| 
75411
 | 
     1  | 
(*  Title:      HOL/Library/Complemented_Lattices.thy
  | 
| 
 | 
     2  | 
    Authors:    Jose Manuel Rodriguez Caballero, Dominique Unruh
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
section \<open>Complemented Lattices\<close>
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Complemented_Lattices
  | 
| 
 | 
     8  | 
  imports Main
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
text \<open>The following class \<open>complemented_lattice\<close> describes complemented lattices (with
  | 
| 
 | 
    12  | 
  \<^const>\<open>uminus\<close> for the complement). The definition follows
  | 
| 
 | 
    13  | 
  \<^url>\<open>https://en.wikipedia.org/wiki/Complemented_lattice#Definition_and_basic_properties\<close>.
  | 
| 
 | 
    14  | 
  Additionally, it adopts the convention from \<^class>\<open>boolean_algebra\<close> of defining
  | 
| 
 | 
    15  | 
  \<^const>\<open>minus\<close> in terms of the complement.\<close>
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
class complemented_lattice = bounded_lattice + uminus + minus
  | 
| 
 | 
    18  | 
  opening lattice_syntax +
  | 
| 
 | 
    19  | 
  assumes inf_compl_bot [simp]: \<open>x \<sqinter> - x = \<bottom>\<close>
  | 
| 
 | 
    20  | 
    and sup_compl_top [simp]: \<open>x \<squnion> - x = \<top>\<close>
  | 
| 
 | 
    21  | 
    and diff_eq: \<open>x - y = x \<sqinter> - y\<close>
  | 
| 
 | 
    22  | 
begin
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma dual_complemented_lattice:
  | 
| 
 | 
    25  | 
  "class.complemented_lattice (\<lambda>x y. x \<squnion> (- y)) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
  | 
| 
 | 
    26  | 
proof (rule class.complemented_lattice.intro)
  | 
| 
 | 
    27  | 
  show "class.bounded_lattice (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
  | 
| 
 | 
    28  | 
    by (rule dual_bounded_lattice)
  | 
| 
 | 
    29  | 
  show "class.complemented_lattice_axioms (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<sqinter>) \<top> \<bottom>"
  | 
| 
 | 
    30  | 
    by (unfold_locales, auto simp add: diff_eq)
  | 
| 
 | 
    31  | 
qed
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma compl_inf_bot [simp]: \<open>- x \<sqinter> x = \<bottom>\<close>
  | 
| 
 | 
    34  | 
  by (simp add: inf_commute)
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
lemma compl_sup_top [simp]: \<open>- x \<squnion> x = \<top>\<close>
  | 
| 
 | 
    37  | 
  by (simp add: sup_commute)
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
end
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
class complete_complemented_lattice = complemented_lattice + complete_lattice
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
text \<open>The following class \<open>complemented_lattice\<close> describes orthocomplemented lattices,
  | 
| 
 | 
    44  | 
  following   \<^url>\<open>https://en.wikipedia.org/wiki/Complemented_lattice#Orthocomplementation\<close>.\<close>
  | 
| 
 | 
    45  | 
class orthocomplemented_lattice = complemented_lattice
  | 
| 
 | 
    46  | 
  opening lattice_syntax +
  | 
| 
 | 
    47  | 
  assumes ortho_involution [simp]: "- (- x) = x"
  | 
| 
 | 
    48  | 
    and ortho_antimono: "x \<le> y \<Longrightarrow> - x \<ge> - y" begin
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
lemma dual_orthocomplemented_lattice:
  | 
| 
 | 
    51  | 
  "class.orthocomplemented_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
  | 
| 
 | 
    52  | 
proof (rule class.orthocomplemented_lattice.intro)
  | 
| 
