author | haftmann |
Sat, 28 Jun 2014 09:16:42 +0200 | |
changeset 57418 | 6ab1c7cb0b8d |
parent 56371 | fb9ae0727548 |
child 60420 | 884f54e01427 |
permissions | -rw-r--r-- |
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
1 |
theory Ordered_Euclidean_Space |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
2 |
imports |
56189
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
3 |
Cartesian_Euclidean_Space |
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
4 |
"~~/src/HOL/Library/Product_Order" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
5 |
begin |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
6 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
7 |
subsection {* An ordering on euclidean spaces that will allow us to talk about intervals *} |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
8 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
9 |
class ordered_euclidean_space = ord + inf + sup + abs + Inf + Sup + euclidean_space + |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
10 |
assumes eucl_le: "x \<le> y \<longleftrightarrow> (\<forall>i\<in>Basis. x \<bullet> i \<le> y \<bullet> i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
11 |
assumes eucl_less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
12 |
assumes eucl_inf: "inf x y = (\<Sum>i\<in>Basis. inf (x \<bullet> i) (y \<bullet> i) *\<^sub>R i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
13 |
assumes eucl_sup: "sup x y = (\<Sum>i\<in>Basis. sup (x \<bullet> i) (y \<bullet> i) *\<^sub>R i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
14 |
assumes eucl_Inf: "Inf X = (\<Sum>i\<in>Basis. (INF x:X. x \<bullet> i) *\<^sub>R i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
15 |
assumes eucl_Sup: "Sup X = (\<Sum>i\<in>Basis. (SUP x:X. x \<bullet> i) *\<^sub>R i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
16 |
assumes eucl_abs: "abs x = (\<Sum>i\<in>Basis. abs (x \<bullet> i) *\<^sub>R i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
17 |
begin |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
18 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
19 |
subclass order |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
20 |
by default |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
21 |
(auto simp: eucl_le eucl_less_le_not_le intro!: euclidean_eqI antisym intro: order.trans) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
22 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
23 |
subclass ordered_ab_group_add_abs |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
24 |
by default (auto simp: eucl_le inner_add_left eucl_abs abs_leI) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
25 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
26 |
subclass ordered_real_vector |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
27 |
by default (auto simp: eucl_le intro!: mult_left_mono mult_right_mono) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
28 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
29 |
subclass lattice |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
30 |
by default (auto simp: eucl_inf eucl_sup eucl_le) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
31 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
32 |
subclass distrib_lattice |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
33 |
by default (auto simp: eucl_inf eucl_sup sup_inf_distrib1 intro!: euclidean_eqI) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
34 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
35 |
subclass conditionally_complete_lattice |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
36 |
proof |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
37 |
fix z::'a and X::"'a set" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
38 |
assume "X \<noteq> {}" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
39 |
hence "\<And>i. (\<lambda>x. x \<bullet> i) ` X \<noteq> {}" by simp |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
40 |
thus "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X" "(\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
41 |
by (auto simp: eucl_Inf eucl_Sup eucl_le Inf_class.INF_def Sup_class.SUP_def |
56166 | 42 |
simp del: Inf_class.Inf_image_eq Sup_class.Sup_image_eq |
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
43 |
intro!: cInf_greatest cSup_least) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
44 |
qed (force intro!: cInf_lower cSup_upper |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
45 |
simp: bdd_below_def bdd_above_def preorder_class.bdd_below_def preorder_class.bdd_above_def |
56166 | 46 |
eucl_Inf eucl_Sup eucl_le Inf_class.INF_def Sup_class.SUP_def |
47 |
simp del: Inf_class.Inf_image_eq Sup_class.Sup_image_eq)+ |
|
