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1177
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1178
subsection {* Hence another step towards concreteness. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1179
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1180
lemma kuhn_simplex_lemma:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1181
  assumes "\<forall>s. ksimplex p (n + 1) s \<longrightarrow> (rl ` s \<subseteq>{0..n+1})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1182
  "odd (card{f. \<exists>s a. ksimplex p (n + 1) s \<and> a \<in> s \<and> (f = s - {a}) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1183
  (rl ` f = {0 .. n}) \<and> ((\<exists>j\<in>{1..n+1}.\<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n+1}.\<forall>x\<in>f. x j = p))})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1184
  shows "odd(card {s\<in>{s. ksimplex p (n + 1) s}. rl ` s = {0..n+1} })" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1185
  have *:"\<And>x y. x = y \<Longrightarrow> odd (card x) \<Longrightarrow> odd (card y)" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1186
  have *:"odd(card {f\<in>{f. \<exists>s\<in>{s. ksimplex p (n + 1) s}. (\<exists>a\<in>s. f = s - {a})}. 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1187
                (rl ` f = {0..n}) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1188
               ((\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = 0) \<or>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1189
                (\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = p))})" apply(rule *[OF _ assms(2)]) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1190
  show ?thesis apply(rule kuhn_complete_lemma[OF finite_simplices]) prefer 6 apply(rule *) apply(rule,rule,rule)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1191
    apply(subst ksimplex_def) defer apply(rule,rule assms(1)[rule_format]) unfolding mem_Collect_eq apply assumption
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1192
    apply default+ unfolding mem_Collect_eq apply(erule disjE bexE)+ defer apply(erule disjE bexE)+ defer 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1193
    apply default+ unfolding mem_Collect_eq apply(erule disjE bexE)+ unfolding mem_Collect_eq proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1194
    fix f s a assume as:"ksimplex p (n + 1) s" "a\<in>s" "f = s - {a}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1195
    let ?S = "{s. ksimplex p (n + 1) s \<and> (\<exists>a\<in>s. f = s - {a})}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1196
    have S:"?S = {s'. ksimplex p (n + 1) s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})}" unfolding as by blast
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1197
    { fix j assume j:"j \<in> {1..n + 1}" "\<forall>x\<in>f. x j = 0" thus "card {s. ksimplex p (n + 1) s \<and> (\<exists>a\<in>s. f = s - {a})} = 1" unfolding S
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1198
        apply-apply(rule ksimplex_replace_0) apply(rule as)+ unfolding as by auto }
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1199
    { fix j assume j:"j \<in> {1..n + 1}" "\<forall>x\<in>f. x j = p" thus "card {s. ksimplex p (n + 1) s \<and> (\<exists>a\<in>s. f = s - {a})} = 1" unfolding S
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1200
        apply-apply(rule ksimplex_replace_1) apply(rule as)+ unfolding as by auto }
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1201
    show "\<not> ((\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = p)) \<Longrightarrow> card ?S = 2"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1202
      unfolding S apply(rule ksimplex_replace_2) apply(rule as)+ unfolding as by auto qed auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1203
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1204
subsection {* Reduced labelling. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1205
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1206
definition "reduced label (n::nat) (x::nat\<Rightarrow>nat) =
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1207
  (SOME k. k \<le> n \<and> (\<forall>i. 1\<le>i \<and> i<k+1 \<longrightarrow> label x i = 0) \<and> (k = n \<or> label x (k + 1) \<noteq> (0::nat)))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1208
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1209
lemma reduced_labelling: shows "reduced label n x \<le> n" (is ?t1) and
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1210
  "\<forall>i. 1\<le>i \<and> i < reduced label n x + 1 \<longrightarrow> (label x i = 0)" (is ?t2)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1211
  "(reduced label n x = n) \<or> (label x (reduced label n x + 1) \<noteq> 0)"  (is ?t3) proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1212
  have num_WOP:"\<And>P k. P (k::nat) \<Longrightarrow> \<exists>n. P n \<and> (\<forall>m<n. \<not> P m)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1213
    apply(drule ex_has_least_nat[where m="\<lambda>x. x"]) apply(erule exE,rule_tac x=x in exI) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1214
  have *:"n \<le> n \<and> (label x (n + 1) \<noteq> 0 \<or> n = n)" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1215
  then guess N apply(drule_tac num_WOP[of "\<lambda>j. j\<le>n \<and> (label x (j+1) \<noteq> 0 \<or> n = j)"]) apply(erule exE) . note N=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1216
  have N':"N \<le> n" "\<forall>i. 1 \<le> i \<and> i < N + 1 \<longrightarrow> label x i = 0" "N = n \<or> label x (N + 1) \<noteq> 0" defer proof(rule,rule)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1217
    fix i assume i:"1\<le>i \<and> i<N+1" thus "label x i = 0" using N[THEN conjunct2,THEN spec[where x="i - 1"]] using N by auto qed(insert N, auto)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1218
  show ?t1 ?t2 ?t3 unfolding reduced_def apply(rule_tac[!] someI2_ex) using N' by(auto intro!: exI[where x=N]) qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1219
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1220
lemma reduced_labelling_unique: fixes x::"nat \<Rightarrow> nat"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1221
  assumes "r \<le> n"  "\<forall>i. 1 \<le> i \<and> i < r + 1 \<longrightarrow> (label x i = 0)" "(r = n) \<or> (label x (r + 1) \<noteq> 0)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1222
  shows "reduced label n x = r" apply(rule le_antisym) apply(rule_tac[!] ccontr) unfolding not_le
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1223
  using reduced_labelling[of label n x] using assms by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1224
