| 
41959
 | 
     1  | 
(*  Title:      HOL/Ln.thy
  | 
| 
16959
 | 
     2  | 
    Author:     Jeremy Avigad
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
header {* Properties of ln *}
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Ln
  | 
| 
 | 
     8  | 
imports Transcendental
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
47244
 | 
    11  | 
lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==> 
  | 
| 
 | 
    12  | 
    x - x^2 <= ln (1 + x)"
  | 
| 
16959
 | 
    13  | 
proof -
  | 
| 
 | 
    14  | 
  assume a: "0 <= x" and b: "x <= 1"
  | 
| 
 | 
    15  | 
  have "exp (x - x^2) = exp x / exp (x^2)"
  | 
| 
 | 
    16  | 
    by (rule exp_diff)
  | 
| 
 | 
    17  | 
  also have "... <= (1 + x + x^2) / exp (x ^2)"
  | 
| 
 | 
    18  | 
    apply (rule divide_right_mono) 
  | 
| 
 | 
    19  | 
    apply (rule exp_bound)
  | 
| 
 | 
    20  | 
    apply (rule a, rule b)
  | 
| 
 | 
    21  | 
    apply simp
  | 
| 
 | 
    22  | 
    done
  | 
| 
 | 
    23  | 
  also have "... <= (1 + x + x^2) / (1 + x^2)"
  | 
| 
 | 
    24  | 
    apply (rule divide_left_mono)
  | 
| 
47244
 | 
    25  | 
    apply (simp add: exp_ge_add_one_self_aux)
  | 
| 
 | 
    26  | 
    apply (simp add: a)
  | 
| 
 | 
    27  | 
    apply (simp add: mult_pos_pos add_pos_nonneg)
  | 
| 
16959
 | 
    28  | 
    done
  | 
| 
 | 
    29  | 
  also from a have "... <= 1 + x"
  | 
| 
44289
 | 
    30  | 
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
  | 
| 
47244
 | 
    31  | 
  finally have "exp (x - x^2) <= 1 + x" .
  | 
| 
16959
 | 
    32  | 
  also have "... = exp (ln (1 + x))"
  | 
| 
 | 
    33  | 
  proof -
  | 
| 
 | 
    34  | 
    from a have "0 < 1 + x" by auto
  | 
| 
 | 
    35  | 
    thus ?thesis
  | 
| 
 | 
    36  | 
      by (auto simp only: exp_ln_iff [THEN sym])
  | 
| 
 | 
    37  | 
  qed
  | 
| 
 | 
    38  | 
  finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" .
  | 
| 
 | 
    39  | 
  thus ?thesis by (auto simp only: exp_le_cancel_iff)
  | 
| 
 | 
    40  | 
qed
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))"
  | 
| 
 | 
    43  | 
proof -
  | 
| 
 | 
    44  | 
  assume a: "x < 1"
  | 
| 
 | 
    45  | 
  have "ln(1 - x) = - ln(1 / (1 - x))"
  | 
| 
 | 
    46  | 
  proof -
  | 
| 
 | 
    47  | 
    have "ln(1 - x) = - (- ln (1 - x))"
  | 
| 
 | 
    48  | 
      by auto
  | 
| 
 | 
    49  | 
    also have "- ln(1 - x) = ln 1 - ln(1 - x)"
  | 
| 
 | 
    50  | 
      by simp
  | 
| 
 | 
    51  | 
    also have "... = ln(1 / (1 - x))"
  | 
| 
 | 
    52  | 
      apply (rule ln_div [THEN sym])
  | 
| 
 | 
    53  | 
      by (insert a, auto)
  | 
| 
 | 
    54  | 
    finally show ?thesis .
  | 
| 
 | 
    55  | 
  qed
  | 
| 
23482
 | 
    56  | 
  also have " 1 / (1 - x) = 1 + x / (1 - x)" using a by(simp add:field_simps)
  | 
| 
16959
 | 
    57  | 
  finally show ?thesis .
