| author | haftmann | 
| Thu, 27 Mar 2008 19:04:38 +0100 | |
| changeset 26444 | 6a5faa5bcf19 | 
| parent 26420 | 57a626f64875 | 
| child 26806 | 40b411ec05aa | 
| permissions | -rw-r--r-- | 
| 25904 | 1 | (* Title: HOLCF/UpperPD.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Brian Huffman | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Upper powerdomain *}
 | |
| 7 | ||
| 8 | theory UpperPD | |
| 9 | imports CompactBasis | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Basis preorder *}
 | |
| 13 | ||
| 14 | definition | |
| 15 | upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 16 | "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)" | 
| 25904 | 17 | |
| 18 | lemma upper_le_refl [simp]: "t \<le>\<sharp> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 19 | unfolding upper_le_def by fast | 
| 25904 | 20 | |
| 21 | lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v" | |
| 22 | unfolding upper_le_def | |
| 23 | apply (rule ballI) | |
| 24 | apply (drule (1) bspec, erule bexE) | |
| 25 | apply (drule (1) bspec, erule bexE) | |
| 26 | apply (erule rev_bexI) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 27 | apply (erule (1) trans_less) | 
| 25904 | 28 | done | 
| 29 | ||
| 30 | interpretation upper_le: preorder [upper_le] | |
| 31 | by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans) | |
| 32 | ||
| 33 | lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t" | |
| 34 | unfolding upper_le_def Rep_PDUnit by simp | |
| 35 | ||
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 36 | lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y" | 
| 25904 | 37 | unfolding upper_le_def Rep_PDUnit by simp | 
| 38 | ||
| 39 | lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v" | |
| 40 | unfolding upper_le_def Rep_PDPlus by fast | |
| 41 | ||
| 42 | lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 43 | unfolding upper_le_def Rep_PDPlus by fast | 
| 25904 | 44 | |
| 45 | lemma upper_le_PDUnit_PDUnit_iff [simp]: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 46 | "(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b" | 
| 25904 | 47 | unfolding upper_le_def Rep_PDUnit by fast | 
| 48 | ||
| 49 | lemma upper_le_PDPlus_PDUnit_iff: | |
| 50 | "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)" | |
| 51 | unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast | |
| 52 | ||
| 53 | lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)" | |
| 54 | unfolding upper_le_def Rep_PDPlus by fast | |
| 55 | ||
| 56 | lemma upper_le_induct [induct set: upper_le]: | |
| 57 | assumes le: "t \<le>\<sharp> u" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 58 | assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" | 
| 25904 | 59 | assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)" | 
| 60 | assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)" | |
| 61 | shows "P t u" | |
| 62 | using le apply (induct u arbitrary: t rule: pd_basis_induct) | |
| 63 | apply (erule rev_mp) | |
| 64 | apply (induct_tac t rule: pd_basis_induct) | |
| 65 | apply (simp add: 1) | |
| 66 | apply (simp add: upper_le_PDPlus_PDUnit_iff) | |
| 67 | apply (simp add: 2) | |
| 68 | apply (subst PDPlus_commute) | |
| 69 | apply (simp add: 2) | |
| 70 | apply (simp add: upper_le_PDPlus_iff 3) | |
| 71 | done | |
| 72 | ||
| 73 | lemma approx_pd_upper_mono1: | |
| 74 | "i \<le> j \<Longrightarrow> approx_pd i t \<le>\<sharp> approx_pd j t" | |