 | 
    53  | 
  show "class.complemented_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
  | 
| 
 | 
    54  | 
    by (rule dual_complemented_lattice)
  | 
| 
 | 
    55  | 
  show "class.orthocomplemented_lattice_axioms uminus (\<lambda>x y. y \<le> x)"
  | 
| 
 | 
    56  | 
    by (unfold_locales, auto simp add: diff_eq intro: ortho_antimono)
  | 
| 
 | 
    57  | 
qed
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma compl_eq_compl_iff [simp]: \<open>- x = - y \<longleftrightarrow> x = y\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
  | 
| 
 | 
    60  | 
proof
  | 
| 
 | 
    61  | 
  assume ?P
  | 
| 
 | 
    62  | 
  then have \<open>- (- x) = - (- y)\<close>
  | 
| 
 | 
    63  | 
    by simp
  | 
| 
 | 
    64  | 
  then show ?Q
  | 
| 
 | 
    65  | 
    by simp
  | 
| 
 | 
    66  | 
next
  | 
| 
 | 
    67  | 
  assume ?Q
  | 
| 
 | 
    68  | 
  then show ?P
  | 
| 
 | 
    69  | 
    by simp
  | 
| 
 | 
    70  | 
qed
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma compl_bot_eq [simp]: \<open>- \<bottom> = \<top>\<close>
  | 
| 
 | 
    73  | 
proof -
  | 
| 
 | 
    74  | 
  have \<open>- \<bottom> = - (\<top> \<sqinter> - \<top>)\<close>
  | 
| 
 | 
    75  | 
    by simp
  | 
| 
 | 
    76  | 
  also have \<open>\<dots> = \<top>\<close>
  | 
| 
 | 
    77  | 
    by (simp only: inf_top_left) simp
  | 
| 
 | 
    78  | 
  finally show ?thesis .
  | 
| 
 | 
    79  | 
qed
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
lemma compl_top_eq [simp]: "- \<top> = \<bottom>"
  | 
| 
 | 
    82  | 
  using compl_bot_eq ortho_involution by blast
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
text \<open>De Morgan's law\<close> \<comment> \<open>Proof from \<^url>\<open>https://planetmath.org/orthocomplementedlattice\<close>\<close>
  | 
| 
 | 
    85  | 
lemma compl_sup [simp]: "- (x \<squnion> y) = - x \<sqinter> - y"
  | 
| 
 | 
    86  | 
proof -
  | 
| 
 | 
    87  | 
  have "- (x \<squnion> y) \<le> - x"
  | 
| 
 | 
    88  | 
    by (simp add: ortho_antimono)
  | 
| 
 | 
    89  | 
  moreover have "- (x \<squnion> y) \<le> - y"
  | 
| 
 | 
    90  | 
    by (simp add: ortho_antimono)
  | 
| 
 | 
    91  | 
  ultimately have 1: "- (x \<squnion> y) \<le> - x \<sqinter> - y"
  | 
| 
 | 
    92  | 
    by (simp add: sup.coboundedI1)
  | 
| 
 | 
    93  | 
  have \<open>x \<le> - (-x \<sqinter> -y)\<close>
  | 
| 
 | 
    94  | 
    by (metis inf.cobounded1 ortho_antimono ortho_involution)
  | 
| 
 | 
    95  | 
  moreover have \<open>y \<le> - (-x \<sqinter> -y)\<close>
  | 
| 
 | 
    96  | 
    by (metis inf.cobounded2 ortho_antimono ortho_involution)
  | 
| 
 | 
    97  | 
  ultimately have \<open>x \<squnion> y \<le> - (-x \<sqinter> -y)\<close>
  | 
| 
 | 
    98  | 
    by auto
  | 
| 
 | 
    99  | 
  hence 2: \<open>-x \<sqinter> -y \<le> - (x \<squnion> y)\<close>
  | 
| 
 | 
   100  | 
    using ortho_antimono by fastforce
  | 
| 
 | 
   101  | 
  from 1 2 show ?thesis
  | 
| 
 | 
   102  | 
    using dual_order.antisym by blast
  | 
| 
 | 
   103  | 
qed
  | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
text \<open>De Morgan's law\<close>
  | 
| 
 | 
   106  | 
lemma compl_inf [simp]: "- (x \<sqinter> y) = - x \<squnion> - y"
  | 
| 
 | 
   107  | 
  using compl_sup
  | 
| 
 | 
   108  | 
  by (metis ortho_involution)
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma compl_mono:
  | 
| 
 | 
   111  | 
  assumes "x \<le> y"
  | 
| 
 | 
   112  | 
  shows "- y \<le> - x"
  | 
| 
 | 
   113  | 
  by (simp add: assms local.ortho_antimono)