  | 
| 
 | 
    58  | 
qed
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==> 
  | 
| 
 | 
    61  | 
    - x - 2 * x^2 <= ln (1 - x)"
  | 
| 
 | 
    62  | 
proof -
  | 
| 
 | 
    63  | 
  assume a: "0 <= x" and b: "x <= (1 / 2)"
  | 
| 
 | 
    64  | 
  from b have c: "x < 1"
  | 
| 
 | 
    65  | 
    by auto
  | 
| 
 | 
    66  | 
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
  | 
| 
 | 
    67  | 
    by (rule aux5)
  | 
| 
 | 
    68  | 
  also have "- (x / (1 - x)) <= ..."
  | 
| 
 | 
    69  | 
  proof - 
  | 
| 
 | 
    70  | 
    have "ln (1 + x / (1 - x)) <= x / (1 - x)"
  | 
| 
 | 
    71  | 
      apply (rule ln_add_one_self_le_self)
  | 
| 
 | 
    72  | 
      apply (rule divide_nonneg_pos)
  | 
| 
 | 
    73  | 
      by (insert a c, auto) 
  | 
| 
 | 
    74  | 
    thus ?thesis
  | 
| 
 | 
    75  | 
      by auto
  | 
| 
 | 
    76  | 
  qed
  | 
| 
 | 
    77  | 
  also have "- (x / (1 - x)) = -x / (1 - x)"
  | 
| 
 | 
    78  | 
    by auto
  | 
| 
 | 
    79  | 
  finally have d: "- x / (1 - x) <= ln (1 - x)" .
  | 
| 
41550
 | 
    80  | 
  have "0 < 1 - x" using a b by simp
  | 
| 
23482
 | 
    81  | 
  hence e: "-x - 2 * x^2 <= - x / (1 - x)"
  | 
| 
41550
 | 
    82  | 
    using mult_right_le_one_le[of "x*x" "2*x"] a b
  | 
| 
 | 
    83  | 
    by (simp add:field_simps power2_eq_square)
  | 
| 
16959
 | 
    84  | 
  from e d show "- x - 2 * x^2 <= ln (1 - x)"
  | 
| 
 | 
    85  | 
    by (rule order_trans)
  | 
| 
 | 
    86  | 
qed
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x"
  | 
| 
47244
 | 
    89  | 
  apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)", simp)
  | 
| 
16959
 | 
    90  | 
  apply (subst ln_le_cancel_iff)
  | 
| 
 | 
    91  | 
  apply auto
  | 
| 
 | 
    92  | 
done
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
  | 
| 
 | 
    95  | 
    "0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2"
  | 
| 
 | 
    96  | 
proof -
  | 
| 
23441
 | 
    97  | 
  assume x: "0 <= x"
  | 
| 
41550
 | 
    98  | 
  assume x1: "x <= 1"
  | 
| 
23441
 | 
    99  | 
  from x have "ln (1 + x) <= x"
  | 
| 
16959
 | 
   100  | 
    by (rule ln_add_one_self_le_self)
  | 
| 
 | 
   101  | 
  then have "ln (1 + x) - x <= 0" 
  | 
| 
 | 
   102  | 
    by simp
  | 
| 
 | 
   103  | 
  then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)"
  | 
| 
 | 
   104  | 
    by (rule abs_of_nonpos)
  | 
| 
 | 
   105  | 
  also have "... = x - ln (1 + x)" 
  | 
| 
 | 
   106  | 
    by simp
  | 
| 
 | 
   107  | 
  also have "... <= x^2"
  | 
| 
 | 
   108  | 
  proof -
  | 
| 
41550
 | 
   109  | 
    from x x1 have "x - x^2 <= ln (1 + x)"
  | 
| 
16959
 | 
   110  | 
      by (intro ln_one_plus_pos_lower_bound)
  | 
| 
 | 
   111  | 
    thus ?thesis
  | 
| 
 | 
   112  | 
      by simp
  | 
| 
 | 
   113  | 
  qed
  | 
| 
 | 
   114  | 
  finally show ?thesis .