| 75 | apply (induct t rule: pd_basis_induct) | |
| 76 | apply (simp add: compact_approx_mono1) | |
| 77 | apply (simp add: PDPlus_upper_mono) | |
| 78 | done | |
| 79 | ||
| 80 | lemma approx_pd_upper_le: "approx_pd i t \<le>\<sharp> t" | |
| 81 | apply (induct t rule: pd_basis_induct) | |
| 82 | apply (simp add: compact_approx_le) | |
| 83 | apply (simp add: PDPlus_upper_mono) | |
| 84 | done | |
| 85 | ||
| 86 | lemma approx_pd_upper_mono: | |
| 87 | "t \<le>\<sharp> u \<Longrightarrow> approx_pd n t \<le>\<sharp> approx_pd n u" | |
| 88 | apply (erule upper_le_induct) | |
| 89 | apply (simp add: compact_approx_mono) | |
| 90 | apply (simp add: upper_le_PDPlus_PDUnit_iff) | |
| 91 | apply (simp add: upper_le_PDPlus_iff) | |
| 92 | done | |
| 93 | ||
| 94 | ||
| 95 | subsection {* Type definition *}
 | |
| 96 | ||
| 97 | cpodef (open) 'a upper_pd = | |
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 98 |   "{S::'a::profinite pd_basis set. upper_le.ideal S}"
 | 
| 25904 | 99 | apply (simp add: upper_le.adm_ideal) | 
| 100 | apply (fast intro: upper_le.ideal_principal) | |
| 101 | done | |
| 102 | ||
| 103 | lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd x)" | |
| 104 | by (rule Rep_upper_pd [simplified]) | |
| 105 | ||
| 106 | definition | |
| 107 | upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where | |
| 108 |   "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
 | |
| 109 | ||
| 110 | lemma Rep_upper_principal: | |
| 111 |   "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
 | |
| 112 | unfolding upper_principal_def | |
| 113 | apply (rule Abs_upper_pd_inverse [simplified]) | |
| 114 | apply (rule upper_le.ideal_principal) | |
| 115 | done | |
| 116 | ||
| 117 | interpretation upper_pd: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 118 | bifinite_basis [upper_le approx_pd upper_principal Rep_upper_pd] | 
| 25904 | 119 | apply unfold_locales | 
| 120 | apply (rule approx_pd_upper_le) | |
| 121 | apply (rule approx_pd_idem) | |
| 122 | apply (erule approx_pd_upper_mono) | |
| 123 | apply (rule approx_pd_upper_mono1, simp) | |
| 124 | apply (rule finite_range_approx_pd) | |
| 125 | apply (rule ex_approx_pd_eq) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 126 | apply (rule ideal_Rep_upper_pd) | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 127 | apply (rule cont_Rep_upper_pd) | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 128 | apply (rule Rep_upper_principal) | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 129 | apply (simp only: less_upper_pd_def less_set_def) | 
| 25904 | 130 | done | 
| 131 | ||
| 132 | lemma upper_principal_less_iff [simp]: | |
| 133 | "(upper_principal t \<sqsubseteq> upper_principal u) = (t \<le>\<sharp> u)" | |
| 134 | unfolding less_upper_pd_def Rep_upper_principal less_set_def | |
| 135 | by (fast intro: upper_le_refl elim: upper_le_trans) | |
| 136 | ||
| 137 | lemma upper_principal_mono: | |
| 138 | "t \<le>\<sharp> u \<Longrightarrow> upper_principal t \<sqsubseteq> upper_principal u" | |
| 139 | by (rule upper_pd.principal_mono) | |
| 140 | ||
| 141 | lemma compact_upper_principal: "compact (upper_principal t)" | |
| 142 | by (rule upper_pd.compact_principal) | |
| 143 | ||
| 144 | lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys" | |
| 145 | by (induct ys rule: upper_pd.principal_induct, simp, simp) | |
| 146 | ||
| 147 | instance upper_pd :: (bifinite) pcpo | |
