author | berghofe |
Sat, 13 Dec 2008 17:13:09 +0100 | |
changeset 29101 | 66fe138979f4 |
parent 28823 | dcbef866c9e2 |
child 29580 | 117b88da143c |
permissions | -rw-r--r-- |
28685 | 1 |
(* Title: HOL/Orderings.thy |
15524 | 2 |
ID: $Id$ |
3 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
|
4 |
*) |
|
5 |
||
25614 | 6 |
header {* Abstract orderings *} |
15524 | 7 |
|
8 |
theory Orderings |
|
26796
c554b77061e5
- Now imports Code_Setup, rather than Set and Fun, since the theorems
berghofe
parents:
26496
diff
changeset
|
9 |
imports Code_Setup |
28516 | 10 |
uses "~~/src/Provers/order.ML" |
15524 | 11 |
begin |
12 |
||
27682 | 13 |
subsection {* Quasi orders *} |
15524 | 14 |
|
27682 | 15 |
class preorder = ord + |
16 |
assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" |
|
25062 | 17 |
and order_refl [iff]: "x \<le> x" |
18 |
and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" |
|
21248 | 19 |
begin |
20 |
||
15524 | 21 |
text {* Reflexivity. *} |
22 |
||
25062 | 23 |
lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" |
15524 | 24 |
-- {* This form is useful with the classical reasoner. *} |
23212 | 25 |
by (erule ssubst) (rule order_refl) |
15524 | 26 |
|
25062 | 27 |
lemma less_irrefl [iff]: "\<not> x < x" |
27682 | 28 |
by (simp add: less_le_not_le) |
29 |
||
30 |
lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" |
|
31 |
unfolding less_le_not_le by blast |
|
32 |
||
33 |
||
34 |
text {* Asymmetry. *} |
|
35 |
||
36 |
lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" |
|
37 |
by (simp add: less_le_not_le) |
|
38 |
||
39 |
lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" |
|
40 |
by (drule less_not_sym, erule contrapos_np) simp |
|
41 |
||
42 |
||
43 |
text {* Transitivity. *} |
|
44 |
||
45 |
lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" |
|
46 |
by (auto simp add: less_le_not_le intro: order_trans) |
|
47 |
||
48 |
lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" |
|
49 |
by (auto simp add: less_le_not_le intro: order_trans) |
|
50 |
||
51 |
lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" |
|
52 |
by (auto simp add: less_le_not_le intro: order_trans) |
|
53 |
||
54 |
||
55 |
text {* Useful for simplification, but too risky to include by default. *} |
|
56 |
||
57 |
lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" |
|
58 |
by (blast elim: less_asym) |
|
59 |
||
60 |
lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" |
|
61 |
by (blast elim: less_asym) |
|
62 |
||
63 |
||
64 |
text {* Transitivity rules for calculational reasoning *} |
|
65 |
||
66 |
lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" |
|
67 |
by (rule less_asym) |
|
68 |
||
69 |
||
70 |
text {* Dual order *} |
|
71 |
||
72 |
lemma dual_preorder: |
|
73 |
"preorder (op \<ge>) (op >)" |
|
28823 | 74 |
proof qed (auto simp add: less_le_not_le intro: order_trans) |
27682 | 75 |
|
76 |
end |
|
77 |
||
78 |
||
79 |
subsection {* Partial orders *} |
|
80 |
||
81 |
class order = preorder + |
|
82 |
assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" |
|
83 |
begin |
|
84 |
||
85 |
text {* Reflexivity. *} |
|
86 |
||
87 |
lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" |
|
88 |
by (auto simp add: less_le_not_le intro: antisym) |
|
15524 | 89 |
|
25062 | 90 |
lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" |
15524 | 91 |
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *} |
23212 | 92 |
by (simp add: less_le) blast |
15524 | 93 |
|
25062 | 94 |
lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" |
23212 | 95 |
unfolding less_le by blast |
15524 | 96 |
|
21329 | 97 |
|
98 |
text {* Useful for simplification, but too risky to include by default. *} |
|
99 |
||
25062 | 100 |
lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" |
23212 | 101 |
by auto |
21329 | 102 |
|
25062 | 103 |
lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" |
23212 | 104 |
by auto |
21329 | 105 |
|
106 |
||
107 |
text {* Transitivity rules for calculational reasoning *} |
|
108 |
||
25062 | 109 |
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" |
23212 | 110 |
by (simp add: less_le) |
21329 | 111 |
|
25062 | 112 |
lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" |
23212 | 113 |
by (simp add: less_le) |
21329 | 114 |
|
15524 | 115 |
|
116 |
text {* Asymmetry. *} |
|
117 |
||
25062 | 118 |
lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" |
23212 | 119 |
by (blast intro: antisym) |
15524 | 120 |
|
25062 | 121 |
lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" |
23212 | 122 |
by (blast intro: antisym) |
15524 | 123 |
|
25062 | 124 |
lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" |
23212 | 125 |
by (erule contrapos_pn, erule subst, rule less_irrefl) |
21248 | 126 |
|
21083 | 127 |
|
27107 | 128 |
text {* Least value operator *} |
129 |
||
27299 | 130 |
definition (in ord) |
27107 | 131 |
Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where |
132 |
"Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" |
|
133 |
||
134 |
lemma Least_equality: |
|
135 |
assumes "P x" |
|
136 |
and "\<And>y. P y \<Longrightarrow> x \<le> y" |
|
137 |
shows "Least P = x" |
|
138 |
unfolding Least_def by (rule the_equality) |
|
139 |
(blast intro: assms antisym)+ |
|
140 |
||
141 |
lemma LeastI2_order: |
|
142 |
assumes "P x" |
|
143 |
and "\<And>y. P y \<Longrightarrow> x \<le> y" |
|
144 |
and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" |
|
145 |
shows "Q (Least P)" |
|
146 |
unfolding Least_def by (rule theI2) |
|
147 |
(blast intro: assms antisym)+ |
|
148 |
||
149 |
||
26014 | 150 |
text {* Dual order *} |
22916 | 151 |
|
26014 | 152 |
lemma dual_order: |
25103 | 153 |
"order (op \<ge>) (op >)" |
27682 | 154 |
by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) |
22916 | 155 |
|
21248 | 156 |
end |
15524 | 157 |
|
21329 | 158 |
|
159 |
subsection {* Linear (total) orders *} |
|
160 |
||
22316 | 161 |
class linorder = order + |
25207 | 162 |
assumes linear: "x \<le> y \<or> y \<le> x" |
21248 | 163 |
begin |
164 |
||
25062 | 165 |
lemma less_linear: "x < y \<or> x = y \<or> y < x" |
23212 | 166 |
unfolding less_le using less_le linear by blast |
21248 | 167 |
|
25062 | 168 |
lemma le_less_linear: "x \<le> y \<or> y < x" |
23212 | 169 |
by (simp add: le_less less_linear) |
21248 | 170 |
|
171 |
lemma le_cases [case_names le ge]: |
|
25062 | 172 |
"(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" |
23212 | 173 |
using linear by blast |
21248 | 174 |
|
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
175 |
lemma linorder_cases [case_names less equal greater]: |
25062 | 176 |
"(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" |
23212 | 177 |
using less_linear by blast |
21248 | 178 |
|
25062 | 179 |
lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" |
23212 | 180 |
apply (simp add: less_le) |
181 |
using linear apply (blast intro: antisym) |
|
182 |
done |
|
183 |
||
184 |
lemma not_less_iff_gr_or_eq: |
|
25062 | 185 |
"\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" |
23212 | 186 |
apply(simp add:not_less le_less) |
187 |
apply blast |
|
188 |
done |
|
15524 | 189 |
|
25062 | 190 |
lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" |
23212 | 191 |
apply (simp add: less_le) |
192 |
using linear apply (blast intro: antisym) |
|
193 |
done |
|
15524 | 194 |
|
