src/HOL/IMP/Sec_Typing.thy
author wenzelm
Wed, 28 Dec 2022 12:30:18 +0100
changeset 76798 69d8d16c5612
parent 69597 ff784d5a5bfb
child 80914 d97fdabd9e2b
permissions -rw-r--r--
tuned output;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
     1
(* Author: Tobias Nipkow *)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
     2
68776
403dd13cf6e9 avoid session qualification because no tex is generated when used;
nipkow
parents: 67406
diff changeset
     3
subsection "Security Typing of Commands"
403dd13cf6e9 avoid session qualification because no tex is generated when used;
nipkow
parents: 67406
diff changeset
     4
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
     5
theory Sec_Typing imports Sec_Type_Expr
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
     6
begin
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
     7
68776
403dd13cf6e9 avoid session qualification because no tex is generated when used;
nipkow
parents: 67406
diff changeset
     8
subsubsection "Syntax Directed Typing"
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
     9
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    10
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    11
Skip:
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    12
  "l \<turnstile> SKIP" |
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    13
Assign:
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
    14
  "\<lbrakk> sec x \<ge> sec a;  sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
    15
Seq:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
    16
  "\<lbrakk> l \<turnstile> c\<^sub>1;  l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^sub>1;;c\<^sub>2" |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    17
If:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
    18
  "\<lbrakk> max (sec b) l \<turnstile> c\<^sub>1;  max (sec b) l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    19
While:
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
    20
  "max (sec b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c"
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    21
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    22
code_pred (expected_modes: i => i => bool) sec_type .
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    23
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    24
value "0 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    25
value "1 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x''  ::= N 0 ELSE SKIP"
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    26
value "2 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    27
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    28
inductive_cases [elim!]:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
    29
  "l \<turnstile> x ::= a"  "l \<turnstile> c\<^sub>1;;c\<^sub>2"  "l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2"  "l \<turnstile> WHILE b DO c"
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    30
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    31
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    32
text\<open>An important property: anti-monotonicity.\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    33
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    34
lemma anti_mono: "\<lbrakk> l \<turnstile> c;  l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
    35
apply(induction arbitrary: l' rule: sec_type.induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    36
apply (metis sec_type.intros(1))
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    37
apply (metis le_trans sec_type.intros(2))
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    38
apply (metis sec_type.intros(3))
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    39
apply (metis If le_refl sup_mono sup_nat_def)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    40
apply (metis While le_refl sup_mono sup_nat_def)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    41
done
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    42
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    43
lemma confinement: "\<lbrakk> (c,s) \<Rightarrow> t;  l \<turnstile> c \<rbrakk> \<Longrightarrow> s = t (< l)"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
    44
proof(induction rule: big_step_induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    45
  case Skip thus ?case by simp
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    46
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    47
  case Assign thus ?case by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    48
next
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
    49
  case Seq thus ?case by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    50
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    51
  case (IfTrue b s c1)
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
    52
  hence "max (sec b) l \<turnstile> c1" by auto
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
    53
  hence "l \<turnstile> c1" by (metis max.cobounded2 anti_mono)
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
    54
  thus ?case using IfTrue.IH by metis
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    55
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    56
  case (IfFalse b s c2)
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
    57
  hence "max (sec b) l \<turnstile> c2" by auto
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
    58
  hence "l \<turnstile> c2" by (metis max.cobounded2 anti_mono)
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
    59
  thus ?case using IfFalse.IH by metis
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    60
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    61
  case WhileFalse thus ?case by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    62
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    63
  case (WhileTrue b s1 c)
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
    64
  hence "max (sec b) l \<turnstile> c" by auto
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
    65
  hence "l \<turnstile> c" by (metis max.cobounded2 anti_mono)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    66
