| author | Wenda Li <wl302@cam.ac.uk> | 
| Fri, 23 Feb 2018 14:56:32 +0000 | |
| changeset 67707 | 68ca05a7f159 | 
| parent 67685 | bdff8bf0a75b | 
| child 67981 | 349c639e593c | 
| permissions | -rw-r--r-- | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 1 | theory Ordered_Euclidean_Space | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 2 | imports | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 3 | Cartesian_Euclidean_Space | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
64758diff
changeset | 4 | "HOL-Library.Product_Order" | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 5 | begin | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 6 | |
| 60420 | 7 | subsection \<open>An ordering on euclidean spaces that will allow us to talk about intervals\<close> | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 8 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 9 | class ordered_euclidean_space = ord + inf + sup + abs + Inf + Sup + euclidean_space + | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 10 | assumes eucl_le: "x \<le> y \<longleftrightarrow> (\<forall>i\<in>Basis. x \<bullet> i \<le> y \<bullet> i)" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 11 | assumes eucl_less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 12 | assumes eucl_inf: "inf x y = (\<Sum>i\<in>Basis. inf (x \<bullet> i) (y \<bullet> i) *\<^sub>R i)" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 13 | assumes eucl_sup: "sup x y = (\<Sum>i\<in>Basis. sup (x \<bullet> i) (y \<bullet> i) *\<^sub>R i)" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 14 | assumes eucl_Inf: "Inf X = (\<Sum>i\<in>Basis. (INF x:X. x \<bullet> i) *\<^sub>R i)" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 15 | assumes eucl_Sup: "Sup X = (\<Sum>i\<in>Basis. (SUP x:X. x \<bullet> i) *\<^sub>R i)" | 
| 61945 | 16 | assumes eucl_abs: "\<bar>x\<bar> = (\<Sum>i\<in>Basis. \<bar>x \<bullet> i\<bar> *\<^sub>R i)" | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 17 | begin | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 18 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 19 | subclass order | 
| 61169 | 20 | by standard | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 21 | (auto simp: eucl_le eucl_less_le_not_le intro!: euclidean_eqI antisym intro: order.trans) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 22 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 23 | subclass ordered_ab_group_add_abs | 
| 61169 | 24 | by standard (auto simp: eucl_le inner_add_left eucl_abs abs_leI) | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 25 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 26 | subclass ordered_real_vector | 
| 61169 | 27 | by standard (auto simp: eucl_le intro!: mult_left_mono mult_right_mono) | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 28 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 29 | subclass lattice | 
| 61169 | 30 | by standard (auto simp: eucl_inf eucl_sup eucl_le) | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 31 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 32 | subclass distrib_lattice | 
| 61169 | 33 | by standard (auto simp: eucl_inf eucl_sup sup_inf_distrib1 intro!: euclidean_eqI) | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 34 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 35 | subclass conditionally_complete_lattice | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 36 | proof | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 37 | fix z::'a and X::"'a set" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 38 |   assume "X \<noteq> {}"
 | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 39 |   hence "\<And>i. (\<lambda>x. x \<bullet> i) ` X \<noteq> {}" by simp
 | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 40 | thus "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X" "(\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 41 | by (auto simp: eucl_Inf eucl_Sup eucl_le | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 42 | intro!: cInf_greatest cSup_least) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 43 | qed (force intro!: cInf_lower cSup_upper | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 44 | simp: bdd_below_def bdd_above_def preorder_class.bdd_below_def preorder_class.bdd_above_def | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 45 | eucl_Inf eucl_Sup eucl_le)+ | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 46 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 47 | lemma inner_Basis_inf_left: "i \<in> Basis \<Longrightarrow> inf x y \<bullet> i = inf (x \<bullet> i) (y \<bullet> i)" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 48 | and inner_Basis_sup_left: "i \<in> Basis \<Longrightarrow> sup x y \<bullet> i = sup (x \<bullet> i) (y \<bullet> i)" | 