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1225
lemma reduced_labelling_zero: assumes "j\<in>{1..n}" "label x j = 0" shows "reduced label n x \<noteq> j - 1"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44821
diff changeset
  1226
  using reduced_labelling[of label n x] using assms by fastforce 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1227
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1228
lemma reduced_labelling_nonzero: assumes "j\<in>{1..n}" "label x j \<noteq> 0" shows "reduced label n x < j"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1229
  using assms and reduced_labelling[of label n x] apply(erule_tac x=j in allE) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1230
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1231
lemma reduced_labelling_Suc:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1232
  assumes "reduced lab (n + 1) x \<noteq> n + 1" shows "reduced lab (n + 1) x = reduced lab n x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1233
  apply(subst eq_commute) apply(rule reduced_labelling_unique)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1234
  using reduced_labelling[of lab "n+1" x] and assms by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1235
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1236
lemma complete_face_top:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1237
  assumes "\<forall>x\<in>f. \<forall>j\<in>{1..n+1}. x j = 0 \<longrightarrow> lab x j = 0"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1238
          "\<forall>x\<in>f. \<forall>j\<in>{1..n+1}. x j = p \<longrightarrow> lab x j = 1"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1239
  shows "((reduced lab (n + 1)) ` f = {0..n}) \<and> ((\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = p)) \<longleftrightarrow>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1240
  ((reduced lab (n + 1)) ` f = {0..n}) \<and> (\<forall>x\<in>f. x (n + 1) = p)" (is "?l = ?r") proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1241
  assume ?l (is "?as \<and> (?a \<or> ?b)") thus ?r apply-apply(rule,erule conjE,assumption) proof(cases ?a)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1242
    case True then guess j .. note j=this {fix x assume x:"x\<in>f"
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1243
      have "reduced lab (n+1) x \<noteq> j - 1" using j apply-apply(rule reduced_labelling_zero) defer apply(rule assms(1)[rule_format]) using x by auto }
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1244
    moreover have "j - 1 \<in> {0..n}" using j by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1245
    then guess y unfolding `?l`[THEN conjunct1,THEN sym] and image_iff .. note y = this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1246
    ultimately have False by auto thus "\<forall>x\<in>f. x (n + 1) = p" by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1247
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1248
    case False hence ?b using `?l` by blast then guess j .. note j=this {fix x assume x:"x\<in>f"
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1249
      have "reduced lab (n+1) x < j" using j apply-apply(rule reduced_labelling_nonzero) using assms(2)[rule_format,of x j] and x by auto } note * = this
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1250
    have "j = n + 1" proof(rule ccontr) case goal1 hence "j < n + 1" using j by auto moreover
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1251
      have "n \<in> {0..n}" by auto then guess y unfolding `?l`[THEN conjunct1,THEN sym] image_iff ..
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1252
      ultimately show False using *[of y] by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1253
    thus "\<forall>x\<in>f. x (n + 1) = p" using j by auto qed qed(auto)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1254
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1255
subsection {* Hence we get just about the nice induction. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1256
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1257
lemma kuhn_induction:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1258
  assumes "0 < p" "\<forall>x. \<forall>j\<in>{1..n+1}. (\<forall>j. x j \<le> p) \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1259
                  "\<forall>x. \<forall>j\<in>{1..n+1}. (\<forall>j. x j \<le> p) \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1260
        "odd (card {f. ksimplex p n f \<and> ((reduced lab n) ` f = {0..n})})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1261
  shows "odd (card {s. ksimplex p (n+1) s \<and>((reduced lab (n+1)) `  s = {0..n+1})})" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1262
  have *:"\<And>s t. odd (card s) \<Longrightarrow> s = t \<Longrightarrow> odd (card t)" "\<And>s f. (\<And>x. f x \<le> n +1 ) \<Longrightarrow> f ` s \<subseteq> {0..n+1}" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1263
  show ?thesis apply(rule kuhn_simplex_lemma[unfolded mem_Collect_eq]) apply(rule,rule,rule *,rule reduced_labelling)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1264
    apply(rule *(1)[OF assms(4)]) apply(rule set_eqI) unfolding mem_Collect_eq apply(rule,erule conjE) defer apply(rule) proof-(*(rule,rule)*)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1265
    fix f assume as:"ksimplex p n f" "reduced lab n ` f = {0..n}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1266
    have *:"\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = 0 \<longrightarrow> lab x j = 0" "\<forall>x\<in>f. \<forall>j\<in>{1..n + 1}. x j = p \<longrightarrow> lab x j = 1"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1267
      using assms(2-3) using as(1)[unfolded ksimplex_def] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1268
    have allp:"\<forall>x\<in>f. x (n + 1) = p" using assms(2) using as(1)[unfolded ksimplex_def] by auto
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1269
    { fix x assume "x\<in>f" hence "reduced lab (n + 1) x < n + 1" apply-apply(rule reduced_labelling_nonzero)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1270
        defer using assms(3) using as(1)[unfolded ksimplex_def] by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1271
      hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc) using reduced_labelling(1) by auto }
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1272
    hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[THEN sym] apply- apply(rule set_eqI) unfolding image_iff by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1273
    moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,THEN sym]] .. then guess a ..