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
48 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
49 |
lemma inner_Basis_inf_left: "i \<in> Basis \<Longrightarrow> inf x y \<bullet> i = inf (x \<bullet> i) (y \<bullet> i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
50 |
and inner_Basis_sup_left: "i \<in> Basis \<Longrightarrow> sup x y \<bullet> i = sup (x \<bullet> i) (y \<bullet> i)" |
57418 | 51 |
by (simp_all add: eucl_inf eucl_sup inner_setsum_left inner_Basis if_distrib comm_monoid_add_class.setsum.delta |
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
52 |
cong: if_cong) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
53 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
54 |
lemma inner_Basis_INF_left: "i \<in> Basis \<Longrightarrow> (INF x:X. f x) \<bullet> i = (INF x:X. f x \<bullet> i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
55 |
and inner_Basis_SUP_left: "i \<in> Basis \<Longrightarrow> (SUP x:X. f x) \<bullet> i = (SUP x:X. f x \<bullet> i)" |
56166 | 56 |
using eucl_Sup [of "f ` X"] eucl_Inf [of "f ` X"] by (simp_all add: comp_def) |
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
57 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
58 |
lemma abs_inner: "i \<in> Basis \<Longrightarrow> abs x \<bullet> i = abs (x \<bullet> i)" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
59 |
by (auto simp: eucl_abs) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
60 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
61 |
lemma |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
62 |
abs_scaleR: "\<bar>a *\<^sub>R b\<bar> = \<bar>a\<bar> *\<^sub>R \<bar>b\<bar>" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
63 |
by (auto simp: eucl_abs abs_mult intro!: euclidean_eqI) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
64 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
65 |
lemma interval_inner_leI: |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
66 |
assumes "x \<in> {a .. b}" "0 \<le> i" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
67 |
shows "a\<bullet>i \<le> x\<bullet>i" "x\<bullet>i \<le> b\<bullet>i" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
68 |
using assms |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
69 |
unfolding euclidean_inner[of a i] euclidean_inner[of x i] euclidean_inner[of b i] |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
70 |
by (auto intro!: setsum_mono mult_right_mono simp: eucl_le) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
71 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
72 |
lemma inner_nonneg_nonneg: |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
73 |
shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a \<bullet> b" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
74 |
using interval_inner_leI[of a 0 a b] |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
75 |
by auto |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
76 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
77 |
lemma inner_Basis_mono: |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
78 |
shows "a \<le> b \<Longrightarrow> c \<in> Basis \<Longrightarrow> a \<bullet> c \<le> b \<bullet> c" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
79 |
by (simp add: eucl_le) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
80 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
81 |
lemma Basis_nonneg[intro, simp]: "i \<in> Basis \<Longrightarrow> 0 \<le> i" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
82 |
by (auto simp: eucl_le inner_Basis) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
83 |
|
54781 | 84 |
lemma Sup_eq_maximum_componentwise: |
85 |
fixes s::"'a set" |
|
86 |
assumes i: "\<And>b. b \<in> Basis \<Longrightarrow> X \<bullet> b = i b \<bullet> b" |
|
87 |
assumes sup: "\<And>b x. b \<in> Basis \<Longrightarrow> x \<in> s \<Longrightarrow> x \<bullet> b \<le> X \<bullet> b" |
|
88 |
assumes i_s: "\<And>b. b \<in> Basis \<Longrightarrow> (i b \<bullet> b) \<in> (\<lambda>x. x \<bullet> b) ` s" |
|
89 |
shows "Sup s = X" |
|
90 |
using assms |
|
91 |
unfolding eucl_Sup euclidean_representation_setsum |
|
56166 | 92 |
by (auto simp: Sup_class.SUP_def simp del: Sup_class.Sup_image_eq intro!: conditionally_complete_lattice_class.cSup_eq_maximum) |
54781 | 93 |
|
94 |
lemma Inf_eq_minimum_componentwise: |
|
95 |
assumes i: "\<And>b. b \<in> Basis \<Longrightarrow> X \<bullet> b = i b \<bullet> b" |
|
96 |
assumes sup: "\<And>b x. b \<in> Basis \<Longrightarrow> x \<in> s \<Longrightarrow> X \<bullet> b \<le> x \<bullet> b" |
|
97 |
assumes i_s: "\<And>b. b \<in> Basis \<Longrightarrow> (i b \<bullet> b) \<in> (\<lambda>x. x \<bullet> b) ` s" |
|
98 |
shows "Inf s = X" |
|
99 |
using assms |
|
100 |
unfolding eucl_Inf euclidean_representation_setsum |