25062 | 195 |
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" |
23212 | 196 |
by (cut_tac x = x and y = y in less_linear, auto) |
15524 | 197 |
|
25062 | 198 |
lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" |
23212 | 199 |
by (simp add: neq_iff) blast |
15524 | 200 |
|
25062 | 201 |
lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" |
23212 | 202 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 203 |
|
25062 | 204 |
lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" |
23212 | 205 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 206 |
|
25062 | 207 |
lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" |
23212 | 208 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 209 |
|
25062 | 210 |
lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" |
23212 | 211 |
unfolding not_less . |
16796 | 212 |
|
25062 | 213 |
lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" |
23212 | 214 |
unfolding not_less . |
16796 | 215 |
|
216 |
(*FIXME inappropriate name (or delete altogether)*) |
|
25062 | 217 |
lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" |
23212 | 218 |
unfolding not_le . |
21248 | 219 |
|
22916 | 220 |
|
26014 | 221 |
text {* Dual order *} |
22916 | 222 |
|
26014 | 223 |
lemma dual_linorder: |
25103 | 224 |
"linorder (op \<ge>) (op >)" |
27682 | 225 |
by (rule linorder.intro, rule dual_order) (unfold_locales, rule linear) |
22916 | 226 |
|
227 |
||
23881 | 228 |
text {* min/max *} |
229 |
||
27299 | 230 |
definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
28516 | 231 |
[code del]: "min a b = (if a \<le> b then a else b)" |
23881 | 232 |
|
27299 | 233 |
definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
28516 | 234 |
[code del]: "max a b = (if a \<le> b then b else a)" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
235 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
236 |
lemma min_le_iff_disj: |
25062 | 237 |
"min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" |
23212 | 238 |
unfolding min_def using linear by (auto intro: order_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
239 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
240 |
lemma le_max_iff_disj: |
25062 | 241 |
"z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" |
23212 | 242 |
unfolding max_def using linear by (auto intro: order_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
243 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
244 |
lemma min_less_iff_disj: |
25062 | 245 |
"min x y < z \<longleftrightarrow> x < z \<or> y < z" |
23212 | 246 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
247 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
248 |
lemma less_max_iff_disj: |
25062 | 249 |
"z < max x y \<longleftrightarrow> z < x \<or> z < y" |
23212 | 250 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
251 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
252 |
lemma min_less_iff_conj [simp]: |
25062 | 253 |
"z < min x y \<longleftrightarrow> z < x \<and> z < y" |
23212 | 254 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
255 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
256 |
lemma max_less_iff_conj [simp]: |
25062 | 257 |
"max x y < z \<longleftrightarrow> x < z \<and> y < z" |
23212 | 258 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
259 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23948
diff
changeset
|
260 |
lemma split_min [noatp]: |
25062 | 261 |
"P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" |
23212 | 262 |
by (simp add: min_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
263 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23948
diff
changeset
|
264 |
lemma split_max [noatp]: |
25062 | 265 |
"P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" |
23212 | 266 |
by (simp add: max_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
267 |
|
21248 | 268 |
end |
269 |
||
28516 | 270 |
text {* Explicit dictionaries for code generation *} |
271 |
||
272 |
lemma min_ord_min [code, code unfold, code inline del]: |
|
273 |
"min = ord.min (op \<le>)" |
|
274 |
by (rule ext)+ (simp add: min_def ord.min_def) |
|
275 |
||
276 |
declare ord.min_def [code] |
|
277 |
||
278 |
lemma max_ord_max [code, code unfold, code inline del]: |
|
279 |
"max = ord.max (op \<le>)" |
|
280 |
by (rule ext)+ (simp add: max_def ord.max_def) |
|
281 |
||
282 |
declare ord.max_def [code] |
|
283 |
||
23948 | 284 |
|
21083 | 285 |
subsection {* Reasoning tools setup *} |
286 |
||
21091 | 287 |
ML {* |
288 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
289 |
signature ORDERS = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
290 |
sig |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
291 |
val print_structures: Proof.context -> unit |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
292 |
val setup: theory -> theory |
24704
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
ballarin
parents:
24641
diff
changeset
|
293 |
val order_tac: thm list -> Proof.context -> int -> tactic |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
294 |
end; |
21091 | 295 |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
296 |
structure Orders: ORDERS = |
21248 | 297 |
struct |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
298 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
299 |
(** Theory and context data **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
300 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
301 |
fun struct_eq ((s1: string, ts1), (s2, ts2)) = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
302 |
(s1 = s2) andalso eq_list (op aconv) (ts1, ts2); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
303 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
304 |
structure Data = GenericDataFun |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
305 |
( |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
306 |
type T = ((string * term list) * Order_Tac.less_arith) list; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
307 |
(* Order structures: |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
308 |
identifier of the structure, list of operations and record of theorems |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
309 |
needed to set up the transitivity reasoner, |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
310 |
identifier and operations identify the structure uniquely. *) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
311 |
val empty = []; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
312 |
val extend = I; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
313 |
fun merge _ = AList.join struct_eq (K fst); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
314 |
); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
315 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
316 |
fun print_structures ctxt = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
317 |
let |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
318 |
val structs = Data.get (Context.Proof ctxt); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
319 |
fun pretty_term t = Pretty.block |
24920 | 320 |
[Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
321 |
Pretty.str "::", Pretty.brk 1, |
24920 | 322 |
Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
323 |