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1274
    ultimately show "\<exists>s a. ksimplex p (n + 1) s \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1275
      a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1276
      apply(rule_tac x=s in exI,rule_tac x=a in exI) unfolding complete_face_top[OF *] using allp as(1) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1277
  next fix f assume as:"\<exists>s a. ksimplex p (n + 1) s \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1278
      a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1279
    then guess s .. then guess a apply-apply(erule exE,(erule conjE)+) . note sa=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1280
    { fix x assume "x\<in>f" hence "reduced lab (n + 1) x \<in> reduced lab (n + 1) ` f" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1281
      hence "reduced lab (n + 1) x < n + 1" using sa(4) by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1282
      hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1283
        using reduced_labelling(1) by auto }
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39198
diff changeset
  1284
    thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[THEN sym] apply-apply(rule set_eqI) unfolding image_iff by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1285
    have *:"\<forall>x\<in>f. x (n + 1) = p" proof(cases "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0")
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1286
      case True then guess j .. hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab (n + 1) x \<noteq> j - 1" apply-apply(rule reduced_labelling_zero) apply assumption
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1287
        apply(rule assms(2)[rule_format]) using sa(1)[unfolded ksimplex_def] unfolding sa by auto moreover
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1288
      have "j - 1 \<in> {0..n}" using `j\<in>{1..n+1}` by auto
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44821
diff changeset
  1289
      ultimately have False unfolding sa(4)[THEN sym] unfolding image_iff by fastforce thus ?thesis by auto next
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44821
diff changeset
  1290
      case False hence "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p" using sa(5) by fastforce then guess j .. note j=this
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1291
      thus ?thesis proof(cases "j = n+1")
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1292
        case False hence *:"j\<in>{1..n}" using j by auto
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1293
        hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab n x < j" apply(rule reduced_labelling_nonzero) proof- fix x assume "x\<in>f"
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1294
          hence "lab x j = 1" apply-apply(rule assms(3)[rule_format,OF j(1)]) 
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1295
            using sa(1)[unfolded ksimplex_def] using j unfolding sa by auto thus "lab x j \<noteq> 0" by auto qed
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1296
        moreover have "j\<in>{0..n}" using * by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 39302
diff changeset
  1297
        ultimately have False unfolding part1[THEN sym] using * unfolding image_iff by auto thus ?thesis by auto qed auto qed 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1298
    thus "ksimplex p n f" using as unfolding simplex_top_face[OF assms(1) *,THEN sym] by auto qed qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1299
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1300
lemma kuhn_induction_Suc:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1301
  assumes "0 < p" "\<forall>x. \<forall>j\<in>{1..Suc n}. (\<forall>j. x j \<le> p) \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1302
                  "\<forall>x. \<forall>j\<in>{1..Suc n}. (\<forall>j. x j \<le> p) \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1303
        "odd (card {f. ksimplex p n f \<and> ((reduced lab n) ` f = {0..n})})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1304
  shows "odd (card {s. ksimplex p (Suc n) s \<and>((reduced lab (Suc n)) `  s = {0..Suc n})})"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1305
  using assms unfolding Suc_eq_plus1 by(rule kuhn_induction)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1306
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1307
subsection {* And so we get the final combinatorial result. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1308
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1309
lemma ksimplex_0: "ksimplex p 0 s \<longleftrightarrow> s = {(\<lambda>x. p)}" (is "?l = ?r") proof
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1310
  assume l:?l guess a using ksimplexD(3)[OF l, unfolded add_0] unfolding card_1_exists .. note a=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1311
  have "a = (\<lambda>x. p)" using ksimplexD(5)[OF l, rule_format, OF a(1)] by(rule,auto) thus ?r using a by auto next
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1312
  assume r:?r show ?l unfolding r ksimplex_eq by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1313
50514
1d1be8bf4cb2 tuned two lemma names, to avoid name hint clash (which confuses the MaSh evaluation, and which anyway isn't nice or necessary)
blanchet
parents: 50027
diff changeset
  1314
lemma reduce_labelling_zero[simp]: "reduced lab 0 x = 0" apply(rule reduced_labelling_unique) by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1315
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1316
lemma kuhn_combinatorial:
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1317
  assumes "0 < p" "\<forall>x j. (\<forall>j. x(j) \<le> p) \<and> 1 \<le> j \<and> j \<le> n \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1318
  "\<forall>x j. (\<forall>j. x(j) \<le> p) \<and> 1 \<le> j \<and> j \<le> n  \<and> (x j = p) \<longrightarrow> (lab x j = 1)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1319
  shows " odd (card {s. ksimplex p n s \<and> ((reduced lab n) ` s = {0..n})})" using assms proof(induct n)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1320
  let ?M = "\<lambda>n. {s. ksimplex p n s \<and> ((reduced lab n) ` s = {0..n})}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1321
  { case 0 have *:"?M 0 = {{(\<lambda>x. p)}}" unfolding ksimplex_0 by auto show ?case unfolding * by auto }
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1322
  case (Suc n) have "odd (card (?M n))" apply(rule Suc(1)[OF Suc(2)]) using Suc(3-) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1323
  thus ?case apply-apply(rule kuhn_induction_Suc) using Suc(2-) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1324
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1325
lemma kuhn_lemma: assumes "0 < (p::nat)" "0 < (n::nat)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1326
  "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (label x i = (0::nat)) \<or> (label x i = 1))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1327
  "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (x i = 0) \<longrightarrow> (label x i = 0))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1328
  "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. (x i = p) \<longrightarrow> (label x i = 1))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1329
  obtains q where "\<forall>i\<in>{1..n}. q i < p"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1330
  "\<forall>i\<in>{1..n}. \<exists>r s. (\<forall>j\<in>{1..n}. q(j) \<le> r(j) \<and> r(j) \<le> q(j) + 1) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1331
                               (\<forall>j\<in>{1..n}. q(j) \<le> s(j) \<and> s(j) \<le> q(j) + 1) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1332
                               ~(label r i = label s i)" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1333
  let ?A = "{s. ksimplex p n s \<and> reduced label n ` s = {0..n}}" have "n\<noteq>0" using assms by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1334
  have conjD:"\<And>P Q. P \<and> Q \<Longrightarrow> P" "\<And>P Q. P \<and> Q \<Longrightarrow> Q" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1335
  have "odd (card ?A)" apply(rule kuhn_combinatorial[of p n label]) using assms by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1336
  hence "card ?A \<noteq> 0" apply-apply(rule ccontr) by auto hence "?A \<noteq> {}" unfolding card_eq_0_iff by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1337
  then obtain s where "s\<in>?A" by auto note s=conjD[OF this[unfolded mem_Collect_eq]]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1338
  guess a b apply(rule ksimplex_extrema_strong[OF s(1) `n\<noteq>0`]) . note ab=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1339
  show ?thesis apply(rule that[of a]) proof(rule_tac[!] ballI) fix i assume "i\<in>{1..n}"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1340