|
56166 | 101 |
by (auto simp: Inf_class.INF_def simp del: Inf_class.Inf_image_eq intro!: conditionally_complete_lattice_class.cInf_eq_minimum) |
54781 | 102 |
|
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
103 |
end |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
104 |
|
54781 | 105 |
lemma |
106 |
compact_attains_Inf_componentwise: |
|
107 |
fixes b::"'a::ordered_euclidean_space" |
|
108 |
assumes "b \<in> Basis" assumes "X \<noteq> {}" "compact X" |
|
109 |
obtains x where "x \<in> X" "x \<bullet> b = Inf X \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> x \<bullet> b \<le> y \<bullet> b" |
|
110 |
proof atomize_elim |
|
111 |
let ?proj = "(\<lambda>x. x \<bullet> b) ` X" |
|
112 |
from assms have "compact ?proj" "?proj \<noteq> {}" |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56190
diff
changeset
|
113 |
by (auto intro!: compact_continuous_image continuous_intros) |
54781 | 114 |
from compact_attains_inf[OF this] |
115 |
obtain s x |
|
116 |
where s: "s\<in>(\<lambda>x. x \<bullet> b) ` X" "\<And>t. t\<in>(\<lambda>x. x \<bullet> b) ` X \<Longrightarrow> s \<le> t" |
|
117 |
and x: "x \<in> X" "s = x \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> x \<bullet> b \<le> y \<bullet> b" |
|
118 |
by auto |
|
119 |
hence "Inf ?proj = x \<bullet> b" |
|
56166 | 120 |
by (auto intro!: conditionally_complete_lattice_class.cInf_eq_minimum simp del: Inf_class.Inf_image_eq) |
54781 | 121 |
hence "x \<bullet> b = Inf X \<bullet> b" |
57418 | 122 |
by (auto simp: eucl_Inf Inf_class.INF_def inner_setsum_left inner_Basis if_distrib `b \<in> Basis` setsum.delta |
56166 | 123 |
simp del: Inf_class.Inf_image_eq |
124 |
cong: if_cong) |
|
54781 | 125 |
with x show "\<exists>x. x \<in> X \<and> x \<bullet> b = Inf X \<bullet> b \<and> (\<forall>y. y \<in> X \<longrightarrow> x \<bullet> b \<le> y \<bullet> b)" by blast |
126 |
qed |
|
127 |
||
128 |
lemma |
|
129 |
compact_attains_Sup_componentwise: |
|
130 |
fixes b::"'a::ordered_euclidean_space" |
|
131 |
assumes "b \<in> Basis" assumes "X \<noteq> {}" "compact X" |
|
132 |
obtains x where "x \<in> X" "x \<bullet> b = Sup X \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> y \<bullet> b \<le> x \<bullet> b" |
|
133 |
proof atomize_elim |
|
134 |
let ?proj = "(\<lambda>x. x \<bullet> b) ` X" |
|
135 |
from assms have "compact ?proj" "?proj \<noteq> {}" |
|
56371
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents:
56190
diff
changeset
|
136 |
by (auto intro!: compact_continuous_image continuous_intros) |
54781 | 137 |
from compact_attains_sup[OF this] |
138 |
obtain s x |
|
139 |
where s: "s\<in>(\<lambda>x. x \<bullet> b) ` X" "\<And>t. t\<in>(\<lambda>x. x \<bullet> b) ` X \<Longrightarrow> t \<le> s" |
|
140 |
and x: "x \<in> X" "s = x \<bullet> b" "\<And>y. y \<in> X \<Longrightarrow> y \<bullet> b \<le> x \<bullet> b" |
|
141 |
by auto |
|
142 |
hence "Sup ?proj = x \<bullet> b" |
|
56166 | 143 |
by (auto intro!: cSup_eq_maximum simp del: Sup_image_eq) |
54781 | 144 |
hence "x \<bullet> b = Sup X \<bullet> b" |
57418 | 145 |
by (auto simp: eucl_Sup[where 'a='a] SUP_def inner_setsum_left inner_Basis if_distrib `b \<in> Basis` setsum.delta |
56166 | 146 |
simp del: Sup_image_eq cong: if_cong) |
54781 | 147 |
with x show "\<exists>x. x \<in> X \<and> x \<bullet> b = Sup X \<bullet> b \<and> (\<forall>y. y \<in> X \<longrightarrow> y \<bullet> b \<le> x \<bullet> b)" by blast |
148 |
qed |
|
149 |
||
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
150 |
lemma (in order) atLeastatMost_empty'[simp]: |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
151 |
"(~ a <= b) \<Longrightarrow> {a..b} = {}" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
152 |
by (auto) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
153 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
154 |
instance real :: ordered_euclidean_space |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
155 |
by default (auto simp: INF_def SUP_def) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
156 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
157 |
lemma in_Basis_prod_iff: |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
158 |
fixes i::"'a::euclidean_space*'b::euclidean_space" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
159 |
shows "i \<in> Basis \<longleftrightarrow> fst i = 0 \<and> snd i \<in> Basis \<or> snd i = 0 \<and> fst i \<in> Basis" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
160 |
by (cases i) (auto simp: Basis_prod_def) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
161 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
162 |
instantiation prod::(abs, abs) abs |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
163 |
begin |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