| 148 | by (intro_classes, fast intro: upper_pd_minimal) | |
| 149 | ||
| 150 | lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)" | |
| 151 | by (rule upper_pd_minimal [THEN UU_I, symmetric]) | |
| 152 | ||
| 153 | ||
| 154 | subsection {* Approximation *}
 | |
| 155 | ||
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 156 | instance upper_pd :: (profinite) approx .. | 
| 25904 | 157 | |
| 158 | defs (overloaded) | |
| 159 | approx_upper_pd_def: | |
| 160 | "approx \<equiv> (\<lambda>n. upper_pd.basis_fun (\<lambda>t. upper_principal (approx_pd n t)))" | |
| 161 | ||
| 162 | lemma approx_upper_principal [simp]: | |
| 163 | "approx n\<cdot>(upper_principal t) = upper_principal (approx_pd n t)" | |
| 164 | unfolding approx_upper_pd_def | |
| 165 | apply (rule upper_pd.basis_fun_principal) | |
| 166 | apply (erule upper_principal_mono [OF approx_pd_upper_mono]) | |
| 167 | done | |
| 168 | ||
| 169 | lemma chain_approx_upper_pd: | |
| 170 | "chain (approx :: nat \<Rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd)" | |
| 171 | unfolding approx_upper_pd_def | |
| 172 | by (rule upper_pd.chain_basis_fun_take) | |
| 173 | ||
| 174 | lemma lub_approx_upper_pd: | |
| 175 | "(\<Squnion>i. approx i\<cdot>xs) = (xs::'a upper_pd)" | |
| 176 | unfolding approx_upper_pd_def | |
| 177 | by (rule upper_pd.lub_basis_fun_take) | |
| 178 | ||
| 179 | lemma approx_upper_pd_idem: | |
| 180 | "approx n\<cdot>(approx n\<cdot>xs) = approx n\<cdot>(xs::'a upper_pd)" | |
| 181 | apply (induct xs rule: upper_pd.principal_induct, simp) | |
| 182 | apply (simp add: approx_pd_idem) | |
| 183 | done | |
| 184 | ||
| 185 | lemma approx_eq_upper_principal: | |
| 186 | "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (approx_pd n t)" | |
| 187 | unfolding approx_upper_pd_def | |
| 188 | by (rule upper_pd.basis_fun_take_eq_principal) | |
| 189 | ||
| 190 | lemma finite_fixes_approx_upper_pd: | |
| 191 |   "finite {xs::'a upper_pd. approx n\<cdot>xs = xs}"
 | |
| 192 | unfolding approx_upper_pd_def | |
| 193 | by (rule upper_pd.finite_fixes_basis_fun_take) | |
| 194 | ||
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 195 | instance upper_pd :: (profinite) profinite | 
| 25904 | 196 | apply intro_classes | 
| 197 | apply (simp add: chain_approx_upper_pd) | |
| 198 | apply (rule lub_approx_upper_pd) | |
| 199 | apply (rule approx_upper_pd_idem) | |
| 200 | apply (rule finite_fixes_approx_upper_pd) | |
| 201 | done | |
| 202 | ||
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 203 | instance upper_pd :: (bifinite) bifinite .. | 
| 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 204 | |
| 25904 | 205 | lemma compact_imp_upper_principal: | 
| 206 | "compact xs \<Longrightarrow> \<exists>t. xs = upper_principal t" | |
| 207 | apply (drule bifinite_compact_eq_approx) | |
| 208 | apply (erule exE) | |
| 209 | apply (erule subst) | |
| 210 | apply (cut_tac n=i and xs=xs in approx_eq_upper_principal) | |
| 211 | apply fast | |
| 212 | done | |
| 213 | ||
| 214 | lemma upper_principal_induct: | |
| 215 | "\<lbrakk>adm P; \<And>t. P (upper_principal t)\<rbrakk> \<Longrightarrow> P xs" | |
| 216 | apply (erule approx_induct, rename_tac xs) | |
| 217 | apply (cut_tac n=n and xs=xs in approx_eq_upper_principal) | |
| 218 | apply (clarify, simp) | |
| 219 | done | |
| 220 | ||
| 221 | lemma upper_principal_induct2: | |
| 222 | "\<lbrakk>\<And>ys. adm (\<lambda>xs. P xs ys); \<And>xs. adm (\<lambda>ys. P xs ys); | |