fun pretty_struct ((s, ts), _) = Pretty.block |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
324 |
[Pretty.str s, Pretty.str ":", Pretty.brk 1, |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
325 |
Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))]; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
326 |
in |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
327 |
Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
328 |
end; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
329 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
330 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
331 |
(** Method **) |
21091 | 332 |
|
24704
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
ballarin
parents:
24641
diff
changeset
|
333 |
fun struct_tac ((s, [eq, le, less]), thms) prems = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
334 |
let |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
335 |
fun decomp thy (Trueprop $ t) = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
336 |
let |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
337 |
fun excluded t = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
338 |
(* exclude numeric types: linear arithmetic subsumes transitivity *) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
339 |
let val T = type_of t |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
340 |
in |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
341 |
T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
342 |
end; |
24741
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
343 |
fun rel (bin_op $ t1 $ t2) = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
344 |
if excluded t1 then NONE |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
345 |
else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
346 |
else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
347 |
else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
348 |
else NONE |
24741
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
349 |
| rel _ = NONE; |
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
350 |
fun dec (Const (@{const_name Not}, _) $ t) = (case rel t |
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
351 |
of NONE => NONE |
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
352 |
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) |
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
353 |
| dec x = rel x; |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
354 |
in dec t end; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
355 |
in |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
356 |
case s of |
24704
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
ballarin
parents:
24641
diff
changeset
|
357 |
"order" => Order_Tac.partial_tac decomp thms prems |
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
ballarin
parents:
24641
diff
changeset
|
358 |
| "linorder" => Order_Tac.linear_tac decomp thms prems |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
359 |
| _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.") |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
360 |
end |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
361 |
|
24704
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
ballarin
parents:
24641
diff
changeset
|
362 |
fun order_tac prems ctxt = |
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
ballarin
parents:
24641
diff
changeset
|
363 |
FIRST' (map (fn s => CHANGED o struct_tac s prems) (Data.get (Context.Proof ctxt))); |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
364 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
365 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
366 |
(** Attribute **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
367 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
368 |
fun add_struct_thm s tag = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
369 |
Thm.declaration_attribute |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
370 |
(fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
371 |
fun del_struct s = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
372 |
Thm.declaration_attribute |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
373 |
(fn _ => Data.map (AList.delete struct_eq s)); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
374 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
375 |
val attribute = Attrib.syntax |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
376 |
(Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
377 |
Args.del >> K NONE) --| Args.colon (* FIXME || |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
378 |
Scan.succeed true *) ) -- Scan.lift Args.name -- |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
379 |
Scan.repeat Args.term |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
380 |
>> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
381 |
| ((NONE, n), ts) => del_struct (n, ts))); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
382 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
383 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
384 |
(** Diagnostic command **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
385 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
386 |
val print = Toplevel.unknown_context o |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
387 |
Toplevel.keep (Toplevel.node_case |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
388 |
(Context.cases (print_structures o ProofContext.init) print_structures) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
389 |
(print_structures o Proof.context_of)); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
390 |
|
24867 | 391 |
val _ = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
392 |
OuterSyntax.improper_command "print_orders" |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
393 |
"print order structures available to transitivity reasoner" OuterKeyword.diag |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
394 |
(Scan.succeed (Toplevel.no_timing o print)); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
395 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
396 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
397 |
(** Setup **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
398 |
|
24867 | 399 |
val setup = |
400 |
Method.add_methods |
|
401 |
[("order", Method.ctxt_args (Method.SIMPLE_METHOD' o order_tac []), "transitivity reasoner")] #> |
|
402 |
Attrib.add_attributes [("order", attribute, "theorems controlling transitivity reasoner")]; |
|
21091 | 403 |
|
404 |
end; |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
405 |
|
21091 | 406 |
*} |
407 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
408 |
setup Orders.setup |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
409 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
410 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
411 |
text {* Declarations to set up transitivity reasoner of partial and linear orders. *} |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
412 |
|
25076 | 413 |
context order |
414 |
begin |
|
415 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
416 |
(* The type constraint on @{term op =} below is necessary since the operation |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