164 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
165 |
definition "abs x = (abs (fst x), abs (snd x))" |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
166 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
167 |
instance proof qed |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
168 |
end |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
169 |
|
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
170 |
instance prod :: (ordered_euclidean_space, ordered_euclidean_space) ordered_euclidean_space |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
171 |
by default |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
172 |
(auto intro!: add_mono simp add: euclidean_representation_setsum' Ball_def inner_prod_def |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
173 |
in_Basis_prod_iff inner_Basis_inf_left inner_Basis_sup_left inner_Basis_INF_left Inf_prod_def |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
174 |
inner_Basis_SUP_left Sup_prod_def less_prod_def less_eq_prod_def eucl_le[where 'a='a] |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
175 |
eucl_le[where 'a='b] abs_prod_def abs_inner) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
176 |
|
56188 | 177 |
text{* Instantiation for intervals on @{text ordered_euclidean_space} *} |
178 |
||
179 |
lemma |
|
180 |
fixes a :: "'a\<Colon>ordered_euclidean_space" |
|
181 |
shows cbox_interval: "cbox a b = {a..b}" |
|
182 |
and interval_cbox: "{a..b} = cbox a b" |
|
183 |
and eucl_le_atMost: "{x. \<forall>i\<in>Basis. x \<bullet> i <= a \<bullet> i} = {..a}" |
|
184 |
and eucl_le_atLeast: "{x. \<forall>i\<in>Basis. a \<bullet> i <= x \<bullet> i} = {a..}" |
|
185 |
by (auto simp: eucl_le[where 'a='a] eucl_less_def box_def cbox_def) |
|
186 |
||
187 |
lemma closed_eucl_atLeastAtMost[simp, intro]: |
|
188 |
fixes a :: "'a\<Colon>ordered_euclidean_space" |
|
189 |
shows "closed {a..b}" |
|
190 |
by (simp add: cbox_interval[symmetric] closed_cbox) |
|
191 |
||
192 |
lemma closed_eucl_atMost[simp, intro]: |
|
193 |
fixes a :: "'a\<Colon>ordered_euclidean_space" |
|
194 |
shows "closed {..a}" |
|
195 |
by (simp add: eucl_le_atMost[symmetric]) |
|
196 |
||
197 |
lemma closed_eucl_atLeast[simp, intro]: |
|
198 |
fixes a :: "'a\<Colon>ordered_euclidean_space" |
|
199 |
shows "closed {a..}" |
|
200 |
by (simp add: eucl_le_atLeast[symmetric]) |
|
201 |
||
56189
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
202 |
lemma bounded_closed_interval: |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
203 |
fixes a :: "'a::ordered_euclidean_space" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
204 |
shows "bounded {a .. b}" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
205 |
using bounded_cbox[of a b] |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
206 |
by (metis interval_cbox) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
207 |
|
56190 | 208 |
lemma convex_closed_interval: |
209 |
fixes a :: "'a::ordered_euclidean_space" |
|
210 |
shows "convex {a .. b}" |
|
211 |
using convex_box[of a b] |
|
212 |
by (metis interval_cbox) |
|
213 |
||
56188 | 214 |
lemma image_affinity_interval: fixes m::real |
215 |
fixes a b c :: "'a::ordered_euclidean_space" |
|
216 |
shows "(\<lambda>x. m *\<^sub>R x + c) ` {a..b} = |
|
217 |
(if {a..b} = {} then {} |
|
218 |
else (if 0 \<le> m then {m *\<^sub>R a + c .. m *\<^sub>R b + c} |
|
219 |
else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))" |
|
220 |
using image_affinity_cbox[of m c a b] |
|
221 |
by (simp add: cbox_interval) |
|
222 |
||
223 |
lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::_::ordered_euclidean_space)) ` {a .. b} = |
|
224 |
(if {a .. b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a .. m *\<^sub>R b} else {m *\<^sub>R b .. m *\<^sub>R a})" |
|
225 |
using image_smult_cbox[of m a b] |
|
226 |
by (simp add: cbox_interval) |
|
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
227 |
|
56189
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
228 |
lemma is_interval_closed_interval: |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
229 |
"is_interval {a .. (b::'a::ordered_euclidean_space)}" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
230 |
by (metis cbox_interval is_interval_cbox) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
231 |
|
56190 | 232 |
lemma compact_interval: |
233 |
fixes a b::"'a::ordered_euclidean_space" |
|
234 |
shows "compact {a .. b}" |
|
235 |
by (metis compact_cbox interval_cbox) |
|
236 |
||
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
237 |
no_notation |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
238 |
eucl_less (infix "<e" 50) |
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
239 |
|
56189
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