| 223 | \<And>t u. P (upper_principal t) (upper_principal u)\<rbrakk> \<Longrightarrow> P xs ys" | |
| 224 | apply (rule_tac x=ys in spec) | |
| 225 | apply (rule_tac xs=xs in upper_principal_induct, simp) | |
| 226 | apply (rule allI, rename_tac ys) | |
| 227 | apply (rule_tac xs=ys in upper_principal_induct, simp) | |
| 228 | apply simp | |
| 229 | done | |
| 230 | ||
| 231 | ||
| 232 | subsection {* Monadic unit *}
 | |
| 233 | ||
| 234 | definition | |
| 235 | upper_unit :: "'a \<rightarrow> 'a upper_pd" where | |
| 236 | "upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))" | |
| 237 | ||
| 238 | lemma upper_unit_Rep_compact_basis [simp]: | |
| 239 | "upper_unit\<cdot>(Rep_compact_basis a) = upper_principal (PDUnit a)" | |
| 240 | unfolding upper_unit_def | |
| 241 | apply (rule compact_basis.basis_fun_principal) | |
| 242 | apply (rule upper_principal_mono) | |
| 243 | apply (erule PDUnit_upper_mono) | |
| 244 | done | |
| 245 | ||
| 246 | lemma upper_unit_strict [simp]: "upper_unit\<cdot>\<bottom> = \<bottom>" | |
| 247 | unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp | |
| 248 | ||
| 249 | lemma approx_upper_unit [simp]: | |
| 250 | "approx n\<cdot>(upper_unit\<cdot>x) = upper_unit\<cdot>(approx n\<cdot>x)" | |
| 251 | apply (induct x rule: compact_basis_induct, simp) | |
| 252 | apply (simp add: approx_Rep_compact_basis) | |
| 253 | done | |
| 254 | ||
| 255 | lemma upper_unit_less_iff [simp]: | |
| 256 | "(upper_unit\<cdot>x \<sqsubseteq> upper_unit\<cdot>y) = (x \<sqsubseteq> y)" | |
| 257 | apply (rule iffI) | |
| 258 | apply (rule bifinite_less_ext) | |
| 259 | apply (drule_tac f="approx i" in monofun_cfun_arg, simp) | |
| 260 | apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp) | |
| 261 | apply (cut_tac x="approx i\<cdot>y" in compact_imp_Rep_compact_basis, simp) | |
| 262 | apply (clarify, simp add: compact_le_def) | |
| 263 | apply (erule monofun_cfun_arg) | |
| 264 | done | |
| 265 | ||
| 266 | lemma upper_unit_eq_iff [simp]: | |
| 267 | "(upper_unit\<cdot>x = upper_unit\<cdot>y) = (x = y)" | |
| 268 | unfolding po_eq_conv by simp | |
| 269 | ||
| 270 | lemma upper_unit_strict_iff [simp]: "(upper_unit\<cdot>x = \<bottom>) = (x = \<bottom>)" | |
| 271 | unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff) | |
| 272 | ||
| 273 | lemma compact_upper_unit_iff [simp]: | |
| 274 | "compact (upper_unit\<cdot>x) = compact x" | |
| 275 | unfolding bifinite_compact_iff by simp | |
| 276 | ||
| 277 | ||
| 278 | subsection {* Monadic plus *}
 | |
| 279 | ||
| 280 | definition | |
| 281 | upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where | |
| 282 | "upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u. | |
| 283 | upper_principal (PDPlus t u)))" | |
| 284 | ||
| 285 | abbreviation | |
| 286 | upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd" | |
| 287 | (infixl "+\<sharp>" 65) where | |
| 288 | "xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys" | |
| 289 | ||
| 290 | lemma upper_plus_principal [simp]: | |
| 291 | "upper_plus\<cdot>(upper_principal t)\<cdot>(upper_principal u) = | |
| 292 | upper_principal (PDPlus t u)" | |
| 293 | unfolding upper_plus_def | |
| 294 | by (simp add: upper_pd.basis_fun_principal | |
| 295 | upper_pd.basis_fun_mono PDPlus_upper_mono) | |
| 296 | ||
| 297 | lemma approx_upper_plus [simp]: | |
| 298 | "approx n\<cdot>(upper_plus\<cdot>xs\<cdot>ys) = upper_plus\<cdot>(approx n\<cdot>xs)\<cdot>(approx n\<cdot>ys)" | |