417 |
is not a parameter of the locale. *) |
25076 | 418 |
|
27689 | 419 |
declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] |
420 |
||
421 |
declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
422 |
||
423 |
declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
424 |
||
425 |
declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
426 |
||
427 |
declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
428 |
||
429 |
declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
430 |
||
431 |
declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
432 |
||
433 |
declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
434 |
||
435 |
declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
436 |
||
437 |
declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
438 |
||
439 |
declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
440 |
||
441 |
declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
442 |
||
443 |
declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
444 |
||
445 |
declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
446 |
||
447 |
declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
448 |
|
25076 | 449 |
end |
450 |
||
451 |
context linorder |
|
452 |
begin |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
453 |
|
27689 | 454 |
declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] |
455 |
||
456 |
declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
457 |
||
458 |
declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
459 |
||
460 |
declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
461 |
||
462 |
declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
463 |
||
464 |
declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
465 |
||
466 |
declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
467 |
||
468 |
declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
469 |
||
470 |
declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
471 |
||
472 |
declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
25076 | 473 |
|
27689 | 474 |
declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
475 |
||
476 |
declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
477 |
||
478 |
declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
479 |
||
480 |
declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
481 |
||
482 |
declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
483 |
||
484 |
declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
485 |
||
486 |
declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
487 |
||
488 |
declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
489 |
||
490 |
declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
491 |
||
492 |
declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
493 |
|
25076 | 494 |
end |
495 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
496 |
|
21083 | 497 |
setup {* |
498 |
let |
|
499 |
||
500 |
fun prp t thm = (#prop (rep_thm thm) = t); |
|
15524 | 501 |
|
21083 | 502 |
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = |
503 |
let val prems = prems_of_ss ss; |
|
22916 | 504 |
val less = Const (@{const_name less}, T); |
21083 | 505 |
val t = HOLogic.mk_Trueprop(le $ s $ r); |
506 |
in case find_first (prp t) prems of |
|
507 |
NONE => |
|
508 |
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) |
|
509 |
in case find_first (prp t) prems of |
|
510 |
NONE => NONE |
|
24422 | 511 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})) |
21083 | 512 |
end |
24422 | 513 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv})) |
21083 | 514 |
end |
515 |
handle THM _ => NONE; |
|
15524 | 516 |
|
21083 | 517 |
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = |
518 |
let val prems = prems_of_ss ss; |
|
22916 | 519 |
val le = Const (@{const_name less_eq}, T); |
21083 | 520 |
val t = HOLogic.mk_Trueprop(le $ r $ s); |
521 |
in case find_first (prp t) prems of |
|
522 |
NONE => |
|
523 |
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) |
|
524 |
in case find_first (prp t) prems of |
|
525 |
NONE => NONE |
|
24422 | 526 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})) |
21083 | 527 |
end |
24422 | 528 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2})) |
21083 | 529 |
end |
530 |
handle THM _ => NONE; |
|
15524 | 531 |
|
21248 | 532 |
fun add_simprocs procs thy = |
26496
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
533 |
Simplifier.map_simpset (fn ss => ss |
21248 | 534 |
addsimprocs (map (fn (name, raw_ts, proc) => |
26496
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
535 |
Simplifier.simproc thy name raw_ts proc) procs)) thy; |
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
536 |
fun add_solver name tac = |
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
537 |
Simplifier.map_simpset (fn ss => ss addSolver |
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
538 |
mk_solver' name (fn ss => tac (Simplifier.prems_of_ss ss) (Simplifier.the_context ss))); |
21083 | 539 |
|
540 |
in |
|
21248 | 541 |
add_simprocs [ |
542 |
("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), |
|
543 |
("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) |
|
544 |
] |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
545 |
#> add_solver "Transitivity" Orders.order_tac |
21248 | 546 |
(* Adding the transitivity reasoners also as safe solvers showed a slight |
547 |
speed up, but the reasoning strength appears to be not higher (at least |
|
548 |
no breaking of additional proofs in the entire HOL distribution, as |
|
549 |
of 5 March 2004, was observed). *) |
|
21083 | 550 |
end |
551 |
*} |
|
15524 | 552 |
|
553 |
||
24422 | 554 |
subsection {* Name duplicates *} |
555 |
||
556 |
lemmas order_less_le = less_le |
|
27682 | 557 |
lemmas order_eq_refl = preorder_class.eq_refl |
558 |
lemmas order_less_irrefl = preorder_class.less_irrefl |
|
24422 | 559 |
lemmas order_le_less = order_class.le_less |
560 |
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq |
|
27682 | 561 |
lemmas order_less_imp_le = preorder_class.less_imp_le |
24422 | 562 |
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq |
563 |
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 |
|
564 |
lemmas order_neq_le_trans = order_class.neq_le_trans |
|
565 |
lemmas order_le_neq_trans = order_class.le_neq_trans |
|
566 |
||
567 |
lemmas order_antisym = antisym |
|
27682 | 568 |
lemmas order_less_not_sym = preorder_class.less_not_sym |
569 |
lemmas order_less_asym = preorder_class.less_asym |
|
24422 | 570 |
lemmas order_eq_iff = order_class.eq_iff |
571 |
lemmas order_antisym_conv = order_class.antisym_conv |
|
27682 | 572 |
lemmas order_less_trans = preorder_class.less_trans |
573 |
lemmas order_le_less_trans = preorder_class.le_less_trans |
|
574 |
lemmas order_less_le_trans = preorder_class.less_le_trans |
|
575 |
lemmas order_less_imp_not_less = preorder_class.less_imp_not_less |
|
576 |
lemmas order_less_imp_triv = preorder_class.less_imp_triv |
|
577 |
lemmas order_less_asym' = preorder_class.less_asym' |
|
24422 | 578 |
|
579 |
lemmas linorder_linear = linear |
|
580 |
lemmas linorder_less_linear = linorder_class.less_linear |
|
581 |
lemmas linorder_le_less_linear = linorder_class.le_less_linear |
|
582 |
lemmas linorder_le_cases = linorder_class.le_cases |