240 |
lemma One_nonneg: "0 \<le> (\<Sum>Basis::'a::ordered_euclidean_space)" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
241 |
by (auto intro: setsum_nonneg) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
242 |
|
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
243 |
lemma content_closed_interval: |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
244 |
fixes a :: "'a::ordered_euclidean_space" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
245 |
assumes "a \<le> b" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
246 |
shows "content {a .. b} = (\<Prod>i\<in>Basis. b\<bullet>i - a\<bullet>i)" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
247 |
using content_cbox[of a b] assms |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
248 |
by (simp add: cbox_interval eucl_le[where 'a='a]) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
249 |
|
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
250 |
lemma integrable_const_ivl[intro]: |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
251 |
fixes a::"'a::ordered_euclidean_space" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
252 |
shows "(\<lambda>x. c) integrable_on {a .. b}" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
253 |
unfolding cbox_interval[symmetric] |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
254 |
by (rule integrable_const) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
255 |
|
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
256 |
lemma integrable_on_subinterval: |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
257 |
fixes f :: "'n::ordered_euclidean_space \<Rightarrow> 'a::banach" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
258 |
assumes "f integrable_on s" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
259 |
and "{a .. b} \<subseteq> s" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
260 |
shows "f integrable_on {a .. b}" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
261 |
using integrable_on_subcbox[of f s a b] assms |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
262 |
by (simp add: cbox_interval) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
263 |
|
56190 | 264 |
lemma |
265 |
fixes a b::"'a::ordered_euclidean_space" |
|
266 |
shows bdd_above_cbox[intro, simp]: "bdd_above (cbox a b)" |
|
267 |
and bdd_below_cbox[intro, simp]: "bdd_below (cbox a b)" |
|
268 |
and bdd_above_box[intro, simp]: "bdd_above (box a b)" |
|
269 |
and bdd_below_box[intro, simp]: "bdd_below (box a b)" |
|
270 |
unfolding atomize_conj |
|
271 |
by (metis bdd_above_Icc bdd_above_mono bdd_below_Icc bdd_below_mono bounded_box |
|
272 |
bounded_subset_cbox interval_cbox) |
|
273 |
||
56189
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
274 |
instantiation vec :: (ordered_euclidean_space, finite) ordered_euclidean_space |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
275 |
begin |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
276 |
|
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
277 |
definition "inf x y = (\<chi> i. inf (x $ i) (y $ i))" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
278 |
definition "sup x y = (\<chi> i. sup (x $ i) (y $ i))" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
279 |
definition "Inf X = (\<chi> i. (INF x:X. x $ i))" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
280 |
definition "Sup X = (\<chi> i. (SUP x:X. x $ i))" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
281 |
definition "abs x = (\<chi> i. abs (x $ i))" |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
282 |
|
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
283 |
instance |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
284 |
apply default |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
285 |
unfolding euclidean_representation_setsum' |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
286 |
apply (auto simp: less_eq_vec_def inf_vec_def sup_vec_def Inf_vec_def Sup_vec_def inner_axis |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
287 |
Basis_vec_def inner_Basis_inf_left inner_Basis_sup_left inner_Basis_INF_left |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
288 |
inner_Basis_SUP_left eucl_le[where 'a='a] less_le_not_le abs_vec_def abs_inner) |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
289 |
done |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
290 |
|
54780
6fae499e0827
summarized notions related to ordered_euclidean_space and intervals in separate theory
immler
parents:
diff
changeset
|
291 |
end |
56189
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
292 |
|
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
293 |
end |
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
immler
parents:
56188
diff
changeset
|
294 |