| author | wenzelm | 
| Tue, 29 Aug 2023 17:19:19 +0200 | |
| changeset 78609 | 67492b2a3a62 | 
| parent 74749 | 329cb9e6b184 | 
| child 80932 | 261cd8722677 | 
| permissions | -rw-r--r-- | 
| 63572 | 1  | 
(* Title: HOL/Zorn.thy  | 
2  | 
Author: Jacques D. Fleuriot  | 
|
3  | 
Author: Tobias Nipkow, TUM  | 
|
4  | 
Author: Christian Sternagel, JAIST  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
5  | 
|
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
6  | 
Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).  | 
| 14706 | 7  | 
*)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
8  | 
|
| 
74749
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
9  | 
section \<open>Zorn's Lemma and the Well-ordering Theorem\<close>  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
10  | 
|
| 15131 | 11  | 
theory Zorn  | 
| 63572 | 12  | 
imports Order_Relation Hilbert_Choice  | 
| 15131 | 13  | 
begin  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
14  | 
|
| 60758 | 15  | 
subsection \<open>Zorn's Lemma for the Subset Relation\<close>  | 
| 52181 | 16  | 
|
| 60758 | 17  | 
subsubsection \<open>Results that do not require an order\<close>  | 
| 52181 | 18  | 
|
| 61799 | 19  | 
text \<open>Let \<open>P\<close> be a binary predicate on the set \<open>A\<close>.\<close>  | 
| 52181 | 20  | 
locale pred_on =  | 
21  | 
fixes A :: "'a set"  | 
|
| 63572 | 22  | 
and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50)  | 
| 52181 | 23  | 
begin  | 
24  | 
||
| 63572 | 25  | 
abbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50)  | 
26  | 
where "x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y"  | 
|
27  | 
||
28  | 
text \<open>A chain is a totally ordered subset of \<open>A\<close>.\<close>  | 
|
29  | 
definition chain :: "'a set \<Rightarrow> bool"  | 
|
30  | 
where "chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)"  | 
|
| 52181 | 31  | 
|
| 63572 | 32  | 
text \<open>  | 
33  | 
We call a chain that is a proper superset of some set \<open>X\<close>,  | 
|
34  | 
but not necessarily a chain itself, a superchain of \<open>X\<close>.  | 
|
35  | 
\<close>  | 
|
36  | 
abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix "<c" 50)  | 
|
37  | 
where "X <c C \<equiv> chain C \<and> X \<subset> C"  | 
|
| 52181 | 38  | 
|
| 60758 | 39  | 
text \<open>A maximal chain is a chain that does not have a superchain.\<close>  | 
| 63572 | 40  | 
definition maxchain :: "'a set \<Rightarrow> bool"  | 
41  | 
where "maxchain C \<longleftrightarrow> chain C \<and> (\<nexists>S. C <c S)"  | 
|
| 52181 | 42  | 
|
| 63572 | 43  | 
text \<open>  | 
44  | 
We define the successor of a set to be an arbitrary  | 
|
45  | 
superchain, if such exists, or the set itself, otherwise.  | 
|
46  | 
\<close>  | 
|
47  | 
definition suc :: "'a set \<Rightarrow> 'a set"  | 
|
48  | 
where "suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))"  | 
|
| 52181 | 49  | 
|
| 63572 | 50  | 
lemma chainI [Pure.intro?]: "C \<subseteq> A \<Longrightarrow> (\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x) \<Longrightarrow> chain C"  | 
| 52181 | 51  | 
unfolding chain_def by blast  | 
52  | 
||
| 63572 | 53  | 
lemma chain_total: "chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
| 52181 | 54  | 
by (simp add: chain_def)  | 
55  | 
||
56  | 
lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X"  | 
|
57  | 
by (simp add: suc_def)  | 
|
58  | 
||
59  | 
lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X"  | 
|
60  | 
by (simp add: suc_def)  | 
|
61  | 
||
62  | 
lemma suc_subset: "X \<subseteq> suc X"  | 
|
63  | 
by (auto simp: suc_def maxchain_def intro: someI2)  | 
|
64  | 
||
65  | 
lemma chain_empty [simp]: "chain {}"
 | 
|
66  | 
by (auto simp: chain_def)  | 
|
67  | 
||
| 63572 | 68  | 
lemma not_maxchain_Some: "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)"  | 
| 52181 | 69  | 
by (rule someI_ex) (auto simp: maxchain_def)  | 
70  | 
||
| 63572 | 71  | 
lemma suc_not_equals: "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C"  | 
| 55811 | 72  | 
using not_maxchain_Some by (auto simp: suc_def)  | 
| 52181 | 73  | 
|
74  | 
lemma subset_suc:  | 
|
| 63572 | 75  | 
assumes "X \<subseteq> Y"  | 
76  | 
shows "X \<subseteq> suc Y"  | 
|
| 52181 | 77  | 
using assms by (rule subset_trans) (rule suc_subset)  | 
78  | 
||
| 63572 | 79  | 
text \<open>  | 
| 69593 | 80  | 
We build a set \<^term>\<open>\<C>\<close> that is closed under applications  | 
81  | 
of \<^term>\<open>suc\<close> and contains the union of all its subsets.  | 
|
| 63572 | 82  | 
\<close>  | 
83  | 
inductive_set suc_Union_closed ("\<C>")
 | 
|
84  | 
where  | 
|
85  | 
suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>"  | 
|
86  | 
| Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>"  | 
|
| 52181 | 87  | 
|
| 63572 | 88  | 
text \<open>  | 
89  | 
Since the empty set as well as the set itself is a subset of  | 
|
| 69593 | 90  | 
  every set, \<^term>\<open>\<C>\<close> contains at least \<^term>\<open>{} \<in> \<C>\<close> and
 | 
91  | 
\<^term>\<open>\<Union>\<C> \<in> \<C>\<close>.  | 
|
| 63572 | 92  | 
\<close>  | 
93  | 
lemma suc_Union_closed_empty: "{} \<in> \<C>"
 | 
|
94  | 
and suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>"  | 
|
95  | 
  using Union [of "{}"] and Union [of "\<C>"] by simp_all
 | 
|
96  | 
||
| 69593 | 97  | 
text \<open>Thus closure under \<^term>\<open>suc\<close> will hit a maximal chain  | 
| 63572 | 98  | 
eventually, as is shown below.\<close>  | 
| 26272 | 99  | 
|
| 63572 | 100  | 
lemma suc_Union_closed_induct [consumes 1, case_names suc Union, induct pred: suc_Union_closed]:  | 
| 52181 | 101  | 
assumes "X \<in> \<C>"  | 
| 63572 | 102  | 
and "\<And>X. X \<in> \<C> \<Longrightarrow> Q X \<Longrightarrow> Q (suc X)"  | 
103  | 
and "\<And>X. X \<subseteq> \<C> \<Longrightarrow> \<forall>x\<in>X. Q x \<Longrightarrow> Q (\<Union>X)"  | 
|
104  | 
shows "Q X"  | 
|
105  | 
using assms by induct blast+  | 
|
106  | 
||
107  | 
lemma suc_Union_closed_cases [consumes 1, case_names suc Union, cases pred: suc_Union_closed]:  | 
|
108  | 
assumes "X \<in> \<C>"  | 
|
109  | 
and "\<And>Y. X = suc Y \<Longrightarrow> Y \<in> \<C> \<Longrightarrow> Q"  | 
|
110  | 
and "\<And>Y. X = \<Union>Y \<Longrightarrow> Y \<subseteq> \<C> \<Longrightarrow> Q"  | 
|
| 52181 | 111  | 
shows "Q"  | 
| 63572 | 112  | 
using assms by cases simp_all  | 
| 52181 | 113  | 
|
| 69593 | 114  | 
text \<open>On chains, \<^term>\<open>suc\<close> yields a chain.\<close>  | 
| 52181 | 115  | 
lemma chain_suc:  | 
| 63572 | 116  | 
assumes "chain X"  | 
117  | 
shows "chain (suc X)"  | 
|
| 52181 | 118  | 
using assms  | 
| 63572 | 119  | 
by (cases "\<not> chain X \<or> maxchain X") (force simp: suc_def dest: not_maxchain_Some)+  | 
| 52181 | 120  | 
|
121  | 
lemma chain_sucD:  | 
|
| 63572 | 122  | 