|
583 |
lemmas linorder_not_less = linorder_class.not_less |
|
584 |
lemmas linorder_not_le = linorder_class.not_le |
|
585 |
lemmas linorder_neq_iff = linorder_class.neq_iff |
|
586 |
lemmas linorder_neqE = linorder_class.neqE |
|
587 |
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 |
|
588 |
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 |
|
589 |
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 |
|
590 |
||
591 |
||
21083 | 592 |
subsection {* Bounded quantifiers *} |
593 |
||
594 |
syntax |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
595 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
596 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
597 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
598 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) |
21083 | 599 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
600 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
601 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
602 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
603 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) |
21083 | 604 |
|
605 |
syntax (xsymbols) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
606 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
607 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
608 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
609 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 610 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
611 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
612 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
613 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
614 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 615 |
|
616 |
syntax (HOL) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
617 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
618 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
619 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
620 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) |
21083 | 621 |
|
622 |
syntax (HTML output) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
623 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
624 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
625 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
626 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 627 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
628 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
629 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
630 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
631 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 632 |
|
633 |
translations |
|
634 |
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" |
|
635 |
"EX x<y. P" => "EX x. x < y \<and> P" |
|
636 |
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" |
|
637 |
"EX x<=y. P" => "EX x. x <= y \<and> P" |
|
638 |
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" |
|
639 |
"EX x>y. P" => "EX x. x > y \<and> P" |
|
640 |
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" |
|
641 |
"EX x>=y. P" => "EX x. x >= y \<and> P" |
|
642 |
||
643 |
print_translation {* |
|
644 |
let |
|
22916 | 645 |
val All_binder = Syntax.binder_name @{const_syntax All}; |
646 |
val Ex_binder = Syntax.binder_name @{const_syntax Ex}; |
|
22377 | 647 |
val impl = @{const_syntax "op -->"}; |
648 |
val conj = @{const_syntax "op &"}; |
|
22916 | 649 |
val less = @{const_syntax less}; |
650 |
val less_eq = @{const_syntax less_eq}; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
651 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
652 |
val trans = |
21524 | 653 |
[((All_binder, impl, less), ("_All_less", "_All_greater")), |
654 |
((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")), |
|
655 |
((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")), |
|
656 |
((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))]; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
657 |
|
22344
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
658 |
fun matches_bound v t = |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
659 |
case t of (Const ("_bound", _) $ Free (v', _)) => (v = v') |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
660 |
| _ => false |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
661 |
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
662 |
fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P |
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
663 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
664 |
fun tr' q = (q, |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
665 |
fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
666 |
(case AList.lookup (op =) trans (q, c, d) of |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
667 |
NONE => raise Match |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
668 |
| SOME (l, g) => |
22344
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
669 |
if matches_bound v t andalso not (contains_var v u) then mk v l u P |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
670 |
else if matches_bound v u andalso not (contains_var v t) then mk v g t P |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
671 |
else raise Match) |
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
672 |
| _ => raise Match); |
21524 | 673 |
in [tr' All_binder, tr' Ex_binder] end |
21083 | 674 |
*} |
675 |
||
676 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
677 |
subsection {* Transitivity reasoning *} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
678 |
|
25193 | 679 |
context ord |
680 |
begin |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
681 |
|
25193 | 682 |
lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" |
683 |
by (rule subst) |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
684 |
|
25193 | 685 |
lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" |
686 |
by (rule ssubst) |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
687 |
|
25193 | 688 |
lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" |
689 |
by (rule subst) |
|
690 |
||
691 |
lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" |
|
692 |
by (rule ssubst) |
|
693 |
||
694 |
end |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
695 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
696 |
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
697 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
698 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
699 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
700 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
701 |
also assume "f b < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
702 |
finally (order_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
703 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
704 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
705 |
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
706 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
707 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
708 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
709 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
710 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
711 |
finally (order_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