  thus ?case using WhileTrue by metis
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    67
qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    68
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    69
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    70
theorem noninterference:
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    71
  "\<lbrakk> (c,s) \<Rightarrow> s'; (c,t) \<Rightarrow> t';  0 \<turnstile> c;  s = t (\<le> l) \<rbrakk>
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    72
   \<Longrightarrow> s' = t' (\<le> l)"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
    73
proof(induction arbitrary: t t' rule: big_step_induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    74
  case Skip thus ?case by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    75
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    76
  case (Assign x a s)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    77
  have [simp]: "t' = t(x := aval a t)" using Assign by auto
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    78
  have "sec x >= sec a" using \<open>0 \<turnstile> x ::= a\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    79
  show ?case
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    80
  proof auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    81
    assume "sec x \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    82
    with \<open>sec x >= sec a\<close> have "sec a \<le> l" by arith
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    83
    thus "aval a s = aval a t"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    84
      by (rule aval_eq_if_eq_le[OF \<open>s = t (\<le> l)\<close>])
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    85
  next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    86
    fix y assume "y \<noteq> x" "sec y \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    87
    thus "s y = t y" using \<open>s = t (\<le> l)\<close> by simp
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    88
  qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    89
next
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
    90
  case Seq thus ?case by blast
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    91
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    92
  case (IfTrue b s c1 s' c2)
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    93
  have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using \<open>0 \<turnstile> IF b THEN c1 ELSE c2\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    94
  show ?case
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
    95
  proof cases
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
    96
    assume "sec b \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    97
    hence "s = t (\<le> sec b)" using \<open>s = t (\<le> l)\<close> by auto
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    98
    hence "bval b t" using \<open>bval b s\<close> by(simp add: bval_eq_if_eq_le)
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
    99
    with IfTrue.IH IfTrue.prems(1,3) \<open>sec b \<turnstile> c1\<close>  anti_mono
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   100
    show ?thesis by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   101
  next
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   102
    assume "\<not> sec b \<le> l"
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   103
    have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   104
      by(rule sec_type.intros)(simp_all add: \<open>sec b \<turnstile> c1\<close> \<open>sec b \<turnstile> c2\<close>)
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   105
    from confinement[OF \<open>(c1, s) \<Rightarrow> s'\<close> \<open>sec b \<turnstile> c1\<close>] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   106
    have "s = s' (\<le> l)" by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   107
    moreover
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   108
    from confinement[OF \<open>(IF b THEN c1 ELSE c2, t) \<Rightarrow> t'\<close> 1] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   109
    have "t = t' (\<le> l)" by auto
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   110
    ultimately show "s' = t' (\<le> l)" using \<open>s = t (\<le> l)\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   111
  qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   112
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   113
  case (IfFalse b s c2 s' c1)
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   114
  have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using \<open>0 \<turnstile> IF b THEN c1 ELSE c2\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   115
  show ?case
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   116
  proof cases
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   117
    assume "sec b \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   118
    hence "s = t (\<le> sec b)" using \<open>s = t (\<le> l)\<close> by auto
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   119
    hence "\<not> bval b t" using \<open>\<not> bval b s\<close> by(simp add: bval_eq_if_eq_le)
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   120
    with IfFalse.IH IfFalse.prems(1,3) \<open>sec b \<turnstile> c2\<close> anti_mono
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   121
    show ?thesis by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   122
  next
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   123
    assume "\<not> sec b \<le> l"
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   124
    have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   125
      by(rule sec_type.intros)(simp_all add: \<open>sec b \<turnstile> c1\<close> \<open>sec b \<turnstile> c2\<close>)
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   126
    from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   127
    have "s = s' (\<le> l)" by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   128
    moreover
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   129