assumes "chain X"  | 
123  | 
shows "suc X \<subseteq> A \<and> chain (suc X)"  | 
|
| 52181 | 124  | 
proof -  | 
| 63572 | 125  | 
from \<open>chain X\<close> have *: "chain (suc X)"  | 
126  | 
by (rule chain_suc)  | 
|
127  | 
then have "suc X \<subseteq> A"  | 
|
128  | 
unfolding chain_def by blast  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
129  | 
with * show ?thesis by blast  | 
| 52181 | 130  | 
qed  | 
131  | 
||
132  | 
lemma suc_Union_closed_total':  | 
|
133  | 
assumes "X \<in> \<C>" and "Y \<in> \<C>"  | 
|
134  | 
and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y"  | 
|
135  | 
shows "X \<subseteq> Y \<or> suc Y \<subseteq> X"  | 
|
| 60758 | 136  | 
using \<open>X \<in> \<C>\<close>  | 
| 63572 | 137  | 
proof induct  | 
| 52181 | 138  | 
case (suc X)  | 
139  | 
with * show ?case by (blast del: subsetI intro: subset_suc)  | 
|
| 63572 | 140  | 
next  | 
141  | 
case Union  | 
|
142  | 
then show ?case by blast  | 
|
143  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
144  | 
|
| 52181 | 145  | 
lemma suc_Union_closed_subsetD:  | 
146  | 
assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>"  | 
|
147  | 
shows "X = Y \<or> suc Y \<subseteq> X"  | 
|
| 63572 | 148  | 
using assms(2,3,1)  | 
| 52181 | 149  | 
proof (induct arbitrary: Y)  | 
150  | 
case (suc X)  | 
|
| 63572 | 151  | 
note * = \<open>\<And>Y. Y \<in> \<C> \<Longrightarrow> Y \<subseteq> X \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X\<close>  | 
| 60758 | 152  | 
with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>X \<in> \<C>\<close>]  | 
| 63572 | 153  | 
have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast  | 
| 52181 | 154  | 
then show ?case  | 
155  | 
proof  | 
|
156  | 
assume "Y \<subseteq> X"  | 
|
| 
74749
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
157  | 
with * and \<open>Y \<in> \<C>\<close> subset_suc show ?thesis  | 
| 
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
158  | 
by fastforce  | 
| 52181 | 159  | 
next  | 
160  | 
assume "suc X \<subseteq> Y"  | 
|
| 60758 | 161  | 
with \<open>Y \<subseteq> suc X\<close> show ?thesis by blast  | 
| 52181 | 162  | 
qed  | 
163  | 
next  | 
|
164  | 
case (Union X)  | 
|
165  | 
show ?case  | 
|
166  | 
proof (rule ccontr)  | 
|
167  | 
assume "\<not> ?thesis"  | 
|
| 60758 | 168  | 
with \<open>Y \<subseteq> \<Union>X\<close> obtain x y z  | 
| 63572 | 169  | 
where "\<not> suc Y \<subseteq> \<Union>X"  | 
170  | 
and "x \<in> X" and "y \<in> x" and "y \<notin> Y"  | 
|
171  | 
and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast  | 
|
| 60758 | 172  | 
with \<open>X \<subseteq> \<C>\<close> have "x \<in> \<C>" by blast  | 
| 63572 | 173  | 
from Union and \<open>x \<in> X\<close> have *: "\<And>y. y \<in> \<C> \<Longrightarrow> y \<subseteq> x \<Longrightarrow> x = y \<or> suc y \<subseteq> x"  | 
174  | 
by blast  | 
|
175  | 
with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>x \<in> \<C>\<close>] have "Y \<subseteq> x \<or> suc x \<subseteq> Y"  | 
|
176  | 
by blast  | 
|
| 52181 | 177  | 
then show False  | 
178  | 
proof  | 
|
179  | 
assume "Y \<subseteq> x"  | 
|
| 
74749
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
180  | 
with * [OF \<open>Y \<in> \<C>\<close>] \<open>y \<in> x\<close> \<open>y \<notin> Y\<close> \<open>x \<in> X\<close> \<open>\<not> suc Y \<subseteq> \<Union>X\<close> show False  | 
| 
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
181  | 
by blast  | 
| 52181 | 182  | 
next  | 
183  | 
assume "suc x \<subseteq> Y"  | 
|
| 
74749
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
184  | 
with \<open>y \<notin> Y\<close> suc_subset \<open>y \<in> x\<close> show False by blast  | 
| 52181 | 185  | 
qed  | 
186  | 
qed  | 
|
187  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
188  | 
|
| 69593 | 189  | 
text \<open>The elements of \<^term>\<open>\<C>\<close> are totally ordered by the subset relation.\<close>  | 
| 52181 | 190  | 
lemma suc_Union_closed_total:  | 
191  | 
assumes "X \<in> \<C>" and "Y \<in> \<C>"  | 
|
192  | 
shows "X \<subseteq> Y \<or> Y \<subseteq> X"  | 
|
193  | 
proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y")  | 
|
194  | 
case True  | 
|
195  | 
with suc_Union_closed_total' [OF assms]  | 
|
| 63572 | 196  | 
have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast  | 
197  | 
with suc_subset [of Y] show ?thesis by blast  | 
|
| 52181 | 198  | 
next  | 
199  | 
case False  | 
|
| 63572 | 200  | 
then obtain Z where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y"  | 
201  | 
by blast  | 
|
202  | 
with suc_Union_closed_subsetD and \<open>Y \<in> \<C>\<close> show ?thesis  | 
|
203  | 
by blast  | 
|
| 52181 | 204  | 
qed  | 
205  | 
||
| 69593 | 206  | 
text \<open>Once we hit a fixed point w.r.t. \<^term>\<open>suc\<close>, all other elements  | 
207  | 
of \<^term>\<open>\<C>\<close> are subsets of this fixed point.\<close>  | 
|
| 52181 | 208  | 
lemma suc_Union_closed_suc:  | 
209  | 
assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y"  | 
|
210  | 
shows "X \<subseteq> Y"  | 
|
| 63572 | 211  | 
using \<open>X \<in> \<C>\<close>  | 
212  | 
proof induct  | 
|
| 52181 | 213  | 
case (suc X)  | 
| 63572 | 214  | 
with \<open>Y \<in> \<C>\<close> and suc_Union_closed_subsetD have "X = Y \<or> suc X \<subseteq> Y"  | 
215  | 
by blast  | 
|
216  | 
then show ?case  | 
|
217  | 
by (auto simp: \<open>suc Y = Y\<close>)  | 
|
218  | 
next  | 
|
219  | 
case Union  | 
|
220  | 
then show ?case by blast  | 
|
221  | 
qed  | 
|
| 52181 | 222  | 
|
223  | 
lemma eq_suc_Union:  | 
|
224  | 
assumes "X \<in> \<C>"  | 
|
225  | 
shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>"  | 
|
| 63572 | 226  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
| 52181 | 227  | 
proof  | 
| 63572 | 228  | 
assume ?lhs  | 
229  | 
then have "\<Union>\<C> \<subseteq> X"  | 
|
230  | 
by (rule suc_Union_closed_suc [OF suc_Union_closed_Union \<open>X \<in> \<C>\<close>])  | 
|
231  | 
with \<open>X \<in> \<C>\<close> show ?rhs  | 
|
232  | 
by blast  | 
|
| 52181 | 233  | 
next  | 
| 60758 | 234  | 
from \<open>X \<in> \<C>\<close> have "suc X \<in> \<C>" by (rule suc)  | 
| 52181 | 235  | 
then have "suc X \<subseteq> \<Union>\<C>" by blast  | 
| 63572 | 236  | 
moreover assume ?rhs  | 
| 52181 | 237  | 
ultimately have "suc X \<subseteq> X" by simp  | 
238  | 
moreover have "X \<subseteq> suc X" by (rule suc_subset)  | 
|
| 63572 | 239  | 
ultimately show ?lhs ..  | 
| 52181 | 240  | 
qed  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
241  | 
|
| 52181 | 242  | 
lemma suc_in_carrier:  | 
243  | 
assumes "X \<subseteq> A"  | 
|
244  | 
shows "suc X \<subseteq> A"  | 
|
245  | 
using assms  | 
|
| 63572 | 246  | 
by (cases "\<not> chain X \<or> maxchain X") (auto dest: chain_sucD)  | 
| 52181 | 247  | 
|
248  | 