  | 
| 
 | 
   115  | 
qed
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
  | 
| 
 | 
   118  | 
    "-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2"
  | 
| 
 | 
   119  | 
proof -
  | 
| 
41550
 | 
   120  | 
  assume a: "-(1 / 2) <= x"
  | 
| 
 | 
   121  | 
  assume b: "x <= 0"
  | 
| 
16959
 | 
   122  | 
  have "abs(ln (1 + x) - x) = x - ln(1 - (-x))" 
  | 
| 
 | 
   123  | 
    apply (subst abs_of_nonpos)
  | 
| 
 | 
   124  | 
    apply simp
  | 
| 
 | 
   125  | 
    apply (rule ln_add_one_self_le_self2)
  | 
| 
41550
 | 
   126  | 
    using a apply auto
  | 
| 
16959
 | 
   127  | 
    done
  | 
| 
 | 
   128  | 
  also have "... <= 2 * x^2"
  | 
| 
 | 
   129  | 
    apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))")
  | 
| 
29667
 | 
   130  | 
    apply (simp add: algebra_simps)
  | 
| 
16959
 | 
   131  | 
    apply (rule ln_one_minus_pos_lower_bound)
  | 
| 
41550
 | 
   132  | 
    using a b apply auto
  | 
| 
29667
 | 
   133  | 
    done
  | 
| 
16959
 | 
   134  | 
  finally show ?thesis .
  | 
| 
 | 
   135  | 
qed
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
lemma abs_ln_one_plus_x_minus_x_bound:
  | 
| 
 | 
   138  | 
    "abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2"
  | 
| 
 | 
   139  | 
  apply (case_tac "0 <= x")
  | 
| 
 | 
   140  | 
  apply (rule order_trans)
  | 
| 
 | 
   141  | 
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg)
  | 
| 
 | 
   142  | 
  apply auto
  | 
| 
 | 
   143  | 
  apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos)
  | 
| 
 | 
   144  | 
  apply auto
  | 
| 
 | 
   145  | 
done
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)"  
  | 
| 
 | 
   148  | 
proof -
  | 
| 
41550
 | 
   149  | 
  assume x: "exp 1 <= x" "x <= y"
  | 
| 
44289
 | 
   150  | 
  moreover have "0 < exp (1::real)" by simp
  | 
| 
 | 
   151  | 
  ultimately have a: "0 < x" and b: "0 < y"
  | 
| 
 | 
   152  | 
    by (fast intro: less_le_trans order_trans)+
  | 
| 
16959
 | 
   153  | 
  have "x * ln y - x * ln x = x * (ln y - ln x)"
  | 
| 
29667
 | 
   154  | 
    by (simp add: algebra_simps)
  | 
| 
16959
 | 
   155  | 
  also have "... = x * ln(y / x)"
  | 
| 
44289
 | 
   156  | 
    by (simp only: ln_div a b)
  | 
| 
16959
 | 
   157  | 
  also have "y / x = (x + (y - x)) / x"
  | 
| 
 | 
   158  | 
    by simp
  | 
| 
44289
 | 
   159  | 
  also have "... = 1 + (y - x) / x"
  | 
| 
 | 
   160  | 
    using x a by (simp add: field_simps)
  | 
| 
16959
 | 
   161  | 
  also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)"
  | 
| 
 | 
   162  | 
    apply (rule mult_left_mono)
  | 
| 
 | 
   163  | 
    apply (rule ln_add_one_self_le_self)
  | 
| 
 | 
   164  | 
    apply (rule divide_nonneg_pos)
  | 
| 
41550
 | 
   165  | 
    using x a apply simp_all
  | 
| 
16959
 | 
   166  | 
    done
  | 
| 
23482
 | 
   167  | 
  also have "... = y - x" using a by simp
  | 
| 
 | 
   168  | 
  also have "... = (y - x) * ln (exp 1)" by simp
  | 
| 
16959
 | 
   169  | 
  also have "... <= (y - x) * ln x"
  | 
| 
 | 
   170  | 
    apply (rule mult_left_mono)
  | 
| 
 | 
   171  | 
    apply (subst ln_le_cancel_iff)
  | 
| 
44289
 | 
   172  | 
    apply fact