712 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
713 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
714 |
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
715 |
(!!x y. x <= y ==> f x <= f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
716 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
717 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
718 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
719 |
also assume "f b < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
720 |
finally (order_le_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
721 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
722 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
723 |
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
724 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
725 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
726 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
727 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
728 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
729 |
finally (order_le_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
730 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
731 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
732 |
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
733 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
734 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
735 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
736 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
737 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
738 |
finally (order_less_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
739 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
740 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
741 |
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
742 |
(!!x y. x <= y ==> f x <= f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
743 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
744 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
745 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
746 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
747 |
finally (order_less_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
748 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
749 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
750 |
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
751 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
752 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
753 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
754 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
755 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
756 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
757 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
758 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
759 |
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
760 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
761 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
762 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
763 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
764 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
765 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
766 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
767 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
768 |
lemma ord_le_eq_subst: "a <= b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
769 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
770 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
771 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
772 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
773 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
774 |
finally (ord_le_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
775 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
776 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
777 |
lemma ord_eq_le_subst: "a = f b ==> b <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
778 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
779 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
780 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
781 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
782 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
783 |
finally (ord_eq_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
784 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
785 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
786 |
lemma ord_less_eq_subst: "a < b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
787 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
788 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
789 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
790 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
791 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
792 |
finally (ord_less_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
793 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
794 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
795 |
lemma ord_eq_less_subst: "a = f b ==> b < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
796 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
797 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
798 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
799 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
800 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
801 |
finally (ord_eq_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
802 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
803 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
804 |
text {* |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
805 |
Note that this list of rules is in reverse order of priorities. |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
806 |
*} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
807 |
|
27682 | 808 |
lemmas [trans] = |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
809 |
order_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
810 |
order_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
811 |
order_le_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
812 |
order_le_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
813 |
order_less_le_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
814 |
order_less_le_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
815 |
order_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
816 |
order_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
817 |
ord_le_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
818 |
ord_eq_le_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
819 |
ord_less_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
820 |
ord_eq_less_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
821 |
forw_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
822 |
back_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
823 |
rev_mp |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
824 |
mp |
27682 | 825 |
|
826 |
lemmas (in order) [trans] = |
|
827 |
neq_le_trans |
|
828 |
le_neq_trans |
|
829 |
||
830 |
lemmas (in preorder) [trans] = |
|
831 |
less_trans |
|