| 299 | by (induct xs ys rule: upper_principal_induct2, simp, simp, simp) | |
| 300 | ||
| 301 | lemma upper_plus_commute: "upper_plus\<cdot>xs\<cdot>ys = upper_plus\<cdot>ys\<cdot>xs" | |
| 302 | apply (induct xs ys rule: upper_principal_induct2, simp, simp) | |
| 303 | apply (simp add: PDPlus_commute) | |
| 304 | done | |
| 305 | ||
| 306 | lemma upper_plus_assoc: | |
| 307 | "upper_plus\<cdot>(upper_plus\<cdot>xs\<cdot>ys)\<cdot>zs = upper_plus\<cdot>xs\<cdot>(upper_plus\<cdot>ys\<cdot>zs)" | |
| 308 | apply (induct xs ys arbitrary: zs rule: upper_principal_induct2, simp, simp) | |
| 309 | apply (rule_tac xs=zs in upper_principal_induct, simp) | |
| 310 | apply (simp add: PDPlus_assoc) | |
| 311 | done | |
| 312 | ||
| 313 | lemma upper_plus_absorb: "upper_plus\<cdot>xs\<cdot>xs = xs" | |
| 314 | apply (induct xs rule: upper_principal_induct, simp) | |
| 315 | apply (simp add: PDPlus_absorb) | |
| 316 | done | |
| 317 | ||
| 318 | lemma upper_plus_less1: "upper_plus\<cdot>xs\<cdot>ys \<sqsubseteq> xs" | |
| 319 | apply (induct xs ys rule: upper_principal_induct2, simp, simp) | |
| 320 | apply (simp add: PDPlus_upper_less) | |
| 321 | done | |
| 322 | ||
| 323 | lemma upper_plus_less2: "upper_plus\<cdot>xs\<cdot>ys \<sqsubseteq> ys" | |
| 324 | by (subst upper_plus_commute, rule upper_plus_less1) | |
| 325 | ||
| 326 | lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> upper_plus\<cdot>ys\<cdot>zs" | |
| 327 | apply (subst upper_plus_absorb [of xs, symmetric]) | |
| 328 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | |
| 329 | done | |
| 330 | ||
| 331 | lemma upper_less_plus_iff: | |
| 332 | "(xs \<sqsubseteq> upper_plus\<cdot>ys\<cdot>zs) = (xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs)" | |
| 333 | apply safe | |
| 334 | apply (erule trans_less [OF _ upper_plus_less1]) | |
| 335 | apply (erule trans_less [OF _ upper_plus_less2]) | |
| 336 | apply (erule (1) upper_plus_greatest) | |
| 337 | done | |
| 338 | ||
| 339 | lemma upper_plus_strict1 [simp]: "upper_plus\<cdot>\<bottom>\<cdot>ys = \<bottom>" | |
| 340 | by (rule UU_I, rule upper_plus_less1) | |
| 341 | ||
| 342 | lemma upper_plus_strict2 [simp]: "upper_plus\<cdot>xs\<cdot>\<bottom> = \<bottom>" | |
| 343 | by (rule UU_I, rule upper_plus_less2) | |
| 344 | ||
| 345 | lemma upper_plus_less_unit_iff: | |
| 346 | "(upper_plus\<cdot>xs\<cdot>ys \<sqsubseteq> upper_unit\<cdot>z) = | |
| 347 | (xs \<sqsubseteq> upper_unit\<cdot>z \<or> ys \<sqsubseteq> upper_unit\<cdot>z)" | |
| 348 | apply (rule iffI) | |
| 349 | apply (subgoal_tac | |
| 350 | "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>(upper_unit\<cdot>z) \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>(upper_unit\<cdot>z))") | |
| 25925 | 351 | apply (drule admD, rule chain_approx) | 
| 25904 | 352 | apply (drule_tac f="approx i" in monofun_cfun_arg) | 
| 353 | apply (cut_tac xs="approx i\<cdot>xs" in compact_imp_upper_principal, simp) | |
| 354 | apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_upper_principal, simp) | |
| 355 | apply (cut_tac x="approx i\<cdot>z" in compact_imp_Rep_compact_basis, simp) | |
| 356 | apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff) | |
| 357 | apply simp | |
| 358 | apply simp | |
| 359 | apply (erule disjE) | |
| 360 | apply (erule trans_less [OF upper_plus_less1]) | |
| 361 | apply (erule trans_less [OF upper_plus_less2]) | |
| 362 | done | |
| 363 | ||