| 64267 | 49 | by (simp_all add: eucl_inf eucl_sup inner_sum_left inner_Basis if_distrib comm_monoid_add_class.sum.delta | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 50 | cong: if_cong) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 51 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 52 | lemma inner_Basis_INF_left: "i \<in> Basis \<Longrightarrow> (INF x:X. f x) \<bullet> i = (INF x:X. f x \<bullet> i)" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 53 | and inner_Basis_SUP_left: "i \<in> Basis \<Longrightarrow> (SUP x:X. f x) \<bullet> i = (SUP x:X. f x \<bullet> i)" | 
| 56166 | 54 | using eucl_Sup [of "f ` X"] eucl_Inf [of "f ` X"] by (simp_all add: comp_def) | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 55 | |
| 61945 | 56 | lemma abs_inner: "i \<in> Basis \<Longrightarrow> \<bar>x\<bar> \<bullet> i = \<bar>x \<bullet> i\<bar>" | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 57 | by (auto simp: eucl_abs) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 58 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 59 | lemma | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 60 | abs_scaleR: "\<bar>a *\<^sub>R b\<bar> = \<bar>a\<bar> *\<^sub>R \<bar>b\<bar>" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 61 | by (auto simp: eucl_abs abs_mult intro!: euclidean_eqI) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 62 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 63 | lemma interval_inner_leI: | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 64 |   assumes "x \<in> {a .. b}" "0 \<le> i"
 | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 65 | shows "a\<bullet>i \<le> x\<bullet>i" "x\<bullet>i \<le> b\<bullet>i" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 66 | using assms | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 67 | unfolding euclidean_inner[of a i] euclidean_inner[of x i] euclidean_inner[of b i] | 
| 64267 | 68 | by (auto intro!: ordered_comm_monoid_add_class.sum_mono mult_right_mono simp: eucl_le) | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 69 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 70 | lemma inner_nonneg_nonneg: | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 71 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a \<bullet> b" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 72 | using interval_inner_leI[of a 0 a b] | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 73 | by auto | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 74 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 75 | lemma inner_Basis_mono: | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 76 | shows "a \<le> b \<Longrightarrow> c \<in> Basis \<Longrightarrow> a \<bullet> c \<le> b \<bullet> c" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 77 | by (simp add: eucl_le) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 78 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 79 | lemma Basis_nonneg[intro, simp]: "i \<in> Basis \<Longrightarrow> 0 \<le> i" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 80 | by (auto simp: eucl_le inner_Basis) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 81 | |
| 54781 | 82 | lemma Sup_eq_maximum_componentwise: | 
| 83 | fixes s::"'a set" | |
| 84 | assumes i: "\<And>b. b \<in> Basis \<Longrightarrow> X \<bullet> b = i b \<bullet> b" | |
| 85 | assumes sup: "\<And>b x. b \<in> Basis \<Longrightarrow> x \<in> s \<Longrightarrow> x \<bullet> b \<le> X \<bullet> b" | |
| 86 | assumes i_s: "\<And>b. b \<in> Basis \<Longrightarrow> (i b \<bullet> b) \<in> (\<lambda>x. x \<bullet> b) ` s" | |
| 87 | shows "Sup s = X" | |
| 88 | using assms | |
| 64267 | 89 | unfolding eucl_Sup euclidean_representation_sum | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 90 | by (auto intro!: conditionally_complete_lattice_class.cSup_eq_maximum) | 
| 54781 | 91 | |
| 92 | lemma Inf_eq_minimum_componentwise: | |
| 93 | assumes i: "\<And>b. b \<in> Basis \<Longrightarrow> X \<bullet> b = i b \<bullet> b" | |
| 94 | assumes sup: "\<And>b x. b \<in> Basis \<Longrightarrow> x \<in> s \<Longrightarrow> X \<bullet> b \<le> x \<bullet> b" | |
| 95 | assumes i_s: "\<And>b. b \<in> Basis \<Longrightarrow> (i b \<bullet> b) \<in> (\<lambda>x. x \<bullet> b) ` s" | |
| 96 | shows "Inf s = X" | |
| 97 | using assms | |
| 64267 | 98 | unfolding eucl_Inf euclidean_representation_sum | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 99 | by (auto intro!: conditionally_complete_lattice_class.cInf_eq_minimum) | 
| 54781 | 100 | |
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 101 | end | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 102 | |
| 54781 | 103 | lemma | 
| 104 | compact_attains_Inf_componentwise: | |
| 105 | fixes b::"'a::ordered_euclidean_space" | |
| 106 |   assumes "b \<in> Basis" assumes "X \<noteq> {}" "compact X"
 | |
| 107 | obtains x where "x \<in> X" "x \<bullet> b = Inf X \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> x \<bullet> b \<le> y \<bullet> b" | |
| 108 | proof atomize_elim | |
| 109 | let ?proj = "(\<lambda>x. x \<bullet> b) ` X" | |