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
lemma compl_le_compl_iff [simp]: "- x \<le> - y \<longleftrightarrow> y \<le> x"
  | 
| 
 | 
   116  | 
  by (auto dest: compl_mono)
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
lemma compl_le_swap1:
  | 
| 
 | 
   119  | 
  assumes "y \<le> - x"
  | 
| 
 | 
   120  | 
  shows "x \<le> -y"
  | 
| 
 | 
   121  | 
  using assms ortho_antimono by fastforce
  | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
lemma compl_le_swap2:
  | 
| 
 | 
   124  | 
  assumes "- y \<le> x"
  | 
| 
 | 
   125  | 
  shows "- x \<le> y"
  | 
| 
 | 
   126  | 
  using assms local.ortho_antimono by fastforce
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
lemma compl_less_compl_iff[simp]: "- x < - y \<longleftrightarrow> y < x"
  | 
| 
 | 
   129  | 
  by (auto simp add: less_le)
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
lemma compl_less_swap1:
  | 
| 
 | 
   132  | 
  assumes "y < - x"
  | 
| 
 | 
   133  | 
  shows "x < - y"
  | 
| 
 | 
   134  | 
  using assms compl_less_compl_iff by fastforce
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
lemma compl_less_swap2:
  | 
| 
 | 
   137  | 
  assumes "- y < x"
  | 
| 
 | 
   138  | 
  shows "- x < y"
  | 
| 
 | 
   139  | 
  using assms compl_le_swap1 compl_le_swap2 less_le_not_le by auto
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
lemma sup_cancel_left1: \<open>x \<squnion> a \<squnion> (- x \<squnion> b) = \<top>\<close>
  | 
| 
 | 
   142  | 
  by (simp add: sup_commute sup_left_commute)
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
lemma sup_cancel_left2: \<open>- x \<squnion> a \<squnion> (x \<squnion> b) = \<top>\<close>
  | 
| 
 | 
   145  | 
  by (simp add: sup.commute sup_left_commute)
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
lemma inf_cancel_left1: \<open>x \<sqinter> a \<sqinter> (- x \<sqinter> b) = \<bottom>\<close>
  | 
| 
 | 
   148  | 
  by (simp add: inf.left_commute inf_commute)
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
lemma inf_cancel_left2: \<open>- x \<sqinter> a \<sqinter> (x \<sqinter> b) = \<bottom>\<close>
  | 
| 
 | 
   151  | 
  using inf.left_commute inf_commute by auto
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
lemma sup_compl_top_left1 [simp]: \<open>- x \<squnion> (x \<squnion> y) = \<top>\<close>
  | 
| 
 | 
   154  | 
  by (simp add: sup_assoc[symmetric])
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
lemma sup_compl_top_left2 [simp]: \<open>x \<squnion> (- x \<squnion> y) = \<top>\<close>
  | 
| 
 | 
   157  | 
  using sup_compl_top_left1[of "- x" y] by simp
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma inf_compl_bot_left1 [simp]: \<open>- x \<sqinter> (x \<sqinter> y) = \<bottom>\<close>
  | 
| 
 | 
   160  | 
  by (simp add: inf_assoc[symmetric])
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
lemma inf_compl_bot_left2 [simp]: \<open>x \<sqinter> (- x \<sqinter> y) = \<bottom>\<close>
  | 
| 
 | 
   163  | 
  using inf_compl_bot_left1[of "- x" y] by simp
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
lemma inf_compl_bot_right [simp]: \<open>x \<sqinter> (y \<sqinter> - x) = \<bottom>\<close>
  | 
| 
 | 
   166  | 
  by (subst inf_left_commute) simp
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
end
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
class complete_orthocomplemented_lattice = orthocomplemented_lattice + complete_lattice
  | 
| 
 | 
   171  | 
begin
  | 
| 
 | 
   172  | 
  | 
| 
 | 
   173  | 
subclass complete_complemented_lattice ..