| 364 | lemmas upper_pd_less_simps = | |
| 365 | upper_unit_less_iff | |
| 366 | upper_less_plus_iff | |
| 367 | upper_plus_less_unit_iff | |
| 368 | ||
| 369 | ||
| 370 | subsection {* Induction rules *}
 | |
| 371 | ||
| 372 | lemma upper_pd_induct1: | |
| 373 | assumes P: "adm P" | |
| 374 | assumes unit: "\<And>x. P (upper_unit\<cdot>x)" | |
| 375 | assumes insert: | |
| 376 | "\<And>x ys. \<lbrakk>P (upper_unit\<cdot>x); P ys\<rbrakk> \<Longrightarrow> P (upper_plus\<cdot>(upper_unit\<cdot>x)\<cdot>ys)" | |
| 377 | shows "P (xs::'a upper_pd)" | |
| 378 | apply (induct xs rule: upper_principal_induct, rule P) | |
| 379 | apply (induct_tac t rule: pd_basis_induct1) | |
| 380 | apply (simp only: upper_unit_Rep_compact_basis [symmetric]) | |
| 381 | apply (rule unit) | |
| 382 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] | |
| 383 | upper_plus_principal [symmetric]) | |
| 384 | apply (erule insert [OF unit]) | |
| 385 | done | |
| 386 | ||
| 387 | lemma upper_pd_induct: | |
| 388 | assumes P: "adm P" | |
| 389 | assumes unit: "\<And>x. P (upper_unit\<cdot>x)" | |
| 390 | assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (upper_plus\<cdot>xs\<cdot>ys)" | |
| 391 | shows "P (xs::'a upper_pd)" | |
| 392 | apply (induct xs rule: upper_principal_induct, rule P) | |
| 393 | apply (induct_tac t rule: pd_basis_induct) | |
| 394 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit) | |
| 395 | apply (simp only: upper_plus_principal [symmetric] plus) | |
| 396 | done | |
| 397 | ||
| 398 | ||
| 399 | subsection {* Monadic bind *}
 | |
| 400 | ||
| 401 | definition | |
| 402 | upper_bind_basis :: | |
| 403 |   "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
 | |
| 404 | "upper_bind_basis = fold_pd | |
| 405 | (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) | |
| 406 | (\<lambda>x y. \<Lambda> f. upper_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))" | |
| 407 | ||
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 408 | lemma ACI_upper_bind: "ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. upper_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))" | 
| 25904 | 409 | apply unfold_locales | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 410 | apply (simp add: upper_plus_assoc) | 
| 25904 | 411 | apply (simp add: upper_plus_commute) | 
| 412 | apply (simp add: upper_plus_absorb eta_cfun) | |
| 413 | done | |
| 414 | ||
| 415 | lemma upper_bind_basis_simps [simp]: | |
| 416 | "upper_bind_basis (PDUnit a) = | |
| 417 | (\<Lambda> f. f\<cdot>(Rep_compact_basis a))" | |
| 418 | "upper_bind_basis (PDPlus t u) = | |
| 419 | (\<Lambda> f. upper_plus\<cdot>(upper_bind_basis t\<cdot>f)\<cdot>(upper_bind_basis u\<cdot>f))" | |
| 420 | unfolding upper_bind_basis_def | |
| 421 | apply - | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 422 | apply (rule ab_semigroup_idem_mult.fold_pd_PDUnit [OF ACI_upper_bind]) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 423 | apply (rule ab_semigroup_idem_mult.fold_pd_PDPlus [OF ACI_upper_bind]) | 
| 25904 | 424 | done | 
| 425 | ||
| 426 | lemma upper_bind_basis_mono: | |
| 427 | "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u" | |
| 428 | unfolding expand_cfun_less | |
| 429 | apply (erule upper_le_induct, safe) | |
| 430 | apply (simp add: compact_le_def monofun_cfun) | |
| 431 | apply (simp add: trans_less [OF upper_plus_less1]) | |
| 432 | apply (simp add: upper_less_plus_iff) | |
| 433 | done | |