lemma suc_Union_closed_in_carrier:  | 
|
249  | 
assumes "X \<in> \<C>"  | 
|
250  | 
shows "X \<subseteq> A"  | 
|
251  | 
using assms  | 
|
| 63572 | 252  | 
by induct (auto dest: suc_in_carrier)  | 
| 52181 | 253  | 
|
| 69593 | 254  | 
text \<open>All elements of \<^term>\<open>\<C>\<close> are chains.\<close>  | 
| 52181 | 255  | 
lemma suc_Union_closed_chain:  | 
256  | 
assumes "X \<in> \<C>"  | 
|
257  | 
shows "chain X"  | 
|
| 63572 | 258  | 
using assms  | 
259  | 
proof induct  | 
|
260  | 
case (suc X)  | 
|
261  | 
then show ?case  | 
|
262  | 
using not_maxchain_Some by (simp add: suc_def)  | 
|
| 52181 | 263  | 
next  | 
264  | 
case (Union X)  | 
|
| 63572 | 265  | 
then have "\<Union>X \<subseteq> A"  | 
266  | 
by (auto dest: suc_Union_closed_in_carrier)  | 
|
| 52181 | 267  | 
moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
268  | 
proof (intro ballI)  | 
|
269  | 
fix x y  | 
|
270  | 
assume "x \<in> \<Union>X" and "y \<in> \<Union>X"  | 
|
| 63572 | 271  | 
then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X"  | 
272  | 
by blast  | 
|
273  | 
with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v"  | 
|
274  | 
by blast+  | 
|
275  | 
with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u"  | 
|
276  | 
by blast  | 
|
| 52181 | 277  | 
then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
278  | 
proof  | 
|
279  | 
assume "u \<subseteq> v"  | 
|
| 60758 | 280  | 
from \<open>chain v\<close> show ?thesis  | 
| 52181 | 281  | 
proof (rule chain_total)  | 
282  | 
show "y \<in> v" by fact  | 
|
| 60758 | 283  | 
show "x \<in> v" using \<open>u \<subseteq> v\<close> and \<open>x \<in> u\<close> by blast  | 
| 52181 | 284  | 
qed  | 
285  | 
next  | 
|
286  | 
assume "v \<subseteq> u"  | 
|
| 60758 | 287  | 
from \<open>chain u\<close> show ?thesis  | 
| 52181 | 288  | 
proof (rule chain_total)  | 
289  | 
show "x \<in> u" by fact  | 
|
| 60758 | 290  | 
show "y \<in> u" using \<open>v \<subseteq> u\<close> and \<open>y \<in> v\<close> by blast  | 
| 52181 | 291  | 
qed  | 
292  | 
qed  | 
|
293  | 
qed  | 
|
294  | 
ultimately show ?case unfolding chain_def ..  | 
|
295  | 
qed  | 
|
296  | 
||
| 60758 | 297  | 
subsubsection \<open>Hausdorff's Maximum Principle\<close>  | 
| 52181 | 298  | 
|
| 63572 | 299  | 
text \<open>There exists a maximal totally ordered subset of \<open>A\<close>. (Note that we do not  | 
300  | 
require \<open>A\<close> to be partially ordered.)\<close>  | 
|
| 46980 | 301  | 
|
| 52181 | 302  | 
theorem Hausdorff: "\<exists>C. maxchain C"  | 
303  | 
proof -  | 
|
304  | 
let ?M = "\<Union>\<C>"  | 
|
305  | 
have "maxchain ?M"  | 
|
306  | 
proof (rule ccontr)  | 
|
| 63572 | 307  | 
assume "\<not> ?thesis"  | 
| 52181 | 308  | 
then have "suc ?M \<noteq> ?M"  | 
| 63572 | 309  | 
using suc_not_equals and suc_Union_closed_chain [OF suc_Union_closed_Union] by simp  | 
| 52181 | 310  | 
moreover have "suc ?M = ?M"  | 
311  | 
using eq_suc_Union [OF suc_Union_closed_Union] by simp  | 
|
312  | 
ultimately show False by contradiction  | 
|
313  | 
qed  | 
|
314  | 
then show ?thesis by blast  | 
|
315  | 
qed  | 
|
316  | 
||
| 69593 | 317  | 
text \<open>Make notation \<^term>\<open>\<C>\<close> available again.\<close>  | 
| 63572 | 318  | 
no_notation suc_Union_closed  ("\<C>")
 | 
| 52181 | 319  | 
|
| 63572 | 320  | 
lemma chain_extend: "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)"
 | 
| 52181 | 321  | 
unfolding chain_def by blast  | 
322  | 
||
| 63572 | 323  | 
lemma maxchain_imp_chain: "maxchain C \<Longrightarrow> chain C"  | 
| 52181 | 324  | 
by (simp add: maxchain_def)  | 
325  | 
||
326  | 
end  | 
|
327  | 
||
| 69593 | 328  | 
text \<open>Hide constant \<^const>\<open>pred_on.suc_Union_closed\<close>, which was just needed  | 
| 63572 | 329  | 
for the proof of Hausforff's maximum principle.\<close>  | 
| 52181 | 330  | 
hide_const pred_on.suc_Union_closed  | 
331  | 
||
332  | 
lemma chain_mono:  | 
|
| 63572 | 333  | 
assumes "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> P x y \<Longrightarrow> Q x y"  | 
| 52181 | 334  | 
and "pred_on.chain A P C"  | 
335  | 
shows "pred_on.chain A Q C"  | 
|
336  | 
using assms unfolding pred_on.chain_def by blast  | 
|
337  | 
||
| 63572 | 338  | 
|
| 60758 | 339  | 
subsubsection \<open>Results for the proper subset relation\<close>  | 
| 52181 | 340  | 
|
| 67399 | 341  | 
interpretation subset: pred_on "A" "(\<subset>)" for A .  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
342  | 
|
| 52181 | 343  | 
lemma subset_maxchain_max:  | 
| 63572 | 344  | 
assumes "subset.maxchain A C"  | 
345  | 
and "X \<in> A"  | 
|
346  | 
and "\<Union>C \<subseteq> X"  | 
|
| 52181 | 347  | 
shows "\<Union>C = X"  | 
348  | 
proof (rule ccontr)  | 
|
349  | 
  let ?C = "{X} \<union> C"
 | 
|
| 60758 | 350  | 
from \<open>subset.maxchain A C\<close> have "subset.chain A C"  | 
| 52181 | 351  | 
and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S"  | 
352  | 
by (auto simp: subset.maxchain_def)  | 
|
| 60758 | 353  | 
moreover have "\<forall>x\<in>C. x \<subseteq> X" using \<open>\<Union>C \<subseteq> X\<close> by auto  | 
| 52181 | 354  | 
ultimately have "subset.chain A ?C"  | 
| 60758 | 355  | 
using subset.chain_extend [of A C X] and \<open>X \<in> A\<close> by auto  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
356  | 
moreover assume **: "\<Union>C \<noteq> X"  | 
| 60758 | 357  | 
moreover from ** have "C \<subset> ?C" using \<open>\<Union>C \<subseteq> X\<close> by auto  | 
| 52181 | 358  | 
ultimately show False using * by blast  | 
359  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
360  | 
|
| 
68975
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68745 
diff
changeset
 | 
361  | 
lemma subset_chain_def: "\<And>\<A>. subset.chain \<A> \<C> = (\<C> \<subseteq> \<A> \<and> (\<forall>X\<in>\<C>. \<forall>Y\<in>\<C>. X \<subseteq> Y \<or> Y \<subseteq> X))"  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68745 
diff
changeset
 | 
362  | 
by (auto simp: subset.chain_def)  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68745 
diff
changeset
 | 
363  | 
|
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68745 
diff
changeset
 | 
364  | 
lemma subset_chain_insert:  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68745 
diff
changeset
 | 
365  | 
"subset.chain \<A> (insert B \<B>) \<longleftrightarrow> B \<in> \<A> \<and> (\<forall>X\<in>\<B>. X \<subseteq> B \<or> B \<subseteq> X) \<and> subset.chain \<A> \<B>"  | 
| 
 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 
paulson <lp15@cam.ac.uk> 
parents: 
68745 
diff
changeset
 | 
366  | 
by (fastforce simp add: subset_chain_def)  | 
| 63572 | 367  | 
|
| 60758 | 368  | 
subsubsection \<open>Zorn's lemma\<close>  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
369  | 
|
| 60758 | 370  | 