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
end
  | 
| 
 | 
   176  | 
  | 
| 
 | 
   177  | 
text \<open>The following class \<open>orthomodular_lattice\<close> describes orthomodular lattices,
  | 
| 
 | 
   178  | 
following   \<^url>\<open>https://en.wikipedia.org/wiki/Complemented_lattice#Orthomodular_lattices\<close>.\<close>
  | 
| 
 | 
   179  | 
class orthomodular_lattice = orthocomplemented_lattice
  | 
| 
 | 
   180  | 
  opening lattice_syntax +
  | 
| 
 | 
   181  | 
  assumes orthomodular: "x \<le> y \<Longrightarrow> x \<squnion> (- x) \<sqinter> y = y" begin
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
lemma dual_orthomodular_lattice:
  | 
| 
 | 
   184  | 
  "class.orthomodular_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>)  \<top> \<bottom>"
  | 
| 
 | 
   185  | 
proof (rule class.orthomodular_lattice.intro)
  | 
| 
 | 
   186  | 
  show "class.orthocomplemented_lattice (\<lambda>x y. x \<squnion> - y) uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<lambda>x y. y < x) (\<sqinter>) \<top> \<bottom>"
  | 
| 
 | 
   187  | 
    by (rule dual_orthocomplemented_lattice)
  | 
| 
 | 
   188  | 
  show "class.orthomodular_lattice_axioms uminus (\<squnion>) (\<lambda>x y. y \<le> x) (\<sqinter>)"
  | 
| 
 | 
   189  | 
  proof (unfold_locales)
  | 
| 
 | 
   190  | 
    show "(x::'a) \<sqinter> (- x \<squnion> y) = y"
  | 
| 
 | 
   191  | 
      if "(y::'a) \<le> x"
  | 
| 
 | 
   192  | 
      for x :: 'a
  | 
| 
 | 
   193  | 
        and y :: 'a
  | 
| 
 | 
   194  | 
      using that local.compl_eq_compl_iff local.ortho_antimono local.orthomodular by fastforce
  | 
| 
 | 
   195  | 
  qed
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
qed
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
end
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
class complete_orthomodular_lattice = orthomodular_lattice + complete_lattice
  | 
| 
 | 
   202  | 
begin
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
subclass complete_orthocomplemented_lattice ..
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
end
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
context boolean_algebra
  | 
| 
 | 
   209  | 
  opening lattice_syntax
  | 
| 
 | 
   210  | 
begin
  | 
| 
 | 
   211  | 
  | 
| 
 | 
   212  | 
subclass orthomodular_lattice
  | 
| 
 | 
   213  | 
proof
  | 
| 
 | 
   214  | 
  fix x y
  | 
| 
 | 
   215  | 
  show \<open>x \<squnion> - x \<sqinter> y = y\<close>
  | 
| 
 | 
   216  | 
    if \<open>x \<le> y\<close>
  | 
| 
 | 
   217  | 
    using that
  | 
| 
 | 
   218  | 
    by (simp add: sup.absorb_iff2 sup_inf_distrib1)
  | 
| 
 | 
   219  | 
  show \<open>x - y = x \<sqinter> - y\<close>
  | 
| 
 | 
   220  | 
    by (simp add: diff_eq)
  | 
| 
 | 
   221  | 
qed auto
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
end
  | 
| 
 | 
   224  | 
  | 
| 
 | 
   225  | 
context complete_boolean_algebra
  | 
| 
 | 
   226  | 
begin
  | 
| 
 | 
   227  | 
  | 
| 
 | 
   228  | 
subclass complete_orthomodular_lattice ..