832 |
less_asym' |
|
833 |
le_less_trans |
|
834 |
less_le_trans |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
835 |
order_trans |
27682 | 836 |
|
837 |
lemmas (in order) [trans] = |
|
838 |
antisym |
|
839 |
||
840 |
lemmas (in ord) [trans] = |
|
841 |
ord_le_eq_trans |
|
842 |
ord_eq_le_trans |
|
843 |
ord_less_eq_trans |
|
844 |
ord_eq_less_trans |
|
845 |
||
846 |
lemmas [trans] = |
|
847 |
trans |
|
848 |
||
849 |
lemmas order_trans_rules = |
|
850 |
order_less_subst2 |
|
851 |
order_less_subst1 |
|
852 |
order_le_less_subst2 |
|
853 |
order_le_less_subst1 |
|
854 |
order_less_le_subst2 |
|
855 |
order_less_le_subst1 |
|
856 |
order_subst2 |
|
857 |
order_subst1 |
|
858 |
ord_le_eq_subst |
|
859 |
ord_eq_le_subst |
|
860 |
ord_less_eq_subst |
|
861 |
ord_eq_less_subst |
|
862 |
forw_subst |
|
863 |
back_subst |
|
864 |
rev_mp |
|
865 |
mp |
|
866 |
neq_le_trans |
|
867 |
le_neq_trans |
|
868 |
less_trans |
|
869 |
less_asym' |
|
870 |
le_less_trans |
|
871 |
less_le_trans |
|
872 |
order_trans |
|
873 |
antisym |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
874 |
ord_le_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
875 |
ord_eq_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
876 |
ord_less_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
877 |
ord_eq_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
878 |
trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
879 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
880 |
(* FIXME cleanup *) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
881 |
|
21083 | 882 |
text {* These support proving chains of decreasing inequalities |
883 |
a >= b >= c ... in Isar proofs. *} |
|
884 |
||
885 |
lemma xt1: |
|
886 |
"a = b ==> b > c ==> a > c" |
|
887 |
"a > b ==> b = c ==> a > c" |
|
888 |
"a = b ==> b >= c ==> a >= c" |
|
889 |
"a >= b ==> b = c ==> a >= c" |
|
890 |
"(x::'a::order) >= y ==> y >= x ==> x = y" |
|
891 |
"(x::'a::order) >= y ==> y >= z ==> x >= z" |
|
892 |
"(x::'a::order) > y ==> y >= z ==> x > z" |
|
893 |
"(x::'a::order) >= y ==> y > z ==> x > z" |
|
23417 | 894 |
"(a::'a::order) > b ==> b > a ==> P" |
21083 | 895 |
"(x::'a::order) > y ==> y > z ==> x > z" |
896 |
"(a::'a::order) >= b ==> a ~= b ==> a > b" |
|
897 |
"(a::'a::order) ~= b ==> a >= b ==> a > b" |
|
898 |
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" |
|
899 |
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" |
|
900 |
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
901 |
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
25076 | 902 |
by auto |
21083 | 903 |
|
904 |
lemma xt2: |
|
905 |
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
906 |
by (subgoal_tac "f b >= f c", force, force) |
|
907 |
||
908 |
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> |
|
909 |
(!!x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
910 |
by (subgoal_tac "f a >= f b", force, force) |
|
911 |
||
912 |
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> |
|
913 |
(!!x y. x >= y ==> f x >= f y) ==> a > f c" |
|
914 |
by (subgoal_tac "f b >= f c", force, force) |
|
915 |
||
916 |
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> |
|
917 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
918 |
by (subgoal_tac "f a > f b", force, force) |
|
919 |
||
920 |
lemma xt6: "(a::'a::order) >= f b ==> b > c ==> |
|
921 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
922 |
by (subgoal_tac "f b > f c", force, force) |
|
923 |
||
924 |
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> |
|
925 |
(!!x y. x >= y ==> f x >= f y) ==> f a > c" |
|
926 |
by (subgoal_tac "f a >= f b", force, force) |
|
927 |
||
928 |
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> |
|
929 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
930 |
by (subgoal_tac "f b > f c", force, force) |
|
931 |
||
932 |
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> |
|
933 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
934 |
by (subgoal_tac "f a > f b", force, force) |
|
935 |
||
936 |
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 |
|
937 |
||
938 |
(* |
|
939 |
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands |
|
940 |
for the wrong thing in an Isar proof. |
|
941 |
||
942 |
The extra transitivity rules can be used as follows: |
|
943 |
||
944 |
lemma "(a::'a::order) > z" |
|
945 |
proof - |
|
946 |
have "a >= b" (is "_ >= ?rhs") |
|
947 |
sorry |
|
948 |
also have "?rhs >= c" (is "_ >= ?rhs") |
|
949 |
sorry |
|
950 |
also (xtrans) have "?rhs = d" (is "_ = ?rhs") |
|
951 |
sorry |
|
952 |
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") |
|
953 |
sorry |
|
954 |
also (xtrans) have "?rhs > f" (is "_ > ?rhs") |
|
955 |
sorry |
|
956 |
also (xtrans) have "?rhs > z" |
|
957 |
sorry |
|
958 |
finally (xtrans) show ?thesis . |
|
959 |
qed |
|
960 |
||
961 |
Alternatively, one can use "declare xtrans [trans]" and then |
|
962 |
leave out the "(xtrans)" above. |
|
963 |
*) |
|
964 |
||
23881 | 965 |
|
966 |
subsection {* Monotonicity, least value operator and min/max *} |
|
21083 | 967 |
|
25076 | 968 |
context order |
969 |
begin |
|
970 |
||
971 |
definition |
|
972 |
mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" |
|
973 |
where |
|
974 |
"mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" |
|
975 |
||
976 |
lemma monoI [intro?]: |
|
977 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order" |
|
978 |
shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" |
|
979 |
unfolding mono_def by iprover |
|
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
980 |
|
25076 | 981 |
lemma monoD [dest?]: |
982 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order" |
|
983 |
shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" |
|
984 |
unfolding mono_def by iprover |
|
985 |
||
986 |
end |
|
987 |
||
988 |
context linorder |
|
989 |
begin |
|
990 |
||
991 |
lemma min_of_mono: |
|
992 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" |
|
25377 | 993 |
shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" |
25076 | 994 |
by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) |
995 |
||
996 |
lemma max_of_mono: |
|
997 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" |
|
25377 | 998 |
shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" |
25076 | 999 |
by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) |
1000 |
||
1001 |
end |
|
21083 | 1002 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1003 |
lemma min_leastL: "(!!x. least <= x) ==> min least x = least" |
23212 | 1004 |
by (simp add: min_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1005 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1006 |
lemma max_leastL: "(!!x. least <= x) ==> max least x = x" |
23212 | 1007 |
by (simp add: max_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1008 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1009 |
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" |
23212 | 1010 |
apply (simp add: min_def) |
1011 |
apply (blast intro: order_antisym) |
|
1012 |
done |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1013 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1014 |
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" |
23212 | 1015 |
apply (simp add: max_def) |
1016 |
apply (blast intro: order_antisym) |
|
1017 |