    hence "a i + 1 \<le> p" apply-apply(rule order_trans[of _ "b i"]) apply(subst ab(5)[THEN spec[where x=i]])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1341
      using s(1)[unfolded ksimplex_def] defer apply- apply(erule conjE)+ apply(drule_tac bspec[OF _ ab(2)])+ by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1342
    thus "a i < p" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1343
    case goal2 hence "i \<in> reduced label n ` s" using s by auto then guess u unfolding image_iff .. note u=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1344
    from goal2 have "i - 1 \<in> reduced label n ` s" using s by auto then guess v unfolding image_iff .. note v=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1345
    show ?case apply(rule_tac x=u in exI, rule_tac x=v in exI) apply(rule conjI) defer apply(rule conjI) defer 2 proof(rule_tac[1-2] ballI)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1346
      show "label u i \<noteq> label v i" using reduced_labelling[of label n u] reduced_labelling[of label n v]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1347
        unfolding u(2)[THEN sym] v(2)[THEN sym] using goal2 by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1348
      fix j assume j:"j\<in>{1..n}" show "a j \<le> u j \<and> u j \<le> a j + 1" "a j \<le> v j \<and> v j \<le> a j + 1"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1349
        using conjD[OF ab(4)[rule_format, OF u(1)]] and conjD[OF ab(4)[rule_format, OF v(1)]] apply- 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1350
        apply(drule_tac[!] kle_imp_pointwise)+ apply(erule_tac[!] x=j in allE)+ unfolding ab(5)[rule_format] using j
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1351
        by auto qed qed qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1352
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1353
subsection {* The main result for the unit cube. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1354
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1355
lemma kuhn_labelling_lemma':
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1356
  assumes "(\<forall>x::nat\<Rightarrow>real. P x \<longrightarrow> P (f x))"  "\<forall>x. P x \<longrightarrow> (\<forall>i::nat. Q i \<longrightarrow> 0 \<le> x i \<and> x i \<le> 1)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1357
  shows "\<exists>l. (\<forall>x i. l x i \<le> (1::nat)) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1358
             (\<forall>x i. P x \<and> Q i \<and> (x i = 0) \<longrightarrow> (l x i = 0)) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1359
             (\<forall>x i. P x \<and> Q i \<and> (x i = 1) \<longrightarrow> (l x i = 1)) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1360
             (\<forall>x i. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x i \<le> f(x) i) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1361
             (\<forall>x i. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x) i \<le> x i)" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1362
  have and_forall_thm:"\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1363
  have *:"\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)" by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1364
  show ?thesis unfolding and_forall_thm apply(subst choice_iff[THEN sym])+ proof(rule,rule) case goal1
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1365
    let ?R = "\<lambda>y. (P x \<and> Q xa \<and> x xa = 0 \<longrightarrow> y = (0::nat)) \<and>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1366
        (P x \<and> Q xa \<and> x xa = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x xa \<le> (f x) xa) \<and> (P x \<and> Q xa \<and> y = 1 \<longrightarrow> (f x) xa \<le> x xa)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1367
    { assume "P x" "Q xa" hence "0 \<le> (f x) xa \<and> (f x) xa \<le> 1" using assms(2)[rule_format,of "f x" xa]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1368
        apply(drule_tac assms(1)[rule_format]) by auto }
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1369
    hence "?R 0 \<or> ?R 1" by auto thus ?case by auto qed qed 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1370
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1371
lemma brouwer_cube:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1372
  fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1373
  assumes "continuous_on {0..(\<Sum>Basis)} f" "f ` {0..(\<Sum>Basis)} \<subseteq> {0..(\<Sum>Basis)}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1374
  shows "\<exists>x\<in>{0..(\<Sum>Basis)}. f x = x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1375
  proof (rule ccontr)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1376
  def n \<equiv> "DIM('a)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def by(auto simp add: Suc_le_eq DIM_positive)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1377
  assume "\<not> (\<exists>x\<in>{0..\<Sum>Basis}. f x = x)" hence *:"\<not> (\<exists>x\<in>{0..\<Sum>Basis}. f x - x = 0)" by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1378
  guess d apply(rule brouwer_compactness_lemma[OF compact_interval _ *]) 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1379
    apply(rule continuous_on_intros assms)+ . note d=this[rule_format]
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1380
  have *:"\<forall>x. x \<in> {0..\<Sum>Basis} \<longrightarrow> f x \<in> {0..\<Sum>Basis}"  "\<forall>x. x \<in> {0..(\<Sum>Basis)::'a} \<longrightarrow>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1381
    (\<forall>i\<in>Basis. True \<longrightarrow> 0 \<le> x \<bullet> i \<and> x \<bullet> i \<le> 1)"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1382
    using assms(2)[unfolded image_subset_iff Ball_def] unfolding mem_interval by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1383
  guess label using kuhn_labelling_lemma[OF *] apply-apply(erule exE,(erule conjE)+) . note label = this[rule_format]
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1384
  have lem1:"\<forall>x\<in>{0..\<Sum>Basis}.\<forall>y\<in>{0..\<Sum>Basis}.\<forall>i\<in>Basis. label x i \<noteq> label y i
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1385
            \<longrightarrow> abs(f x \<bullet> i - x \<bullet> i) \<le> norm(f y - f x) + norm(y - x)" proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1386
    fix x y::'a assume xy:"x\<in>{0..\<Sum>Basis}" "y\<in>{0..\<Sum>Basis}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1387
    fix i assume i:"label x i \<noteq> label y i" "i\<in>Basis"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1388
    have *:"\<And>x y fx fy::real. (x \<le> fx \<and> fy \<le> y \<or> fx \<le> x \<and> y \<le> fy)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1389
             \<Longrightarrow> abs(fx - x) \<le> abs(fy - fx) + abs(y - x)" by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1390
    have "\<bar>(f x - x) \<bullet> i\<bar> \<le> abs((f y - f x)\<bullet>i) + abs((y - x)\<bullet>i)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1391
      unfolding inner_simps
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1392
      apply(rule *) apply(cases "label x i = 0") apply(rule disjI1,rule) prefer 3 proof(rule disjI2,rule)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1393
      assume lx:"label x i = 0" hence ly:"label y i = 1" using i label(1)[of i y] by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1394
      show "x \<bullet> i \<le> f x \<bullet> i" apply(rule label(4)[rule_format]) using xy lx i(2) by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1395
      show "f y \<bullet> i \<le> y \<bullet> i" apply(rule label(5)[rule_format]) using xy ly i(2) by auto next
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1396
      assume "label x i \<noteq> 0" hence l:"label x i = 1" "label y i = 0"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1397
        using i label(1)[of i x] label(1)[of i y] by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1398
      show "f x \<bullet> i \<le> x \<bullet> i" apply(rule label(5)[rule_format]) using xy l i(2) by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1399
      show "y \<bullet> i \<le> f y \<bullet> i" apply(rule label(4)[rule_format]) using xy l i(2) by auto qed 
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1400
    also have "\<dots> \<le> norm (f y - f x) + norm (y - x)" apply(rule add_mono) by(rule Basis_le_norm[OF i(2)])+
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1401
    finally show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)" unfolding inner_simps .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1402
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1403
  have "\<exists>e>0. \<forall>x\<in>{0..\<Sum>Basis}. \<forall>y\<in>{0..\<Sum>Basis}. \<forall>z\<in>{0..\<Sum>Basis}. \<forall>i\<in>Basis.