| 434 | ||
| 435 | definition | |
| 436 |   upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
 | |
| 437 | "upper_bind = upper_pd.basis_fun upper_bind_basis" | |
| 438 | ||
| 439 | lemma upper_bind_principal [simp]: | |
| 440 | "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t" | |
| 441 | unfolding upper_bind_def | |
| 442 | apply (rule upper_pd.basis_fun_principal) | |
| 443 | apply (erule upper_bind_basis_mono) | |
| 444 | done | |
| 445 | ||
| 446 | lemma upper_bind_unit [simp]: | |
| 447 | "upper_bind\<cdot>(upper_unit\<cdot>x)\<cdot>f = f\<cdot>x" | |
| 448 | by (induct x rule: compact_basis_induct, simp, simp) | |
| 449 | ||
| 450 | lemma upper_bind_plus [simp]: | |
| 451 | "upper_bind\<cdot>(upper_plus\<cdot>xs\<cdot>ys)\<cdot>f = | |
| 452 | upper_plus\<cdot>(upper_bind\<cdot>xs\<cdot>f)\<cdot>(upper_bind\<cdot>ys\<cdot>f)" | |
| 453 | by (induct xs ys rule: upper_principal_induct2, simp, simp, simp) | |
| 454 | ||
| 455 | lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" | |
| 456 | unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit) | |
| 457 | ||
| 458 | ||
| 459 | subsection {* Map and join *}
 | |
| 460 | ||
| 461 | definition | |
| 462 |   upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
 | |
| 463 | "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. upper_unit\<cdot>(f\<cdot>x)))" | |
| 464 | ||
| 465 | definition | |
| 466 | upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where | |
| 467 | "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" | |
| 468 | ||
| 469 | lemma upper_map_unit [simp]: | |
| 470 | "upper_map\<cdot>f\<cdot>(upper_unit\<cdot>x) = upper_unit\<cdot>(f\<cdot>x)" | |
| 471 | unfolding upper_map_def by simp | |
| 472 | ||
| 473 | lemma upper_map_plus [simp]: | |
| 474 | "upper_map\<cdot>f\<cdot>(upper_plus\<cdot>xs\<cdot>ys) = | |
| 475 | upper_plus\<cdot>(upper_map\<cdot>f\<cdot>xs)\<cdot>(upper_map\<cdot>f\<cdot>ys)" | |
| 476 | unfolding upper_map_def by simp | |
| 477 | ||
| 478 | lemma upper_join_unit [simp]: | |
| 479 | "upper_join\<cdot>(upper_unit\<cdot>xs) = xs" | |
| 480 | unfolding upper_join_def by simp | |
| 481 | ||
| 482 | lemma upper_join_plus [simp]: | |
| 483 | "upper_join\<cdot>(upper_plus\<cdot>xss\<cdot>yss) = | |
| 484 | upper_plus\<cdot>(upper_join\<cdot>xss)\<cdot>(upper_join\<cdot>yss)" | |
| 485 | unfolding upper_join_def by simp | |
| 486 | ||
| 487 | lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" | |
| 488 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 489 | ||
| 490 | lemma upper_map_map: | |
| 491 | "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" | |
| 492 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 493 | ||
| 494 | lemma upper_join_map_unit: | |
| 495 | "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs" | |
| 496 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 497 | ||
| 498 | lemma upper_join_map_join: | |
| 499 | "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)" | |
| 500 | by (induct xsss rule: upper_pd_induct, simp_all) | |
| 501 | ||
| 502 | lemma upper_join_map_map: | |
| 503 | "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) = | |
| 504 | upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)" | |
| 505 | by (induct xss rule: upper_pd_induct, simp_all) | |
| 506 | ||
| 507 | lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" | |
| 508 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 509 | ||
| 510 | end |