done |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1018 |
|
27823 | 1019 |
|
28685 | 1020 |
subsection {* Top and bottom elements *} |
1021 |
||
1022 |
class top = preorder + |
|
1023 |
fixes top :: 'a |
|
1024 |
assumes top_greatest [simp]: "x \<le> top" |
|
1025 |
||
1026 |
class bot = preorder + |
|
1027 |
fixes bot :: 'a |
|
1028 |
assumes bot_least [simp]: "bot \<le> x" |
|
1029 |
||
1030 |
||
27823 | 1031 |
subsection {* Dense orders *} |
1032 |
||
1033 |
class dense_linear_order = linorder + |
|
1034 |
assumes gt_ex: "\<exists>y. x < y" |
|
1035 |
and lt_ex: "\<exists>y. y < x" |
|
1036 |
and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" |
|
1037 |
(*see further theory Dense_Linear_Order*) |
|
1038 |
||
1039 |
||
1040 |
subsection {* Wellorders *} |
|
1041 |
||
1042 |
class wellorder = linorder + |
|
1043 |
assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" |
|
1044 |
begin |
|
1045 |
||
1046 |
lemma wellorder_Least_lemma: |
|
1047 |
fixes k :: 'a |
|
1048 |
assumes "P k" |
|
1049 |
shows "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" |
|
1050 |
proof - |
|
1051 |
have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" |
|
1052 |
using assms proof (induct k rule: less_induct) |
|
1053 |
case (less x) then have "P x" by simp |
|
1054 |
show ?case proof (rule classical) |
|
1055 |
assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" |
|
1056 |
have "\<And>y. P y \<Longrightarrow> x \<le> y" |
|
1057 |
proof (rule classical) |
|
1058 |
fix y |
|
1059 |
assume "P y" and "\<not> x \<le> y" |
|
1060 |
with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" |
|
1061 |
by (auto simp add: not_le) |
|
1062 |
with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" |
|
1063 |
by auto |
|
1064 |
then show "x \<le> y" by auto |
|
1065 |
qed |
|
1066 |
with `P x` have Least: "(LEAST a. P a) = x" |
|
1067 |
by (rule Least_equality) |
|
1068 |
with `P x` show ?thesis by simp |
|
1069 |
qed |
|
1070 |
qed |
|
1071 |
then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto |
|
1072 |
qed |
|
1073 |
||
1074 |
lemmas LeastI = wellorder_Least_lemma(1) |
|
1075 |
lemmas Least_le = wellorder_Least_lemma(2) |
|
1076 |
||
1077 |
-- "The following 3 lemmas are due to Brian Huffman" |
|
1078 |
lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" |
|
1079 |
by (erule exE) (erule LeastI) |
|
1080 |
||
1081 |
lemma LeastI2: |
|
1082 |
"P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" |
|
1083 |
by (blast intro: LeastI) |
|
1084 |
||
1085 |
lemma LeastI2_ex: |
|
1086 |
"\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" |
|
1087 |
by (blast intro: LeastI_ex) |
|
1088 |
||
1089 |
lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" |
|
1090 |
apply (simp (no_asm_use) add: not_le [symmetric]) |
|
1091 |
apply (erule contrapos_nn) |
|
1092 |
apply (erule Least_le) |
|
1093 |
done |
|
1094 |
||
1095 |
end |
|
1096 |
||
28685 | 1097 |
|
1098 |
subsection {* Order on bool *} |
|
1099 |
||
1100 |
instantiation bool :: "{order, top, bot}" |
|
1101 |
begin |
|
1102 |
||
1103 |
definition |
|
1104 |
le_bool_def [code del]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" |
|
1105 |
||
1106 |
definition |
|
1107 |
less_bool_def [code del]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" |
|
1108 |
||
1109 |
definition |
|
1110 |
top_bool_eq: "top = True" |
|
1111 |
||
1112 |
definition |
|
1113 |
bot_bool_eq: "bot = False" |
|
1114 |
||
1115 |
instance proof |
|
1116 |
qed (auto simp add: le_bool_def less_bool_def top_bool_eq bot_bool_eq) |
|
1117 |
||
15524 | 1118 |
end |
28685 | 1119 |
|
1120 |
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" |
|
1121 |
by (simp add: le_bool_def) |
|
1122 |
||
1123 |
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" |
|
1124 |
by (simp add: le_bool_def) |
|
1125 |
||
1126 |
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
|
1127 |
by (simp add: le_bool_def) |
|
1128 |
||
1129 |
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" |
|
1130 |
by (simp add: le_bool_def) |
|
1131 |
||
1132 |
lemma [code]: |
|
1133 |
"False \<le> b \<longleftrightarrow> True" |
|
1134 |
"True \<le> b \<longleftrightarrow> b" |
|
1135 |
"False < b \<longleftrightarrow> b" |
|
1136 |
"True < b \<longleftrightarrow> False" |
|
1137 |
unfolding le_bool_def less_bool_def by simp_all |
|
1138 |
||
1139 |
||
1140 |
subsection {* Order on functions *} |
|
1141 |
||
1142 |
instantiation "fun" :: (type, ord) ord |
|
1143 |
begin |
|
1144 |
||
1145 |
definition |
|
1146 |
le_fun_def [code del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" |
|
1147 |
||
1148 |
definition |
|
1149 |
less_fun_def [code del]: "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" |
|
1150 |
||
1151 |
instance .. |
|
1152 |
||
1153 |
end |
|
1154 |
||
1155 |
instance "fun" :: (type, preorder) preorder proof |
|
1156 |
qed (auto simp add: le_fun_def less_fun_def |
|
1157 |
intro: order_trans order_antisym intro!: ext) |
|
1158 |
||
1159 |
instance "fun" :: (type, order) order proof |
|
1160 |
qed (auto simp add: le_fun_def intro: order_antisym ext) |
|
1161 |
||
1162 |
instantiation "fun" :: (type, top) top |
|
1163 |
begin |
|
1164 |
||
1165 |
definition |
|
1166 |
top_fun_eq: "top = (\<lambda>x. top)" |
|
1167 |
||
1168 |
instance proof |
|
1169 |
qed (simp add: top_fun_eq le_fun_def) |
|
1170 |
||
1171 |
end |
|
1172 |
||
1173 |
instantiation "fun" :: (type, bot) bot |
|
1174 |
begin |
|
1175 |
||
1176 |
definition |
|
1177 |
bot_fun_eq: "bot = (\<lambda>x. bot)" |
|
1178 |
||
1179 |
instance proof |
|
1180 |
qed (simp add: bot_fun_eq le_fun_def) |
|
1181 |
||
1182 |
end |
|
1183 |
||
1184 |
lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" |
|
1185 |
unfolding le_fun_def by simp |
|
1186 |
||
1187 |
lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" |
|
1188 |
unfolding le_fun_def by simp |
|
1189 |
||
1190 |
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" |
|
1191 |
unfolding le_fun_def by simp |
|
1192 |
||
1193 |
text {* |
|
1194 |
Handy introduction and elimination rules for @{text "\<le>"} |
|
1195 |
on unary and binary predicates |
|
1196 |
*} |
|
1197 |
||
1198 |
lemma predicate1I: |
|
1199 |
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" |
|
1200 |
shows "P \<le> Q" |
|
1201 |
apply (rule le_funI) |
|
1202 |
apply (rule le_boolI) |
|
1203 |
apply (rule PQ) |
|
1204 |
apply assumption |
|
1205 |
done |
|
1206 |
||
1207 |
lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" |
|
1208 |
apply (erule le_funE) |
|
1209 |
apply (erule le_boolE) |
|
1210 |
apply assumption+ |
|
1211 |
done |
|
1212 |
||
1213 |
lemma predicate2I [Pure.intro!, intro!]: |
|
1214 |
assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" |
|
1215 |
shows "P \<le> Q" |
|
1216 |
apply (rule le_funI)+ |
|
1217 |
apply (rule le_boolI) |
|
1218 |
apply (rule PQ) |
|
1219 |
apply assumption |
|
1220 |
done |
|
1221 |
||
1222 |
lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" |
|
1223 |
apply (erule le_funE)+ |
|
1224 |
apply (erule le_boolE) |
|
1225 |
apply assumption+ |
|
1226 |
done |
|
1227 |
||
1228 |
lemma rev_predicate1D: "P x ==> P <= Q ==> Q x" |
|
1229 |
by (rule predicate1D) |
|
1230 |
||
1231 |
lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y" |
|
1232 |
by (rule predicate2D) |
|
1233 |
||
1234 |
end |