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1404
    norm(x - z) < e \<and> norm(y - z) < e \<and> label x i \<noteq> label y i \<longrightarrow> abs((f(z) - z)\<bullet>i) < d / (real n)" proof-
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1405
    have d':"d / real n / 8 > 0" apply(rule divide_pos_pos)+ using d(1) unfolding n_def by (auto simp:  DIM_positive)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1406
    have *:"uniformly_continuous_on {0..\<Sum>Basis} f" by(rule compact_uniformly_continuous[OF assms(1) compact_interval])
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1407
    guess e using *[unfolded uniformly_continuous_on_def,rule_format,OF d'] apply-apply(erule exE,(erule conjE)+) .
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36432
diff changeset
  1408
    note e=this[rule_format,unfolded dist_norm]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1409
    show ?thesis apply(rule_tac x="min (e/2) (d/real n/8)" in exI)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1410
    proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1411
      show "0 < min (e / 2) (d / real n / 8)" using d' e by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1412
      fix x y z i assume as:"x \<in> {0..\<Sum>Basis}" "y \<in> {0..\<Sum>Basis}" "z \<in> {0..\<Sum>Basis}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1413
        "norm (x - z) < min (e / 2) (d / real n / 8)"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1414
        "norm (y - z) < min (e / 2) (d / real n / 8)" "label x i \<noteq> label y i" and i:"i\<in>Basis"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1415
      have *:"\<And>z fz x fx n1 n2 n3 n4 d4 d::real. abs(fx - x) \<le> n1 + n2 \<Longrightarrow> abs(fx - fz) \<le> n3 \<Longrightarrow> abs(x - z) \<le> n4 \<Longrightarrow>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1416
        n1 < d4 \<Longrightarrow> n2 < 2 * d4 \<Longrightarrow> n3 < d4 \<Longrightarrow> n4 < d4 \<Longrightarrow> (8 * d4 = d) \<Longrightarrow> abs(fz - z) < d" by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1417
      show "\<bar>(f z - z) \<bullet> i\<bar> < d / real n" unfolding inner_simps proof(rule *)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1418
        show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y -f x) + norm (y - x)" apply(rule lem1[rule_format]) using as i  by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1419
        show "\<bar>f x \<bullet> i - f z \<bullet> i\<bar> \<le> norm (f x - f z)" "\<bar>x \<bullet> i - z \<bullet> i\<bar> \<le> norm (x - z)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1420
          unfolding inner_diff_left[THEN sym] by(rule Basis_le_norm[OF i])+
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36432
diff changeset
  1421
        have tria:"norm (y - x) \<le> norm (y - z) + norm (x - z)" using dist_triangle[of y x z,unfolded dist_norm]
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1422
          unfolding norm_minus_commute by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1423
        also have "\<dots> < e / 2 + e / 2" apply(rule add_strict_mono) using as(4,5) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1424
        finally show "norm (f y - f x) < d / real n / 8" apply- apply(rule e(2)) using as by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1425
        have "norm (y - z) + norm (x - z) < d / real n / 8 + d / real n / 8" apply(rule add_strict_mono) using as by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1426
        thus "norm (y - x) < 2 * (d / real n / 8)" using tria by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1427
        show "norm (f x - f z) < d / real n / 8" apply(rule e(2)) using as e(1) by auto qed(insert as, auto) qed qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1428
  then guess e apply-apply(erule exE,(erule conjE)+) . note e=this[rule_format] 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1429
  guess p using real_arch_simple[of "1 + real n / e"] .. note p=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1430
  have "1 + real n / e > 0" apply(rule add_pos_pos) defer apply(rule divide_pos_pos) using e(1) n by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1431
  hence "p > 0" using p by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1432
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1433
  obtain b :: "nat \<Rightarrow> 'a" where b: "bij_betw b {1..n} Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1434
    by atomize_elim (auto simp: n_def intro!: finite_same_card_bij)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1435
  def b' \<equiv> "inv_into {1..n} b"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1436
  then have b': "bij_betw b' Basis {1..n}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1437
    using bij_betw_inv_into[OF b] by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1438
  then have b'_Basis: "\<And>i. i \<in> Basis \<Longrightarrow> b' i \<in> {Suc 0 .. n}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1439
    unfolding bij_betw_def by (auto simp: set_eq_iff)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1440
  have bb'[simp]:"\<And>i. i \<in> Basis \<Longrightarrow> b (b' i) = i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1441
    unfolding b'_def using b by (auto simp: f_inv_into_f bij_betw_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1442
  have b'b[simp]:"\<And>i. i \<in> {1..n} \<Longrightarrow> b' (b i) = i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1443
    unfolding b'_def using b by (auto simp: inv_into_f_eq bij_betw_def)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1444
  have *:"\<And>x::nat. x=0 \<or> x=1 \<longleftrightarrow> x\<le>1" by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1445
  have b'':"\<And>j. j\<in>{Suc 0..n} \<Longrightarrow> b j \<in>Basis" using b unfolding bij_betw_def by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1446
  have q1:"0 < p" "0 < n"  "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow>
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1447
    (\<forall>i\<in>{1..n}. (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0 \<or>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1448
                (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1449
    unfolding * using `p>0` `n>0` using label(1)[OF b'']  by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1450
  have q2:"\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. x i = 0 \<longrightarrow> 
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1451
      (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1452
    "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. x i = p \<longrightarrow>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1453
      (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1454
    apply(rule,rule,rule,rule)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1455
    defer
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1456
  proof(rule,rule,rule,rule)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1457
    fix x i assume as:"\<forall>i\<in>{1..n}. x i \<le> p" "i \<in> {1..n}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1458
    { assume "x i = p \<or> x i = 0"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1459
      have "(\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<in> {0::'a..\<Sum>Basis}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1460
        unfolding mem_interval using as b'_Basis
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1461
        by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1) }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1462
    note cube=this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1463
    { assume "x i = p" thus "(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1464
        unfolding o_def using cube as `p>0`
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1465
        by (intro label(3)) (auto simp add: b'') }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1466
    { assume "x i = 0" thus "(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1467