  | 
| 
16959
 | 
   173  | 
    apply (rule a)
  | 
| 
41550
 | 
   174  | 
    apply (rule x)
  | 
| 
 | 
   175  | 
    using x apply simp
  | 
| 
16959
 | 
   176  | 
    done
  | 
| 
 | 
   177  | 
  also have "... = y * ln x - x * ln x"
  | 
| 
 | 
   178  | 
    by (rule left_diff_distrib)
  | 
| 
 | 
   179  | 
  finally have "x * ln y <= y * ln x"
  | 
| 
 | 
   180  | 
    by arith
  | 
| 
41550
 | 
   181  | 
  then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps)
  | 
| 
 | 
   182  | 
  also have "... = y * (ln x / x)" by simp
  | 
| 
 | 
   183  | 
  finally show ?thesis using b by (simp add: field_simps)
  | 
| 
16959
 | 
   184  | 
qed
  | 
| 
 | 
   185  | 
  | 
| 
43336
 | 
   186  | 
lemma ln_le_minus_one:
  | 
| 
 | 
   187  | 
  "0 < x \<Longrightarrow> ln x \<le> x - 1"
  | 
| 
 | 
   188  | 
  using exp_ge_add_one_self[of "ln x"] by simp
  | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
lemma ln_eq_minus_one:
  | 
| 
 | 
   191  | 
  assumes "0 < x" "ln x = x - 1" shows "x = 1"
  | 
| 
 | 
   192  | 
proof -
  | 
| 
 | 
   193  | 
  let "?l y" = "ln y - y + 1"
  | 
| 
 | 
   194  | 
  have D: "\<And>x. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)"
  | 
| 
 | 
   195  | 
    by (auto intro!: DERIV_intros)
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
  show ?thesis
  | 
| 
 | 
   198  | 
  proof (cases rule: linorder_cases)
  | 
| 
 | 
   199  | 
    assume "x < 1"
  | 
| 
 | 
   200  | 
    from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast
  | 
| 
 | 
   201  | 
    from `x < a` have "?l x < ?l a"
  | 
| 
 | 
   202  | 
    proof (rule DERIV_pos_imp_increasing, safe)
  | 
| 
 | 
   203  | 
      fix y assume "x \<le> y" "y \<le> a"
  | 
| 
 | 
   204  | 
      with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y"
  | 
| 
 | 
   205  | 
        by (auto simp: field_simps)
  | 
| 
 | 
   206  | 
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z"
  | 
| 
 | 
   207  | 
        by auto
  | 
| 
 | 
   208  | 
    qed
  | 
| 
 | 
   209  | 
    also have "\<dots> \<le> 0"
  | 
| 
 | 
   210  | 
      using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps)
  | 
| 
 | 
   211  | 
    finally show "x = 1" using assms by auto
  | 
| 
 | 
   212  | 
  next
  | 
| 
 | 
   213  | 
    assume "1 < x"
  | 
| 
 | 
   214  | 
    from dense[OF `1 < x`] obtain a where "1 < a" "a < x" by blast
  | 
| 
 | 
   215  | 
    from `a < x` have "?l x < ?l a"
  | 
| 
 | 
   216  | 
    proof (rule DERIV_neg_imp_decreasing, safe)
  | 
| 
 | 
   217  | 
      fix y assume "a \<le> y" "y \<le> x"
  | 
| 
 | 
   218  | 
      with `1 < a` have "1 / y - 1 < 0" "0 < y"
  | 
| 
 | 
   219  | 
        by (auto simp: field_simps)
  | 
| 
 | 
   220  | 
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
  | 
| 
 | 
   221  | 
        by blast
  | 
| 
 | 
   222  | 
    qed
  | 
| 
 | 
   223  | 
    also have "\<dots> \<le> 0"
  | 
| 
 | 
   224  | 
      using ln_le_minus_one `1 < a` by (auto simp: field_simps)
  | 
| 
 | 
   225  | 
    finally show "x = 1" using assms by auto
  | 
| 
 | 
   226  | 
  qed simp
  | 
| 
 | 
   227  | 
qed
  | 
| 
 | 
   228  | 
  | 
| 
16959
 | 
   229  | 
end
  |