    from confinement[OF \<open>(IF b THEN c1 ELSE c2, t) \<Rightarrow> t'\<close> 1] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   130
    have "t = t' (\<le> l)" by auto
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   131
    ultimately show "s' = t' (\<le> l)" using \<open>s = t (\<le> l)\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   132
  qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   133
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   134
  case (WhileFalse b s c)
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   135
  have "sec b \<turnstile> c" using WhileFalse.prems(2) by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   136
  show ?case
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   137
  proof cases
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   138
    assume "sec b \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   139
    hence "s = t (\<le> sec b)" using \<open>s = t (\<le> l)\<close> by auto
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   140
    hence "\<not> bval b t" using \<open>\<not> bval b s\<close> by(simp add: bval_eq_if_eq_le)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   141
    with WhileFalse.prems(1,3) show ?thesis by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   142
  next
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   143
    assume "\<not> sec b \<le> l"
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   144
    have 1: "sec b \<turnstile> WHILE b DO c"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   145
      by(rule sec_type.intros)(simp_all add: \<open>sec b \<turnstile> c\<close>)
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   146
    from confinement[OF \<open>(WHILE b DO c, t) \<Rightarrow> t'\<close> 1] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   147
    have "t = t' (\<le> l)" by auto
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   148
    thus "s = t' (\<le> l)" using \<open>s = t (\<le> l)\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   149
  qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   150
next
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   151
  case (WhileTrue b s1 c s2 s3 t1 t3)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   152
  let ?w = "WHILE b DO c"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   153
  have "sec b \<turnstile> c" using \<open>0 \<turnstile> WHILE b DO c\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   154
  show ?case
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   155
  proof cases
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   156
    assume "sec b \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   157
    hence "s1 = t1 (\<le> sec b)" using \<open>s1 = t1 (\<le> l)\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   158
    hence "bval b t1"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   159
      using \<open>bval b s1\<close> by(simp add: bval_eq_if_eq_le)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   160
    then obtain t2 where "(c,t1) \<Rightarrow> t2" "(?w,t2) \<Rightarrow> t3"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   161
      using \<open>(?w,t1) \<Rightarrow> t3\<close> by auto
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   162
    from WhileTrue.IH(2)[OF \<open>(?w,t2) \<Rightarrow> t3\<close> \<open>0 \<turnstile> ?w\<close>
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   163
      WhileTrue.IH(1)[OF \<open>(c,t1) \<Rightarrow> t2\<close> anti_mono[OF \<open>sec b \<turnstile> c\<close>]
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   164
        \<open>s1 = t1 (\<le> l)\<close>]]
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   165
    show ?thesis by simp
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   166
  next
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   167
    assume "\<not> sec b \<le> l"
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   168
    have 1: "sec b \<turnstile> ?w" by(rule sec_type.intros)(simp_all add: \<open>sec b \<turnstile> c\<close>)
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   169
    from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   170
    have "s1 = s3 (\<le> l)" by auto
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   171
    moreover
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   172
    from confinement[OF \<open>(WHILE b DO c, t1) \<Rightarrow> t3\<close> 1] \<open>\<not> sec b \<le> l\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   173
    have "t1 = t3 (\<le> l)" by auto
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   174
    ultimately show "s3 = t3 (\<le> l)" using \<open>s1 = t1 (\<le> l)\<close> by auto
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   175
  qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   176
qed
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   177
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   178
68776
403dd13cf6e9 avoid session qualification because no tex is generated when used;
nipkow
parents: 67406
diff changeset
   179
subsubsection "The Standard Typing System"
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   180
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 68776
diff changeset
   181
text\<open>The predicate \<^prop>\<open>l \<turnstile> c\<close> is nicely intuitive and executable. The
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   182
standard formulation, however, is slightly different, replacing the maximum
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   183
computation by an antimonotonicity rule. We introduce the standard system now
67406
23307fd33906 isabelle update_cartouches -c;
wenzelm
parents: 54864
diff changeset
   184
and show the equivalence with our formulation.\<close>
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   185
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   186
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   187
Skip':
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   188
  "l \<turnstile>' SKIP" |
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   189
Assign':
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   190