        unfolding o_def using cube as `p>0`
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1468
        by (intro label(2)) (auto simp add: b'') }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1469
  qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1470
  guess q apply(rule kuhn_lemma[OF q1 q2]) . note q=this
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1471
  def z \<equiv> "(\<Sum>i\<in>Basis. (real (q (b' i)) / real p) *\<^sub>R i)::'a"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1472
  have "\<exists>i\<in>Basis. d / real n \<le> abs((f z - z)\<bullet>i)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1473
  proof(rule ccontr)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1474
    have "\<forall>i\<in>Basis. q (b' i) \<in> {0..p}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1475
      using q(1) b' by (auto intro: less_imp_le simp: bij_betw_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1476
    hence "z\<in>{0..\<Sum>Basis}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1477
      unfolding z_def mem_interval using b'_Basis
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1478
      by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1479
    hence d_fz_z:"d \<le> norm (f z - z)" by (rule d)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1480
    case goal1
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1481
    hence as:"\<forall>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar> < d / real n"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1482
      using `n>0` by(auto simp add: not_le inner_simps)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1483
    have "norm (f z - z) \<le> (\<Sum>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar>)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1484
      unfolding inner_diff_left[symmetric] by(rule norm_le_l1)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1485
    also have "\<dots> < (\<Sum>(i::'a)\<in>Basis. d / real n)" apply(rule setsum_strict_mono) using as by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1486
    also have "\<dots> = d" using DIM_positive[where 'a='a] by (auto simp: real_eq_of_nat n_def)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1487
    finally show False using d_fz_z by auto qed then guess i .. note i=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1488
  have *:"b' i \<in> {1..n}" using i using b'[unfolded bij_betw_def] by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1489
  guess r using q(2)[rule_format,OF *] .. then guess s apply-apply(erule exE,(erule conjE)+) . note rs=this[rule_format]
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1490
  have b'_im:"\<And>i. i\<in>Basis \<Longrightarrow>  b' i \<in> {1..n}" using b' unfolding bij_betw_def by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1491
  def r' \<equiv> "(\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i)::'a"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1492
  have "\<And>i. i\<in>Basis \<Longrightarrow> r (b' i) \<le> p" apply(rule order_trans) apply(rule rs(1)[OF b'_im,THEN conjunct2])
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1493
    using q(1)[rule_format,OF b'_im] by(auto simp add: Suc_le_eq)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1494
  hence "r' \<in> {0..\<Sum>Basis}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1495
    unfolding r'_def mem_interval using b'_Basis
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1496
    by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1497
  def s' \<equiv> "(\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i)::'a"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1498
  have "\<And>i. i\<in>Basis \<Longrightarrow> s (b' i) \<le> p" apply(rule order_trans) apply(rule rs(2)[OF b'_im,THEN conjunct2])
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1499
    using q(1)[rule_format,OF b'_im] by(auto simp add: Suc_le_eq)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1500
  hence "s' \<in> {0..\<Sum>Basis}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1501
    unfolding s'_def mem_interval using b'_Basis
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1502
    by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1503
  have "z\<in>{0..\<Sum>Basis}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1504
    unfolding z_def mem_interval using b'_Basis q(1)[rule_format,OF b'_im] `p>0`
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1505
    by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1 less_imp_le)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1506
  have *:"\<And>x. 1 + real x = real (Suc x)" by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1507
  { have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)" 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1508
      apply(rule setsum_mono) using rs(1)[OF b'_im] by(auto simp add:* field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1509
    also have "\<dots> < e * real p" using p `e>0` `p>0`
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1510
      by(auto simp add: field_simps n_def real_of_nat_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1511
    finally have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) < e * real p" . } moreover
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1512
  { have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)" 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1513
      apply(rule setsum_mono) using rs(2)[OF b'_im] by(auto simp add:* field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1514
    also have "\<dots> < e * real p" using p `e>0` `p>0`
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1515
      by(auto simp add: field_simps n_def real_of_nat_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1516
    finally have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) < e * real p" . } ultimately
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1517
  have "norm (r' - z) < e" "norm (s' - z) < e" unfolding r'_def s'_def z_def using `p>0`
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1518
    by (rule_tac[!] le_less_trans[OF norm_le_l1])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1519
       (auto simp add: field_simps setsum_divide_distrib[symmetric] inner_diff_left)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1520
  hence "\<bar>(f z - z) \<bullet> i\<bar> < d / real n"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1521
    using rs(3) i unfolding r'_def[symmetric] s'_def[symmetric] o_def bb'
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1522
    by (intro e(2)[OF `r'\<in>{0..\<Sum>Basis}` `s'\<in>{0..\<Sum>Basis}` `z\<in>{0..\<Sum>Basis}`]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1523
  thus False using i by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1524
qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1525
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1526
subsection {* Retractions. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1527
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1528
definition "retraction s t r \<longleftrightarrow>
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1529
  t \<subseteq> s \<and> continuous_on s r \<and> (r ` s \<subseteq> t) \<and> (\<forall>x\<in>t. r x = x)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1530
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1531
definition retract_of (infixl "retract'_of" 12) where
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1532
  "(t retract_of s) \<longleftrightarrow> (\<exists>r. retraction s t r)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1533
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1534
lemma retraction_idempotent: "retraction s t r \<Longrightarrow> x \<in> s \<Longrightarrow>  r(r x) = r x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1535
  unfolding retraction_def by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1536
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1537