text \<open>If every chain has an upper bound, then there is a maximal set.\<close>  | 
| 69000 | 371  | 
theorem subset_Zorn:  | 
| 52181 | 372  | 
assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U"  | 
373  | 
shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
|
374  | 
proof -  | 
|
375  | 
from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..  | 
|
| 63572 | 376  | 
then have "subset.chain A M"  | 
377  | 
by (rule subset.maxchain_imp_chain)  | 
|
378  | 
with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y"  | 
|
379  | 
by blast  | 
|
| 52181 | 380  | 
moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X"  | 
381  | 
proof (intro ballI impI)  | 
|
382  | 
fix X  | 
|
383  | 
assume "X \<in> A" and "Y \<subseteq> X"  | 
|
384  | 
show "Y = X"  | 
|
385  | 
proof (rule ccontr)  | 
|
| 63572 | 386  | 
assume "\<not> ?thesis"  | 
| 60758 | 387  | 
with \<open>Y \<subseteq> X\<close> have "\<not> X \<subseteq> Y" by blast  | 
388  | 
from subset.chain_extend [OF \<open>subset.chain A M\<close> \<open>X \<in> A\<close>] and \<open>\<forall>X\<in>M. X \<subseteq> Y\<close>  | 
|
| 63572 | 389  | 
      have "subset.chain A ({X} \<union> M)"
 | 
390  | 
using \<open>Y \<subseteq> X\<close> by auto  | 
|
391  | 
      moreover have "M \<subset> {X} \<union> M"
 | 
|
392  | 
using \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> and \<open>\<not> X \<subseteq> Y\<close> by auto  | 
|
| 52181 | 393  | 
ultimately show False  | 
| 60758 | 394  | 
using \<open>subset.maxchain A M\<close> by (auto simp: subset.maxchain_def)  | 
| 52181 | 395  | 
qed  | 
396  | 
qed  | 
|
| 55811 | 397  | 
ultimately show ?thesis by blast  | 
| 52181 | 398  | 
qed  | 
399  | 
||
| 63572 | 400  | 
text \<open>Alternative version of Zorn's lemma for the subset relation.\<close>  | 
| 52181 | 401  | 
lemma subset_Zorn':  | 
402  | 
assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A"  | 
|
403  | 
shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
|
404  | 
proof -  | 
|
405  | 
from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..  | 
|
| 63572 | 406  | 
then have "subset.chain A M"  | 
407  | 
by (rule subset.maxchain_imp_chain)  | 
|
| 52181 | 408  | 
with assms have "\<Union>M \<in> A" .  | 
409  | 
moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z"  | 
|
410  | 
proof (intro ballI impI)  | 
|
411  | 
fix Z  | 
|
412  | 
assume "Z \<in> A" and "\<Union>M \<subseteq> Z"  | 
|
| 60758 | 413  | 
with subset_maxchain_max [OF \<open>subset.maxchain A M\<close>]  | 
| 52181 | 414  | 
show "\<Union>M = Z" .  | 
415  | 
qed  | 
|
416  | 
ultimately show ?thesis by blast  | 
|
417  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
418  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
419  | 
|
| 60758 | 420  | 
subsection \<open>Zorn's Lemma for Partial Orders\<close>  | 
| 52181 | 421  | 
|
| 60758 | 422  | 
text \<open>Relate old to new definitions.\<close>  | 
| 17200 | 423  | 
|
| 63572 | 424  | 
definition chain_subset :: "'a set set \<Rightarrow> bool"  ("chain\<^sub>\<subseteq>")  (* Define globally? In Set.thy? *)
 | 
425  | 
where "chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)"  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
426  | 
|
| 63572 | 427  | 
definition chains :: "'a set set \<Rightarrow> 'a set set set"  | 
428  | 
  where "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"
 | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
429  | 
|
| 63572 | 430  | 
definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set"  (* Define globally? In Relation.thy? *)
 | 
431  | 
  where "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"
 | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
432  | 
|
| 63572 | 433  | 
lemma chains_extend: "c \<in> chains S \<Longrightarrow> z \<in> S \<Longrightarrow> \<forall>x \<in> c. x \<subseteq> z \<Longrightarrow> {z} \<union> c \<in> chains S"
 | 
434  | 
for z :: "'a set"  | 
|
| 63172 | 435  | 
unfolding chains_def chain_subset_def by blast  | 
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
436  | 
|
| 52181 | 437  | 
lemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s"  | 
438  | 
unfolding Chains_def by blast  | 
|
439  | 
||
440  | 
lemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C"  | 
|
| 54482 | 441  | 
unfolding chain_subset_def subset.chain_def by fast  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
442  | 
|
| 52181 | 443  | 
lemma chains_alt_def: "chains A = {C. subset.chain A C}"
 | 
444  | 
by (simp add: chains_def chain_subset_alt_def subset.chain_def)  | 
|
445  | 
||
| 63572 | 446  | 
lemma Chains_subset: "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | 
| 52181 | 447  | 
by (force simp add: Chains_def pred_on.chain_def)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
448  | 
|
| 52181 | 449  | 
lemma Chains_subset':  | 
450  | 
assumes "refl r"  | 
|
451  | 
  shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r"
 | 
|
452  | 
using assms  | 
|
453  | 
by (auto simp add: Chains_def pred_on.chain_def refl_on_def)  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
454  | 
|
| 52181 | 455  | 
lemma Chains_alt_def:  | 
456  | 
assumes "refl r"  | 
|
457  | 
  shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | 
|
| 55811 | 458  | 
using assms Chains_subset Chains_subset' by blast  | 
| 52181 | 459  | 
|
| 
70214
 
58191e01f0b1
moving around some material from Algebraic_Closure
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
460  | 
lemma Chains_relation_of:  | 
| 
 
58191e01f0b1
moving around some material from Algebraic_Closure
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
461  | 
assumes "C \<in> Chains (relation_of P A)" shows "C \<subseteq> A"  | 
| 
 
58191e01f0b1
moving around some material from Algebraic_Closure
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
462  | 
using assms unfolding Chains_def relation_of_def by auto  | 
| 
 
58191e01f0b1
moving around some material from Algebraic_Closure
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
463  | 
|
| 
67673
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67613 
diff
changeset
 | 
464  | 
lemma pairwise_chain_Union:  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67613 
diff
changeset
 | 
465  | 
assumes P: "\<And>S. S \<in> \<C> \<Longrightarrow> pairwise R S" and "chain\<^sub>\<subseteq> \<C>"  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67613 
diff
changeset
 | 
466  | 
shows "pairwise R (\<Union>\<C>)"  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67613 
diff
changeset
 | 
467  | 
using \<open>chain\<^sub>\<subseteq> \<C>\<close> unfolding pairwise_def chain_subset_def  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67613 
diff
changeset
 | 
468  | 
by (blast intro: P [unfolded pairwise_def, rule_format])  | 
| 
 
c8caefb20564