| 110 |   from assms have "compact ?proj" "?proj \<noteq> {}"
 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56190diff
changeset | 111 | by (auto intro!: compact_continuous_image continuous_intros) | 
| 54781 | 112 | from compact_attains_inf[OF this] | 
| 113 | obtain s x | |
| 114 | where s: "s\<in>(\<lambda>x. x \<bullet> b) ` X" "\<And>t. t\<in>(\<lambda>x. x \<bullet> b) ` X \<Longrightarrow> s \<le> t" | |
| 115 | and x: "x \<in> X" "s = x \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> x \<bullet> b \<le> y \<bullet> b" | |
| 116 | by auto | |
| 117 | hence "Inf ?proj = x \<bullet> b" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 118 | by (auto intro!: conditionally_complete_lattice_class.cInf_eq_minimum) | 
| 54781 | 119 | hence "x \<bullet> b = Inf X \<bullet> b" | 
| 64267 | 120 | by (auto simp: eucl_Inf inner_sum_left inner_Basis if_distrib \<open>b \<in> Basis\<close> sum.delta | 
| 56166 | 121 | cong: if_cong) | 
| 54781 | 122 | with x show "\<exists>x. x \<in> X \<and> x \<bullet> b = Inf X \<bullet> b \<and> (\<forall>y. y \<in> X \<longrightarrow> x \<bullet> b \<le> y \<bullet> b)" by blast | 
| 123 | qed | |
| 124 | ||
| 125 | lemma | |
| 126 | compact_attains_Sup_componentwise: | |
| 127 | fixes b::"'a::ordered_euclidean_space" | |
| 128 |   assumes "b \<in> Basis" assumes "X \<noteq> {}" "compact X"
 | |
| 129 | obtains x where "x \<in> X" "x \<bullet> b = Sup X \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> y \<bullet> b \<le> x \<bullet> b" | |
| 130 | proof atomize_elim | |
| 131 | let ?proj = "(\<lambda>x. x \<bullet> b) ` X" | |
| 132 |   from assms have "compact ?proj" "?proj \<noteq> {}"
 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56190diff
changeset | 133 | by (auto intro!: compact_continuous_image continuous_intros) | 
| 54781 | 134 | from compact_attains_sup[OF this] | 
| 135 | obtain s x | |
| 136 | where s: "s\<in>(\<lambda>x. x \<bullet> b) ` X" "\<And>t. t\<in>(\<lambda>x. x \<bullet> b) ` X \<Longrightarrow> t \<le> s" | |
| 137 | and x: "x \<in> X" "s = x \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> y \<bullet> b \<le> x \<bullet> b" | |
| 138 | by auto | |
| 139 | hence "Sup ?proj = x \<bullet> b" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 140 | by (auto intro!: cSup_eq_maximum) | 
| 54781 | 141 | hence "x \<bullet> b = Sup X \<bullet> b" | 
| 64267 | 142 | by (auto simp: eucl_Sup[where 'a='a] inner_sum_left inner_Basis if_distrib \<open>b \<in> Basis\<close> sum.delta | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 143 | cong: if_cong) | 
| 54781 | 144 | with x show "\<exists>x. x \<in> X \<and> x \<bullet> b = Sup X \<bullet> b \<and> (\<forall>y. y \<in> X \<longrightarrow> y \<bullet> b \<le> x \<bullet> b)" by blast | 
| 145 | qed | |
| 146 | ||
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 147 | lemma (in order) atLeastatMost_empty'[simp]: | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 148 |   "(~ a <= b) \<Longrightarrow> {a..b} = {}"
 | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 149 | by (auto) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 150 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 151 | instance real :: ordered_euclidean_space | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61945diff
changeset | 152 | by standard auto | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 153 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 154 | lemma in_Basis_prod_iff: | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 155 | fixes i::"'a::euclidean_space*'b::euclidean_space" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 156 | shows "i \<in> Basis \<longleftrightarrow> fst i = 0 \<and> snd i \<in> Basis \<or> snd i = 0 \<and> fst i \<in> Basis" | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 157 | by (cases i) (auto simp: Basis_prod_def) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 158 | |
| 61945 | 159 | instantiation prod :: (abs, abs) abs | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 160 | begin | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 161 | |
| 61945 | 162 | definition "\<bar>x\<bar> = (\<bar>fst x\<bar>, \<bar>snd x\<bar>)" | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 163 | |
| 61945 | 164 | instance .. | 
| 165 | ||
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 166 | end | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 167 | |
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 168 | instance prod :: (ordered_euclidean_space, ordered_euclidean_space) ordered_euclidean_space | 
| 61169 | 169 | by standard | 
| 64267 | 170 | (auto intro!: add_mono simp add: euclidean_representation_sum' Ball_def inner_prod_def | 
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 171 | in_Basis_prod_iff inner_Basis_inf_left inner_Basis_sup_left inner_Basis_INF_left Inf_prod_def | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 172 | inner_Basis_SUP_left Sup_prod_def less_prod_def less_eq_prod_def eucl_le[where 'a='a] | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 173 | eucl_le[where 'a='b] abs_prod_def abs_inner) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 174 | |