subsection {*preservation of fixpoints under (more general notion of) retraction. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1538
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1539
lemma invertible_fixpoint_property: fixes s::"('a::euclidean_space) set" and t::"('b::euclidean_space) set" 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1540
  assumes "continuous_on t i" "i ` t \<subseteq> s" "continuous_on s r" "r ` s \<subseteq> t" "\<forall>y\<in>t. r (i y) = y"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1541
  "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)" "continuous_on t g" "g ` t \<subseteq> t"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1542
  obtains y where "y\<in>t" "g y = y" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1543
  have "\<exists>x\<in>s. (i \<circ> g \<circ> r) x = x" apply(rule assms(6)[rule_format],rule)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1544
    apply(rule continuous_on_compose assms)+ apply((rule continuous_on_subset)?,rule assms)+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1545
    using assms(2,4,8) unfolding image_compose by(auto,blast)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1546
    then guess x .. note x = this hence *:"g (r x) \<in> t" using assms(4,8) by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1547
    have "r ((i \<circ> g \<circ> r) x) = r x" using x by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1548
    thus ?thesis apply(rule_tac that[of "r x"]) using x unfolding o_def
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1549
      unfolding assms(5)[rule_format,OF *] using assms(4) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1550
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1551
lemma homeomorphic_fixpoint_property:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1552
  fixes s::"('a::euclidean_space) set" and t::"('b::euclidean_space) set" assumes "s homeomorphic t"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1553
  shows "(\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)) \<longleftrightarrow>
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1554
         (\<forall>g. continuous_on t g \<and> g ` t \<subseteq> t \<longrightarrow> (\<exists>y\<in>t. g y = y))" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1555
  guess r using assms[unfolded homeomorphic_def homeomorphism_def] .. then guess i ..
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1556
  thus ?thesis apply- apply rule apply(rule_tac[!] allI impI)+ 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1557
    apply(rule_tac g=g in invertible_fixpoint_property[of t i s r]) prefer 10
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1558
    apply(rule_tac g=f in invertible_fixpoint_property[of s r t i]) by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1559
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1560
lemma retract_fixpoint_property: fixes f::"'a::euclidean_space => 'b::euclidean_space" and s::"'a set"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1561
  assumes "t retract_of s"  "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)"  "continuous_on t g" "g ` t \<subseteq> t"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1562
  obtains y where "y \<in> t" "g y = y" proof- guess h using assms(1) unfolding retract_of_def .. 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1563
  thus ?thesis unfolding retraction_def apply-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1564
    apply(rule invertible_fixpoint_property[OF continuous_on_id _ _ _ _ assms(2), of t h g]) prefer 7
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1565
    apply(rule_tac y=y in that) using assms by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1566
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1567
subsection {*So the Brouwer theorem for any set with nonempty interior. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1568
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1569
lemma brouwer_weak:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1570
  fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1571
  assumes "compact s" "convex s" "interior s \<noteq> {}" "continuous_on s f" "f ` s \<subseteq> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1572
  obtains x where "x \<in> s" "f x = x" proof-
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1573
  have *:"interior {0::'a..\<Sum>Basis} \<noteq> {}" unfolding interior_closed_interval interval_eq_empty by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1574
  have *:"{0::'a..\<Sum>Basis} homeomorphic s" using homeomorphic_convex_compact[OF convex_interval(1) compact_interval * assms(2,1,3)] .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1575
  have "\<forall>f. continuous_on {0::'a..\<Sum>Basis} f \<and> f ` {0::'a..\<Sum>Basis} \<subseteq> {0::'a..\<Sum>Basis} \<longrightarrow> 
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1576
    (\<exists>x\<in>{0::'a..\<Sum>Basis}. f x = x)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1577
    using brouwer_cube by auto
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1578
  thus ?thesis unfolding homeomorphic_fixpoint_property[OF *] apply(erule_tac x=f in allE)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1579
    apply(erule impE) defer apply(erule bexE) apply(rule_tac x=y in that) using assms by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1580
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1581
subsection {* And in particular for a closed ball. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1582
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1583
lemma brouwer_ball: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1584
  assumes "0 < e" "continuous_on (cball a e) f" "f ` (cball a e) \<subseteq> (cball a e)"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1585
  obtains x where "x \<in> cball a e" "f x = x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1586
  using brouwer_weak[OF compact_cball convex_cball,of a e f] unfolding interior_cball ball_eq_empty
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1587
  using assms by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1588
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1589
text {*Still more general form; could derive this directly without using the 
36334
068a01b4bc56 document generation for Multivariate_Analysis
huffman
parents: 36318
diff changeset
  1590
  rather involved @{text "HOMEOMORPHIC_CONVEX_COMPACT"} theorem, just using
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1591
  a scaling and translation to put the set inside the unit cube. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1592
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1593
lemma brouwer: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1594
  assumes "compact s" "convex s" "s \<noteq> {}" "continuous_on s f" "f ` s \<subseteq> s"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1595
  obtains x where "x \<in> s" "f x = x" proof-
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1596
  have "\<exists>e>0. s \<subseteq> cball 0 e" using compact_imp_bounded[OF assms(1)] unfolding bounded_pos
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36432
diff changeset
  1597
    apply(erule_tac exE,rule_tac x=b in exI) by(auto simp add: dist_norm) 
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1598
  then guess e apply-apply(erule exE,(erule conjE)+) . note e=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1599
  have "\<exists>x\<in> cball 0 e. (f \<circ> closest_point s) x = x"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1600
    apply(rule_tac brouwer_ball[OF e(1), of 0 "f \<circ> closest_point s"]) apply(rule continuous_on_compose )
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1601
    apply(rule continuous_on_closest_point[OF assms(2) compact_imp_closed[OF assms(1)] assms(3)])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1602
    apply(rule continuous_on_subset[OF assms(4)])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1603
    using closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)] apply - defer