lots of new material, ultimately related to measure theory
 
paulson <lp15@cam.ac.uk> 
parents: 
67613 
diff
changeset
 | 
469  | 
|
| 63572 | 470  | 
lemma Zorn_Lemma: "\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
471  | 
using subset_Zorn' [of A] by (force simp: chains_alt_def)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
472  | 
|
| 63572 | 473  | 
lemma Zorn_Lemma2: "\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
| 52181 | 474  | 
using subset_Zorn [of A] by (auto simp: chains_alt_def)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
475  | 
|
| 69000 | 476  | 
subsection \<open>Other variants of Zorn's Lemma\<close>  | 
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
477  | 
|
| 63572 | 478  | 
lemma chainsD: "c \<in> chains S \<Longrightarrow> x \<in> c \<Longrightarrow> y \<in> c \<Longrightarrow> x \<subseteq> y \<or> y \<subseteq> x"  | 
| 63172 | 479  | 
unfolding chains_def chain_subset_def by blast  | 
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
480  | 
|
| 63572 | 481  | 
lemma chainsD2: "c \<in> chains S \<Longrightarrow> c \<subseteq> S"  | 
| 63172 | 482  | 
unfolding chains_def by blast  | 
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
483  | 
|
| 52181 | 484  | 
lemma Zorns_po_lemma:  | 
485  | 
assumes po: "Partial_order r"  | 
|
| 
68745
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
486  | 
and u: "\<And>C. C \<in> Chains r \<Longrightarrow> \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r"  | 
| 52181 | 487  | 
shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"  | 
488  | 
proof -  | 
|
| 63572 | 489  | 
have "Preorder r"  | 
490  | 
using po by (simp add: partial_order_on_def)  | 
|
491  | 
txt \<open>Mirror \<open>r\<close> in the set of subsets below (wrt \<open>r\<close>) elements of \<open>A\<close>.\<close>  | 
|
492  | 
  let ?B = "\<lambda>x. r\<inverse> `` {x}"
 | 
|
493  | 
let ?S = "?B ` Field r"  | 
|
494  | 
  have "\<exists>u\<in>Field r. \<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}"  (is "\<exists>u\<in>Field r. ?P u")
 | 
|
495  | 
if 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A" for C  | 
|
496  | 
proof -  | 
|
| 52181 | 497  | 
    let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
 | 
| 63572 | 498  | 
from 1 have "C = ?B ` ?A" by (auto simp: image_def)  | 
| 52181 | 499  | 
have "?A \<in> Chains r"  | 
500  | 
proof (simp add: Chains_def, intro allI impI, elim conjE)  | 
|
501  | 
fix a b  | 
|
502  | 
assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C"  | 
|
| 63572 | 503  | 
with 2 have "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" by auto  | 
504  | 
then show "(a, b) \<in> r \<or> (b, a) \<in> r"  | 
|
| 60758 | 505  | 
using \<open>Preorder r\<close> and \<open>a \<in> Field r\<close> and \<open>b \<in> Field r\<close>  | 
| 52181 | 506  | 
by (simp add:subset_Image1_Image1_iff)  | 
507  | 
qed  | 
|
| 
68745
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
508  | 
then obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r"  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
509  | 
by (auto simp: dest: u)  | 
| 63572 | 510  | 
have "?P u"  | 
| 52181 | 511  | 
proof auto  | 
512  | 
fix a B assume aB: "B \<in> C" "a \<in> B"  | 
|
513  | 
      with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto
 | 
|
| 63572 | 514  | 
then show "(a, u) \<in> r"  | 
515  | 
using uA and aB and \<open>Preorder r\<close>  | 
|
| 54482 | 516  | 
unfolding preorder_on_def refl_on_def by simp (fast dest: transD)  | 
| 52181 | 517  | 
qed  | 
| 63572 | 518  | 
then show ?thesis  | 
519  | 
using \<open>u \<in> Field r\<close> by blast  | 
|
520  | 
qed  | 
|
| 52181 | 521  | 
then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U"  | 
522  | 
by (auto simp: chains_def chain_subset_def)  | 
|
| 63572 | 523  | 
from Zorn_Lemma2 [OF this] obtain m B  | 
524  | 
where "m \<in> Field r"  | 
|
525  | 
      and "B = r\<inverse> `` {m}"
 | 
|
526  | 
      and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B"
 | 
|
| 52181 | 527  | 
by auto  | 
| 63572 | 528  | 
then have "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"  | 
| 60758 | 529  | 
using po and \<open>Preorder r\<close> and \<open>m \<in> Field r\<close>  | 
| 52181 | 530  | 
by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)  | 
| 63572 | 531  | 
then show ?thesis  | 
532  | 
using \<open>m \<in> Field r\<close> by blast  | 
|
| 52181 | 533  | 
qed  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
534  | 
|
| 
68745
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
535  | 
lemma predicate_Zorn:  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
536  | 
assumes po: "partial_order_on A (relation_of P A)"  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
537  | 
and ch: "\<And>C. C \<in> Chains (relation_of P A) \<Longrightarrow> \<exists>u \<in> A. \<forall>a \<in> C. P a u"  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
538  | 
shows "\<exists>m \<in> A. \<forall>a \<in> A. P m a \<longrightarrow> a = m"  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
539  | 
proof -  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
540  | 
have "a \<in> A" if "C \<in> Chains (relation_of P A)" and "a \<in> C" for C a  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
541  | 
using that unfolding Chains_def relation_of_def by auto  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
542  | 
moreover have "(a, u) \<in> relation_of P A" if "a \<in> A" and "u \<in> A" and "P a u" for a u  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
543  | 
unfolding relation_of_def using that by auto  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
544  | 
ultimately have "\<exists>m\<in>A. \<forall>a\<in>A. (m, a) \<in> relation_of P A \<longrightarrow> a = m"  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
545  | 
using Zorns_po_lemma[OF Partial_order_relation_ofI[OF po], rule_format] ch  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
546  | 
unfolding Field_relation_of[OF partial_order_onD(1)[OF po]] by blast  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
547  | 
then show ?thesis  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
548  | 
by (auto simp: relation_of_def)  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
549  | 
qed  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
550  | 
|
| 69000 | 551  | 
lemma Union_in_chain: "\<lbrakk>finite \<B>; \<B> \<noteq> {}; subset.chain \<A> \<B>\<rbrakk> \<Longrightarrow> \<Union>\<B> \<in> \<B>"
 | 
552  | 
proof (induction \<B> rule: finite_induct)  | 
|
553  | 
case (insert B \<B>)  | 
|
554  | 
show ?case  | 
|
555  | 
  proof (cases "\<B> = {}")
 | 
|
556  | 
case False  | 
|
557  | 
then show ?thesis  | 
|
558  | 
using insert sup.absorb2 by (auto simp: subset_chain_insert dest!: bspec [where x="\<Union>\<B>"])  | 
|