  "\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" |
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
   191
Seq':
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
   192
  "\<lbrakk> l \<turnstile>' c\<^sub>1;  l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' c\<^sub>1;;c\<^sub>2" |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   193
If':
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
   194
  "\<lbrakk> sec b \<le> l;  l \<turnstile>' c\<^sub>1;  l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^sub>1 ELSE c\<^sub>2" |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   195
While':
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   196
  "\<lbrakk> sec b \<le> l;  l \<turnstile>' c \<rbrakk> \<Longrightarrow> l \<turnstile>' WHILE b DO c" |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   197
anti_mono':
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   198
  "\<lbrakk> l \<turnstile>' c;  l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c"
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   199
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   200
lemma sec_type_sec_type': "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
   201
apply(induction rule: sec_type.induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   202
apply (metis Skip')
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   203
apply (metis Assign')
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
   204
apply (metis Seq')
54864
a064732223ad abolished slightly odd global lattice interpretation for min/max
haftmann
parents: 54863
diff changeset
   205
apply (metis max.commute max.absorb_iff2 nat_le_linear If' anti_mono')
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
   206
by (metis less_or_eq_imp_le max.absorb1 max.absorb2 nat_le_linear While' anti_mono')
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   207
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   208
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   209
lemma sec_type'_sec_type: "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
   210
apply(induction rule: sec_type'.induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   211
apply (metis Skip)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   212
apply (metis Assign)
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
   213
apply (metis Seq)
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
   214
apply (metis max.absorb2 If)
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
   215
apply (metis max.absorb2 While)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   216
by (metis anti_mono)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   217
68776
403dd13cf6e9 avoid session qualification because no tex is generated when used;
nipkow
parents: 67406
diff changeset
   218
subsubsection "A Bottom-Up Typing System"
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   219
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   220
inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   221
Skip2:
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   222
  "\<turnstile> SKIP : l" |
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   223
Assign2:
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   224
  "sec x \<ge> sec a \<Longrightarrow> \<turnstile> x ::= a : sec x" |
47818
151d137f1095 renamed Semi to Seq
nipkow
parents: 45823
diff changeset
   225
Seq2:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
   226
  "\<lbrakk> \<turnstile> c\<^sub>1 : l\<^sub>1;  \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^sub>1;;c\<^sub>2 : min l\<^sub>1 l\<^sub>2 " |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   227
If2:
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
   228
  "\<lbrakk> sec b \<le> min l\<^sub>1 l\<^sub>2;  \<turnstile> c\<^sub>1 : l\<^sub>1;  \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk>
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52382
diff changeset
   229
  \<Longrightarrow> \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2 : min l\<^sub>1 l\<^sub>2" |
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   230
While2:
50342
e77b0dbcae5b tuned defs of sec_xyz
nipkow
parents: 47818
diff changeset
   231
  "\<lbrakk> sec b \<le> l;  \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l"
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   232
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   233
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   234
lemma sec_type2_sec_type': "\<turnstile> c : l \<Longrightarrow> l \<turnstile>' c"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
   235
apply(induction rule: sec_type2.induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   236
apply (metis Skip')
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   237
apply (metis Assign' eq_imp_le)
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
   238
apply (metis Seq' anti_mono' min.cobounded1 min.cobounded2)
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
   239
apply (metis If' anti_mono' min.absorb2 min.absorb_iff1 nat_le_linear)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   240
by (metis While')
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   241
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   242
lemma sec_type'_sec_type2: "l \<turnstile>' c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'"
45015
fdac1e9880eb Updated IMP to use new induction method
nipkow
parents: 43158
diff changeset
   243
apply(induction rule: sec_type'.induct)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   244
apply (metis Skip2 le_refl)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   245
apply (metis Assign2)
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 53015
diff changeset
   246
apply (metis Seq2 min.boundedI)
43158
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   247
apply (metis If2 inf_greatest inf_nat_def le_trans)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   248
apply (metis While2 le_trans)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   249
by (metis le_trans)
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   250
686fa0a0696e imported rest of new IMP
kleing
parents:
diff changeset
   251
end