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36432
diff changeset
  1604
    using assms(5)[unfolded subset_eq] using e(2)[unfolded subset_eq mem_cball] by(auto simp add: dist_norm)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1605
  then guess x .. note x=this
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1606
  have *:"closest_point s x = x" apply(rule closest_point_self) 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1607
    apply(rule assms(5)[unfolded subset_eq,THEN bspec[where x="x"],unfolded image_iff])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1608
    apply(rule_tac x="closest_point s x" in bexI) using x unfolding o_def
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1609
    using closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3), of x] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1610
  show thesis apply(rule_tac x="closest_point s x" in that) unfolding x(2)[unfolded o_def]
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1611
    apply(rule closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)]) using * by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1612
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1613
text {*So we get the no-retraction theorem. *}
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1614
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1615
lemma no_retraction_cball: assumes "0 < e" fixes type::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1616
  shows "\<not> (frontier(cball a e) retract_of (cball (a::'a) e))" proof case goal1
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1617
  have *:"\<And>xa. a - (2 *\<^sub>R a - xa) = -(a - xa)" using scaleR_left_distrib[of 1 1 a] by auto
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1618
  guess x apply(rule retract_fixpoint_property[OF goal1, of "\<lambda>x. scaleR 2 a - x"])
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1619
    apply(rule,rule,erule conjE) apply(rule brouwer_ball[OF assms]) apply assumption+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1620
    apply(rule_tac x=x in bexI) apply assumption+ apply(rule continuous_on_intros)+
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1621
    unfolding frontier_cball subset_eq Ball_def image_iff apply(rule,rule,erule bexE)
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36432
diff changeset
  1622
    unfolding dist_norm apply(simp add: * norm_minus_commute) . note x = this
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36340
diff changeset
  1623
  hence "scaleR 2 a = scaleR 1 x + scaleR 1 x" by(auto simp add:algebra_simps)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1624
  hence "a = x" unfolding scaleR_left_distrib[THEN sym] by auto 
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1625
  thus False using x using assms by auto qed
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1626
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1627
subsection {*Bijections between intervals. *}
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1628
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1629
definition interval_bij :: "'a \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a::ordered_euclidean_space" where
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1630
  "interval_bij \<equiv> \<lambda>(a, b) (u, v) x. (\<Sum>i\<in>Basis. (u\<bullet>i + (x\<bullet>i - a\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (v\<bullet>i - u\<bullet>i)) *\<^sub>R i)"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1631
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1632
lemma interval_bij_affine:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1633
  "interval_bij (a,b) (u,v) = (\<lambda>x. (\<Sum>i\<in>Basis. ((v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (x\<bullet>i)) *\<^sub>R i) +
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1634
    (\<Sum>i\<in>Basis. (u\<bullet>i - (v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (a\<bullet>i)) *\<^sub>R i))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1635
  by (auto simp: setsum_addf[symmetric] scaleR_add_left[symmetric] interval_bij_def fun_eq_iff
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1636
                 field_simps inner_simps add_divide_distrib[symmetric] intro!: setsum_cong)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1637
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1638
lemma continuous_interval_bij:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1639
  "continuous (at x) (interval_bij (a,b::'a::ordered_euclidean_space) (u,v::'a))" 
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1640
  by (auto simp add: divide_inverse interval_bij_def intro!: continuous_setsum continuous_intros)
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1641
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1642
lemma continuous_on_interval_bij: "continuous_on s (interval_bij (a,b) (u,v))"
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1643
  apply(rule continuous_at_imp_continuous_on) by(rule, rule continuous_interval_bij)
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1644
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1645
lemma in_interval_interval_bij:
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1646
  fixes a b u v x :: "'a::ordered_euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1647
  assumes "x \<in> {a..b}" "{u..v} \<noteq> {}" shows "interval_bij (a,b) (u,v) x \<in> {u..v}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1648
  apply (simp only: interval_bij_def split_conv mem_interval inner_setsum_left_Basis cong: ball_cong)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1649
proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1650
  fix i :: 'a assume i:"i\<in>Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1651
  have "{a..b} \<noteq> {}" using assms by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1652
  with i have *: "a\<bullet>i \<le> b\<bullet>i" "u\<bullet>i \<le> v\<bullet>i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1653
    using assms(2) by (auto simp add: interval_eq_empty not_less)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1654
  have x: "a\<bullet>i\<le>x\<bullet>i" "x\<bullet>i\<le>b\<bullet>i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1655
    using assms(1)[unfolded mem_interval] using i by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1656
  have "0 \<le> (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1657
    using * x by (auto intro!: mult_nonneg_nonneg divide_nonneg_nonneg)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1658
  thus "u \<bullet> i \<le> u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1659
    using * by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1660
  have "((x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i)) * (v \<bullet> i - u \<bullet> i) \<le> 1 * (v \<bullet> i - u \<bullet> i)"
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1661
    apply(rule mult_right_mono) unfolding divide_le_eq_1 using * x by auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1662
  thus "u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i" using * by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36587
diff changeset
  1663
qed
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1664
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1665
lemma interval_bij_bij: 
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1666
  "\<forall>(i::'a::ordered_euclidean_space)\<in>Basis. a\<bullet>i < b\<bullet>i \<and> u\<bullet>i < v\<bullet>i \<Longrightarrow>
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1667
    interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50514
diff changeset
  1668
  by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a])
33741
4c414d0835ab Added derivation and Brouwer's fixpoint theorem in Multivariate Analysis (translated by Robert Himmelmann from HOL-light)
hoelzl
parents:
diff changeset
  1669
34291
4e896680897e finite annotation on cartesian product is now implicit.
hoelzl
parents: 34289
diff changeset
  1670
end