559  | 
qed auto  | 
|
560  | 
qed simp  | 
|
561  | 
||
562  | 
lemma Inter_in_chain: "\<lbrakk>finite \<B>; \<B> \<noteq> {}; subset.chain \<A> \<B>\<rbrakk> \<Longrightarrow> \<Inter>\<B> \<in> \<B>"
 | 
|
563  | 
proof (induction \<B> rule: finite_induct)  | 
|
564  | 
case (insert B \<B>)  | 
|
565  | 
show ?case  | 
|
566  | 
  proof (cases "\<B> = {}")
 | 
|
567  | 
case False  | 
|
568  | 
then show ?thesis  | 
|
569  | 
using insert inf.absorb2 by (auto simp: subset_chain_insert dest!: bspec [where x="\<Inter>\<B>"])  | 
|
570  | 
qed auto  | 
|
571  | 
qed simp  | 
|
572  | 
||
573  | 
lemma finite_subset_Union_chain:  | 
|
574  | 
  assumes "finite A" "A \<subseteq> \<Union>\<B>" "\<B> \<noteq> {}" and sub: "subset.chain \<A> \<B>"
 | 
|
575  | 
obtains B where "B \<in> \<B>" "A \<subseteq> B"  | 
|
576  | 
proof -  | 
|
577  | 
obtain \<F> where \<F>: "finite \<F>" "\<F> \<subseteq> \<B>" "A \<subseteq> \<Union>\<F>"  | 
|
578  | 
using assms by (auto intro: finite_subset_Union)  | 
|
579  | 
show thesis  | 
|
580  | 
  proof (cases "\<F> = {}")
 | 
|
581  | 
case True  | 
|
582  | 
then show ?thesis  | 
|
583  | 
      using \<open>A \<subseteq> \<Union>\<F>\<close> \<open>\<B> \<noteq> {}\<close> that by fastforce
 | 
|
584  | 
next  | 
|
585  | 
case False  | 
|
586  | 
show ?thesis  | 
|
587  | 
proof  | 
|
588  | 
show "\<Union>\<F> \<in> \<B>"  | 
|
589  | 
using sub \<open>\<F> \<subseteq> \<B>\<close> \<open>finite \<F>\<close>  | 
|
590  | 
by (simp add: Union_in_chain False subset.chain_def subset_iff)  | 
|
591  | 
show "A \<subseteq> \<Union>\<F>"  | 
|
592  | 
using \<open>A \<subseteq> \<Union>\<F>\<close> by blast  | 
|
593  | 
qed  | 
|
594  | 
qed  | 
|
595  | 
qed  | 
|
596  | 
||
597  | 
lemma subset_Zorn_nonempty:  | 
|
598  | 
  assumes "\<A> \<noteq> {}" and ch: "\<And>\<C>. \<lbrakk>\<C>\<noteq>{}; subset.chain \<A> \<C>\<rbrakk> \<Longrightarrow> \<Union>\<C> \<in> \<A>"
 | 
|
599  | 
shows "\<exists>M\<in>\<A>. \<forall>X\<in>\<A>. M \<subseteq> X \<longrightarrow> X = M"  | 
|
600  | 
proof (rule subset_Zorn)  | 
|
601  | 
show "\<exists>U\<in>\<A>. \<forall>X\<in>\<C>. X \<subseteq> U" if "subset.chain \<A> \<C>" for \<C>  | 
|
602  | 
  proof (cases "\<C> = {}")
 | 
|
603  | 
case True  | 
|
604  | 
then show ?thesis  | 
|
605  | 
      using \<open>\<A> \<noteq> {}\<close> by blast
 | 
|
606  | 
next  | 
|
607  | 
case False  | 
|
608  | 
show ?thesis  | 
|
609  | 
by (blast intro!: ch False that Union_upper)  | 
|
610  | 
qed  | 
|
611  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
612  | 
|
| 60758 | 613  | 
subsection \<open>The Well Ordering Theorem\<close>  | 
| 26191 | 614  | 
|
615  | 
(* The initial segment of a relation appears generally useful.  | 
|
616  | 
Move to Relation.thy?  | 
|
617  | 
Definition correct/most general?  | 
|
618  | 
Naming?  | 
|
619  | 
*)  | 
|
| 63572 | 620  | 
definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set"
 | 
621  | 
  where "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"
 | 
|
| 26191 | 622  | 
|
| 63572 | 623  | 
abbreviation initial_segment_of_syntax :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"
 | 
624  | 
(infix "initial'_segment'_of" 55)  | 
|
625  | 
where "r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of"  | 
|
| 26191 | 626  | 
|
| 52181 | 627  | 
lemma refl_on_init_seg_of [simp]: "r initial_segment_of r"  | 
628  | 
by (simp add: init_seg_of_def)  | 
|
| 26191 | 629  | 
|
630  | 
lemma trans_init_seg_of:  | 
|
631  | 
"r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"  | 
|
| 54482 | 632  | 
by (simp (no_asm_use) add: init_seg_of_def) blast  | 
| 26191 | 633  | 
|
| 63572 | 634  | 
lemma antisym_init_seg_of: "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s"  | 
| 52181 | 635  | 
unfolding init_seg_of_def by safe  | 
| 26191 | 636  | 
|
| 63572 | 637  | 
lemma Chains_init_seg_of_Union: "R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"  | 
| 52181 | 638  | 
by (auto simp: init_seg_of_def Ball_def Chains_def) blast  | 
| 26191 | 639  | 
|
| 26272 | 640  | 
lemma chain_subset_trans_Union:  | 
| 55811 | 641  | 
assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. trans r"  | 
642  | 
shows "trans (\<Union>R)"  | 
|
643  | 
proof (intro transI, elim UnionE)  | 
|
| 63572 | 644  | 
fix S1 S2 :: "'a rel" and x y z :: 'a  | 
| 55811 | 645  | 
assume "S1 \<in> R" "S2 \<in> R"  | 
| 63572 | 646  | 
with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1"  | 
647  | 
unfolding chain_subset_def by blast  | 
|
| 55811 | 648  | 
moreover assume "(x, y) \<in> S1" "(y, z) \<in> S2"  | 
| 63572 | 649  | 
ultimately have "((x, y) \<in> S1 \<and> (y, z) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, z) \<in> S2)"  | 
650  | 
by blast  | 
|
651  | 
with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "(x, z) \<in> \<Union>R"  | 
|
652  | 
by (auto elim: transE)  | 
|
| 55811 | 653  | 
qed  | 
| 26191 | 654  | 
|
| 26272 | 655  | 
lemma chain_subset_antisym_Union:  | 
| 55811 | 656  | 
assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. antisym r"  | 
657  | 
shows "antisym (\<Union>R)"  | 
|
658  | 
proof (intro antisymI, elim UnionE)  | 
|
| 63572 | 659  | 
fix S1 S2 :: "'a rel" and x y :: 'a  | 
| 55811 | 660  | 
assume "S1 \<in> R" "S2 \<in> R"  | 
| 63572 | 661  | 
with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1"  | 
662  | 
unfolding chain_subset_def by blast  | 
|
| 55811 | 663  | 
moreover assume "(x, y) \<in> S1" "(y, x) \<in> S2"  | 
| 63572 | 664  | 
ultimately have "((x, y) \<in> S1 \<and> (y, x) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, x) \<in> S2)"  | 
665  | 
by blast  | 
|
666  | 
with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "x = y"  | 
|
667  | 
unfolding antisym_def by auto  | 
|
| 55811 | 668  | 
qed  | 
| 26191 | 669  | 
|
| 26272 | 670  | 
lemma chain_subset_Total_Union:  | 
| 52181 | 671  | 
assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r"  | 
672  | 
shows "Total (\<Union>R)"  | 
|
673  | 
proof (simp add: total_on_def Ball_def, auto del: disjCI)  | 
|
| 63572 | 674  | 
fix r s a b  | 
675  | 
assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b"  | 
|
| 60758 | 676  | 
from \<open>chain\<^sub>\<subseteq> R\<close> and \<open>r \<in> R\<close> and \<open>s \<in> R\<close> have "r \<subseteq> s \<or> s \<subseteq> r"  | 
| 52181 | 677  | 
by (auto simp add: chain_subset_def)  | 
| 63572 | 678  | 
then show "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)"  | 
| 26191 | 679  | 
proof  | 
| 63572 | 680  | 
assume "r \<subseteq> s"  | 
681  | 
then have "(a, b) \<in> s \<or> (b, a) \<in> s"  | 
|
682  | 
using assms(2) A mono_Field[of r s]  | 
|
| 55811 | 683  | 
by (auto simp add: total_on_def)  | 
| 63572 | 684  | 
then show ?thesis  | 
685  | 
using \<open>s \<in> R\<close> by blast  | 
|
| 26191 | 686  | 