  | 
| 
 | 
   229  | 
  | 
| 
 | 
   230  | 
end
  | 
| 
 | 
   231  | 
  | 
| 
 | 
   232  | 
lemma image_of_maximum:
  | 
| 
 | 
   233  | 
  fixes f::"'a::order \<Rightarrow> 'b::conditionally_complete_lattice"
  | 
| 
 | 
   234  | 
  assumes "mono f"
  | 
| 
 | 
   235  | 
    and "\<And>x. x:M \<Longrightarrow> x\<le>m"
  | 
| 
 | 
   236  | 
    and "m:M"
  | 
| 
 | 
   237  | 
  shows "(SUP x\<in>M. f x) = f m"
  | 
| 
 | 
   238  | 
  by (smt (verit, ccfv_threshold) assms(1) assms(2) assms(3) cSup_eq_maximum imageE imageI monoD)
  | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
lemma cSup_eq_cSup:
  | 
| 
 | 
   241  | 
  fixes A B :: \<open>'a::conditionally_complete_lattice set\<close>
  | 
| 
 | 
   242  | 
  assumes bdd: \<open>bdd_above A\<close>
  | 
| 
 | 
   243  | 
  assumes B: \<open>\<And>a. a\<in>A \<Longrightarrow> \<exists>b\<in>B. b \<ge> a\<close>
  | 
| 
 | 
   244  | 
  assumes A: \<open>\<And>b. b\<in>B \<Longrightarrow> \<exists>a\<in>A. a \<ge> b\<close>
  | 
| 
 | 
   245  | 
  shows \<open>Sup A = Sup B\<close>
  | 
| 
 | 
   246  | 
proof (cases \<open>B = {}\<close>)
 | 
| 
 | 
   247  | 
  case True
  | 
| 
 | 
   248  | 
  with A B have \<open>A = {}\<close>
 | 
| 
 | 
   249  | 
    by auto
  | 
| 
 | 
   250  | 
  with True show ?thesis by simp
  | 
| 
 | 
   251  | 
next
  | 
| 
 | 
   252  | 
  case False
  | 
| 
 | 
   253  | 
  have \<open>bdd_above B\<close>
  | 
| 
 | 
   254  | 
    by (meson A bdd bdd_above_def order_trans)
  | 
| 
 | 
   255  | 
  have \<open>A \<noteq> {}\<close>
 | 
| 
 | 
   256  | 
    using A False by blast
  | 
| 
 | 
   257  | 
  moreover have \<open>a \<le> Sup B\<close> if \<open>a \<in> A\<close> for a
  | 
| 
 | 
   258  | 
  proof -
  | 
| 
 | 
   259  | 
    obtain b where \<open>b \<in> B\<close> and \<open>b \<ge> a\<close>
  | 
| 
 | 
   260  | 
      using B \<open>a \<in> A\<close> by auto
  | 
| 
 | 
   261  | 
    then show ?thesis
  | 
| 
 | 
   262  | 
      apply (rule cSup_upper2)
  | 
| 
 | 
   263  | 
      using \<open>bdd_above B\<close> by simp
  | 
| 
 | 
   264  | 
  qed
  | 
| 
 | 
   265  | 
  moreover have \<open>Sup B \<le> c\<close> if \<open>\<And>a. a \<in> A \<Longrightarrow> a \<le> c\<close> for c
  | 
| 
 | 
   266  | 
    using False apply (rule cSup_least)
  | 
| 
 | 
   267  | 
    using A that by fastforce
  | 
| 
 | 
   268  | 
  ultimately show ?thesis
  | 
| 
 | 
   269  | 
    by (rule cSup_eq_non_empty)
  | 
| 
 | 
   270  | 
qed
  | 
| 
 | 
   271  | 
  | 
| 
 | 
   272  | 
end
  |