| 61808 | 175 | text\<open>Instantiation for intervals on \<open>ordered_euclidean_space\<close>\<close> | 
| 56188 | 176 | |
| 177 | lemma | |
| 61076 | 178 | fixes a :: "'a::ordered_euclidean_space" | 
| 56188 | 179 |   shows cbox_interval: "cbox a b = {a..b}"
 | 
| 180 |     and interval_cbox: "{a..b} = cbox a b"
 | |
| 181 |     and eucl_le_atMost: "{x. \<forall>i\<in>Basis. x \<bullet> i <= a \<bullet> i} = {..a}"
 | |
| 182 |     and eucl_le_atLeast: "{x. \<forall>i\<in>Basis. a \<bullet> i <= x \<bullet> i} = {a..}"
 | |
| 183 | by (auto simp: eucl_le[where 'a='a] eucl_less_def box_def cbox_def) | |
| 184 | ||
| 185 | lemma closed_eucl_atLeastAtMost[simp, intro]: | |
| 61076 | 186 | fixes a :: "'a::ordered_euclidean_space" | 
| 56188 | 187 |   shows "closed {a..b}"
 | 
| 188 | by (simp add: cbox_interval[symmetric] closed_cbox) | |
| 189 | ||
| 190 | lemma closed_eucl_atMost[simp, intro]: | |
| 61076 | 191 | fixes a :: "'a::ordered_euclidean_space" | 
| 56188 | 192 |   shows "closed {..a}"
 | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66453diff
changeset | 193 | by (simp add: closed_interval_left eucl_le_atMost[symmetric]) | 
| 56188 | 194 | |
| 195 | lemma closed_eucl_atLeast[simp, intro]: | |
| 61076 | 196 | fixes a :: "'a::ordered_euclidean_space" | 
| 56188 | 197 |   shows "closed {a..}"
 | 
| 66827 
c94531b5007d
Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
 paulson <lp15@cam.ac.uk> parents: 
66453diff
changeset | 198 | by (simp add: closed_interval_right eucl_le_atLeast[symmetric]) | 
| 56188 | 199 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 200 | lemma bounded_closed_interval [simp]: | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 201 | fixes a :: "'a::ordered_euclidean_space" | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 202 |   shows "bounded {a .. b}"
 | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 203 | using bounded_cbox[of a b] | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 204 | by (metis interval_cbox) | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 205 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 206 | lemma convex_closed_interval [simp]: | 
| 56190 | 207 | fixes a :: "'a::ordered_euclidean_space" | 
| 208 |   shows "convex {a .. b}"
 | |
| 209 | using convex_box[of a b] | |
| 210 | by (metis interval_cbox) | |
| 211 | ||
| 56188 | 212 | lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::_::ordered_euclidean_space)) ` {a .. b} =
 | 
| 213 |   (if {a .. b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a .. m *\<^sub>R b} else {m *\<^sub>R b .. m *\<^sub>R a})"
 | |
| 214 | using image_smult_cbox[of m a b] | |
| 215 | by (simp add: cbox_interval) | |
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 216 | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 217 | lemma [simp]: | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 218 | fixes a b::"'a::ordered_euclidean_space" and r s::real | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 219 |   shows is_interval_io: "is_interval {..<r}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 220 |     and is_interval_ic: "is_interval {..a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 221 |     and is_interval_oi: "is_interval {r<..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 222 |     and is_interval_ci: "is_interval {a..}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 223 |     and is_interval_oo: "is_interval {r<..<s}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 224 |     and is_interval_oc: "is_interval {r<..s}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 225 |     and is_interval_co: "is_interval {r..<s}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 226 |     and is_interval_cc: "is_interval {b..a}"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 227 | by (force simp: is_interval_def eucl_le[where 'a='a])+ | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 228 | |
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 229 | lemma is_interval_real_ereal_oo: "is_interval (real_of_ereal ` {N<..<M::ereal})"
 | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
66827diff
changeset | 230 | by (auto simp: real_atLeastGreaterThan_eq) | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 231 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 232 | lemma compact_interval [simp]: | 
| 56190 | 233 | fixes a b::"'a::ordered_euclidean_space" | 
| 234 |   shows "compact {a .. b}"
 | |
| 235 | by (metis compact_cbox interval_cbox) | |
| 236 | ||
| 62620 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 237 | lemma homeomorphic_closed_intervals: | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 238 | fixes a :: "'a::euclidean_space" and b and c :: "'a::euclidean_space" and d | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 239 |   assumes "box a b \<noteq> {}" and "box c d \<noteq> {}"
 | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 240 | shows "(cbox a b) homeomorphic (cbox c d)" | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 241 | apply (rule homeomorphic_convex_compact) | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 242 | using assms apply auto | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 243 | done | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 244 | |
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 245 | lemma homeomorphic_closed_intervals_real: | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 246 | fixes a::real and b and c::real and d | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 247 | assumes "a<b" and "c<d" | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 248 |     shows "{a..b} homeomorphic {c..d}"
 | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 249 | by (metis assms compact_interval continuous_on_id convex_real_interval(5) emptyE homeomorphic_convex_compact interior_atLeastAtMost_real mvt) | 
| 
d21dab28b3f9
New results about paths, segments, etc. The notion of simply_connected.
 paulson <lp15@cam.ac.uk> parents: 
62376diff
changeset | 250 | |
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 251 | no_notation | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 252 | eucl_less (infix "<e" 50) | 
| 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 253 | |
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 254 | lemma One_nonneg: "0 \<le> (\<Sum>Basis::'a::ordered_euclidean_space)" | 
| 64267 | 255 | by (auto intro: sum_nonneg) | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 256 | |
| 56190 | 257 | lemma | 
| 258 | fixes a b::"'a::ordered_euclidean_space" | |
| 259 | shows bdd_above_cbox[intro, simp]: "bdd_above (cbox a b)" | |
| 260 | and bdd_below_cbox[intro, simp]: "bdd_below (cbox a b)" | |
| 261 | and bdd_above_box[intro, simp]: "bdd_above (box a b)" | |
| 262 | and bdd_below_box[intro, simp]: "bdd_below (box a b)" | |
| 263 | unfolding atomize_conj | |
| 264 | by (metis bdd_above_Icc bdd_above_mono bdd_below_Icc bdd_below_mono bounded_box | |
| 265 | bounded_subset_cbox interval_cbox) | |
| 266 | ||
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 267 | instantiation vec :: (ordered_euclidean_space, finite) ordered_euclidean_space | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 268 | begin | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 269 | |
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 270 | definition "inf x y = (\<chi> i. inf (x $ i) (y $ i))" | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 271 | definition "sup x y = (\<chi> i. sup (x $ i) (y $ i))" | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 272 | definition "Inf X = (\<chi> i. (INF x:X. x $ i))" | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 273 | definition "Sup X = (\<chi> i. (SUP x:X. x $ i))" | 
| 61945 | 274 | definition "\<bar>x\<bar> = (\<chi> i. \<bar>x $ i\<bar>)" | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 275 | |
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 276 | instance | 
| 61169 | 277 | apply standard | 
| 64267 | 278 | unfolding euclidean_representation_sum' | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 279 | apply (auto simp: less_eq_vec_def inf_vec_def sup_vec_def Inf_vec_def Sup_vec_def inner_axis | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 280 | Basis_vec_def inner_Basis_inf_left inner_Basis_sup_left inner_Basis_INF_left | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 281 | inner_Basis_SUP_left eucl_le[where 'a='a] less_le_not_le abs_vec_def abs_inner) | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 282 | done | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 283 | |
| 54780 
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
 immler parents: diff
changeset | 284 | end | 
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 285 | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 286 | lemma ANR_interval [iff]: | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 287 | fixes a :: "'a::ordered_euclidean_space" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 288 |     shows "ANR{a..b}"
 | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 289 | by (simp add: interval_cbox) | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 290 | |
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 291 | lemma ENR_interval [iff]: | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 292 | fixes a :: "'a::ordered_euclidean_space" | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 293 |     shows "ENR{a..b}"
 | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 294 | by (auto simp: interval_cbox) | 
| 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
62620diff
changeset | 295 | |
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 296 | end | 
| 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 297 |