next  | 
| 63572 | 687  | 
assume "s \<subseteq> r"  | 
688  | 
then have "(a, b) \<in> r \<or> (b, a) \<in> r"  | 
|
689  | 
using assms(2) A mono_Field[of s r]  | 
|
| 55811 | 690  | 
by (fastforce simp add: total_on_def)  | 
| 63572 | 691  | 
then show ?thesis  | 
692  | 
using \<open>r \<in> R\<close> by blast  | 
|
| 26191 | 693  | 
qed  | 
694  | 
qed  | 
|
695  | 
||
696  | 
lemma wf_Union_wf_init_segs:  | 
|
| 63572 | 697  | 
assumes "R \<in> Chains init_seg_of"  | 
698  | 
and "\<forall>r\<in>R. wf r"  | 
|
| 52181 | 699  | 
shows "wf (\<Union>R)"  | 
| 63572 | 700  | 
proof (simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto)  | 
701  | 
fix f  | 
|
702  | 
assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r"  | 
|
| 52181 | 703  | 
then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto  | 
| 63572 | 704  | 
have "(f (Suc i), f i) \<in> r" for i  | 
705  | 
proof (induct i)  | 
|
706  | 
case 0  | 
|
707  | 
show ?case by fact  | 
|
708  | 
next  | 
|
709  | 
case (Suc i)  | 
|
710  | 
then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s"  | 
|
711  | 
using 1 by auto  | 
|
712  | 
then have "s initial_segment_of r \<or> r initial_segment_of s"  | 
|
713  | 
using assms(1) \<open>r \<in> R\<close> by (simp add: Chains_def)  | 
|
714  | 
with Suc s show ?case by (simp add: init_seg_of_def) blast  | 
|
715  | 
qed  | 
|
716  | 
then show False  | 
|
717  | 
using assms(2) and \<open>r \<in> R\<close>  | 
|
| 52181 | 718  | 
by (simp add: wf_iff_no_infinite_down_chain) blast  | 
| 26191 | 719  | 
qed  | 
720  | 
||
| 63572 | 721  | 
lemma initial_segment_of_Diff: "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"  | 
| 52181 | 722  | 
unfolding init_seg_of_def by blast  | 
| 27476 | 723  | 
|
| 63572 | 724  | 
lemma Chains_inits_DiffI: "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of"
 | 
| 52181 | 725  | 
unfolding Chains_def by (blast intro: initial_segment_of_Diff)  | 
| 26191 | 726  | 
|
| 52181 | 727  | 
theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV"  | 
728  | 
proof -  | 
|
| 61799 | 729  | 
\<comment> \<open>The initial segment relation on well-orders:\<close>  | 
| 52181 | 730  | 
  let ?WO = "{r::'a rel. Well_order r}"
 | 
| 63040 | 731  | 
define I where "I = init_seg_of \<inter> ?WO \<times> ?WO"  | 
| 63572 | 732  | 
then have I_init: "I \<subseteq> init_seg_of" by simp  | 
733  | 
then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"  | 
|
| 54482 | 734  | 
unfolding init_seg_of_def chain_subset_def Chains_def by blast  | 
| 52181 | 735  | 
have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"  | 
736  | 
by (simp add: Chains_def I_def) blast  | 
|
| 63572 | 737  | 
have FI: "Field I = ?WO"  | 
738  | 
by (auto simp add: I_def init_seg_of_def Field_def)  | 
|
739  | 
then have 0: "Partial_order I"  | 
|
| 52181 | 740  | 
by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def  | 
| 63572 | 741  | 
trans_def I_def elim!: trans_init_seg_of)  | 
742  | 
\<comment> \<open>\<open>I\<close>-chains have upper bounds in \<open>?WO\<close> wrt \<open>I\<close>: their Union\<close>  | 
|
743  | 
have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)" if "R \<in> Chains I" for R  | 
|
744  | 
proof -  | 
|
745  | 
from that have Ris: "R \<in> Chains init_seg_of"  | 
|
746  | 
using mono_Chains [OF I_init] by blast  | 
|
747  | 
have subch: "chain\<^sub>\<subseteq> R"  | 
|
| 67613 | 748  | 
using \<open>R \<in> Chains I\<close> I_init by (auto simp: init_seg_of_def chain_subset_def Chains_def)  | 
| 52181 | 749  | 
have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r"  | 
750  | 
and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)"  | 
|
| 60758 | 751  | 
using Chains_wo [OF \<open>R \<in> Chains I\<close>] by (simp_all add: order_on_defs)  | 
| 63572 | 752  | 
have "Refl (\<Union>R)"  | 
753  | 
using \<open>\<forall>r\<in>R. Refl r\<close> unfolding refl_on_def by fastforce  | 
|
| 26191 | 754  | 
moreover have "trans (\<Union>R)"  | 
| 60758 | 755  | 
by (rule chain_subset_trans_Union [OF subch \<open>\<forall>r\<in>R. trans r\<close>])  | 
| 52181 | 756  | 
moreover have "antisym (\<Union>R)"  | 
| 60758 | 757  | 
by (rule chain_subset_antisym_Union [OF subch \<open>\<forall>r\<in>R. antisym r\<close>])  | 
| 26191 | 758  | 
moreover have "Total (\<Union>R)"  | 
| 60758 | 759  | 
by (rule chain_subset_Total_Union [OF subch \<open>\<forall>r\<in>R. Total r\<close>])  | 
| 52181 | 760  | 
moreover have "wf ((\<Union>R) - Id)"  | 
761  | 
proof -  | 
|
762  | 
      have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
 | 
|
| 60758 | 763  | 
with \<open>\<forall>r\<in>R. wf (r - Id)\<close> and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]  | 
| 54482 | 764  | 
show ?thesis by fastforce  | 
| 26191 | 765  | 
qed  | 
| 63572 | 766  | 
ultimately have "Well_order (\<Union>R)"  | 
767  | 
by (simp add:order_on_defs)  | 
|
768  | 
moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R"  | 
|
769  | 
using Ris by (simp add: Chains_init_seg_of_Union)  | 
|
770  | 
ultimately show ?thesis  | 
|
| 60758 | 771  | 
using mono_Chains [OF I_init] Chains_wo[of R] and \<open>R \<in> Chains I\<close>  | 
| 55811 | 772  | 
unfolding I_def by blast  | 
| 63572 | 773  | 
qed  | 
| 
68745
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
774  | 
then have 1: "\<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" if "R \<in> Chains I" for R  | 
| 
 
345ce5f262ea
Zorn's lemma for relations defined by predicates
 
paulson <lp15@cam.ac.uk> 
parents: 
67673 
diff
changeset
 | 
775  | 
using that by (subst FI) blast  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
776  | 
\<comment> \<open>Zorn's Lemma yields a maximal well-order \<open>m\<close>:\<close>  | 
| 63572 | 777  | 
then obtain m :: "'a rel"  | 
778  | 
where "Well_order m"  | 
|
779  | 
and max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m"  | 
|
| 54482 | 780  | 
using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
781  | 
\<comment> \<open>Now show by contradiction that \<open>m\<close> covers the whole type:\<close>  | 
| 63572 | 782  | 
have False if "x \<notin> Field m" for x :: 'a  | 
783  | 
proof -  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
784  | 
\<comment> \<open>Assuming that \<open>x\<close> is not covered and extend \<open>m\<close> at the top with \<open>x\<close>\<close>  | 
| 26191 | 785  | 
    have "m \<noteq> {}"
 | 
786  | 
proof  | 
|
| 52181 | 787  | 
      assume "m = {}"
 | 
788  | 
      moreover have "Well_order {(x, x)}"
 | 
|
789  | 
by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def)  | 
|
| 26191 | 790  | 
ultimately show False using max  | 
| 52181 | 791  | 
by (auto simp: I_def init_seg_of_def simp del: Field_insert)  | 
| 26191 | 792  | 
qed  | 
| 63572 | 793  | 
    then have "Field m \<noteq> {}" by (auto simp: Field_def)
 | 
794  | 
moreover have "wf (m - Id)"  | 
|
795  | 
using \<open>Well_order m\<close> by (simp add: well_order_on_def)  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
796  | 
\<comment> \<open>The extension of \<open>m\<close> by \<open>x\<close>:\<close>  | 
| 52181 | 797  | 
    let ?s = "{(a, x) | a. a \<in> Field m}"
 | 
798  | 
let ?m = "insert (x, x) m \<union> ?s"  | 
|
| 26191 | 799  | 
have Fm: "Field ?m = insert x (Field m)"  | 
| 52181 | 800  | 
by (auto simp: Field_def)  | 
801  | 
have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"  | 
|
| 60758 | 802  | 
using \<open>Well_order m\<close> by (simp_all add: order_on_defs)  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
803  | 
\<comment> \<open>We show that the extension is a well-order\<close>  | 
| 63572 | 804  | 
have "Refl ?m"  | 
805  | 
using \<open>Refl m\<close> Fm unfolding refl_on_def by blast  | 
|
| 60758 | 806  | 
moreover have "trans ?m" using \<open>trans m\<close> and \<open>x \<notin> Field m\<close>  | 
| 52181 | 807  | 
unfolding trans_def Field_def by blast  | 
| 63572 | 808  | 
moreover have "antisym ?m"  | 
809  | 
using \<open>antisym m\<close> and \<open>x \<notin> Field m\<close> unfolding antisym_def Field_def by blast  | 
|
810  | 
moreover have "Total ?m"  | 
|
811  | 
using \<open>Total m\<close> and Fm by (auto simp: total_on_def)  | 
|
| 52181 | 812  | 
moreover have "wf (?m - Id)"  | 
813  | 
proof -  | 
|
| 63572 | 814  | 
have "wf ?s"  | 
815  | 
using \<open>x \<notin> Field m\<close> by (auto simp: wf_eq_minimal Field_def Bex_def)  | 
|
816  | 
then show ?thesis  | 
|
817  | 
using \<open>wf (m - Id)\<close> and \<open>x \<notin> Field m\<close> wf_subset [OF \<open>wf ?s\<close> Diff_subset]  | 
|
| 63172 | 818  | 
by (auto simp: Un_Diff Field_def intro: wf_Un)  | 
| 26191 | 819  | 
qed  | 
| 63572 | 820  | 
ultimately have "Well_order ?m"  | 
821  | 
by (simp add: order_on_defs)  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
822  | 
\<comment> \<open>We show that the extension is above \<open>m\<close>\<close>  | 
| 63572 | 823  | 
moreover have "(m, ?m) \<in> I"  | 
824  | 
using \<open>Well_order ?m\<close> and \<open>Well_order m\<close> and \<open>x \<notin> Field m\<close>  | 
|
| 52181 | 825  | 
by (fastforce simp: I_def init_seg_of_def Field_def)  | 
| 26191 | 826  | 
ultimately  | 
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
827  | 
\<comment> \<open>This contradicts maximality of \<open>m\<close>:\<close>  | 
| 63572 | 828  | 
show False  | 
829  | 
using max and \<open>x \<notin> Field m\<close> unfolding Field_def by blast  | 
|
830  | 
qed  | 
|
831  | 
then have "Field m = UNIV" by auto  | 
|
| 60758 | 832  | 
with \<open>Well_order m\<close> show ?thesis by blast  | 
| 26272 | 833  | 
qed  | 
834  | 
||
| 52181 | 835  | 
corollary well_order_on: "\<exists>r::'a rel. well_order_on A r"  | 
| 26272 | 836  | 
proof -  | 
| 63572 | 837  | 
obtain r :: "'a rel" where wo: "Well_order r" and univ: "Field r = UNIV"  | 
| 52181 | 838  | 
using well_ordering [where 'a = "'a"] by blast  | 
839  | 
  let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
 | 
|
| 63572 | 840  | 
have 1: "Field ?r = A"  | 
841  | 
using wo univ by (fastforce simp: Field_def order_on_defs refl_on_def)  | 
|
842  | 
from \<open>Well_order r\<close> have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)"  | 
|
843  | 
by (simp_all add: order_on_defs)  | 
|
844  | 
from \<open>Refl r\<close> have "Refl ?r"  | 
|
845  | 
by (auto simp: refl_on_def 1 univ)  | 
|
846  | 
moreover from \<open>trans r\<close> have "trans ?r"  | 
|
| 26272 | 847  | 
unfolding trans_def by blast  | 
| 63572 | 848  | 
moreover from \<open>antisym r\<close> have "antisym ?r"  | 
| 26272 | 849  | 
unfolding antisym_def by blast  | 
| 63572 | 850  | 
moreover from \<open>Total r\<close> have "Total ?r"  | 
851  | 
by (simp add:total_on_def 1 univ)  | 
|
852  | 
moreover have "wf (?r - Id)"  | 
|
853  | 
by (rule wf_subset [OF \<open>wf (r - Id)\<close>]) blast  | 
|
854  | 
ultimately have "Well_order ?r"  | 
|
855  | 
by (simp add: order_on_defs)  | 
|
| 54482 | 856  | 
with 1 show ?thesis by auto  | 
| 26191 | 857  | 
qed  | 
858  | 
||
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
859  | 
lemma dependent_wf_choice:  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
860  | 
  fixes P :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 63572 | 861  | 
assumes "wf R"  | 
862  | 
and adm: "\<And>f g x r. (\<And>z. (z, x) \<in> R \<Longrightarrow> f z = g z) \<Longrightarrow> P f x r = P g x r"  | 
|
863  | 
and P: "\<And>x f. (\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r"  | 
|
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
864  | 
shows "\<exists>f. \<forall>x. P f x (f x)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
865  | 
proof (intro exI allI)  | 
| 63572 | 866  | 
fix x  | 
| 63040 | 867  | 
define f where "f \<equiv> wfrec R (\<lambda>f x. SOME r. P f x r)"  | 
| 60758 | 868  | 
from \<open>wf R\<close> show "P f x (f x)"  | 
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
869  | 
proof (induct x)  | 
| 63572 | 870  | 
case (less x)  | 
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
871  | 
show "P f x (f x)"  | 
| 60758 | 872  | 
proof (subst (2) wfrec_def_adm[OF f_def \<open>wf R\<close>])  | 
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
873  | 
show "adm_wf R (\<lambda>f x. SOME r. P f x r)"  | 
| 
74749
 
329cb9e6b184
A tiny bit of tidying connected with Zorn's Lemma
 
paulson <lp15@cam.ac.uk> 
parents: 
70214 
diff
changeset
 | 
874  | 
by (auto simp: adm_wf_def intro!: arg_cong[where f=Eps] adm)  | 
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
875  | 
show "P f x (Eps (P f x))"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
876  | 
using P by (rule someI_ex) fact  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
877  | 
qed  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
878  | 
qed  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
879  | 
qed  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
880  | 
|
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
881  | 
lemma (in wellorder) dependent_wellorder_choice:  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
882  | 
assumes "\<And>r f g x. (\<And>y. y < x \<Longrightarrow> f y = g y) \<Longrightarrow> P f x r = P g x r"  | 
| 63572 | 883  | 
and P: "\<And>x f. (\<And>y. y < x \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r"  | 
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
884  | 
shows "\<exists>f. \<forall>x. P f x (f x)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
885  | 
using wf by (rule dependent_wf_choice) (auto intro!: assms)  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
886  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
887  | 
end  |