| author | hoelzl | 
| Tue, 05 Nov 2013 09:44:59 +0100 | |
| changeset 54260 | 6a967667fd45 | 
| parent 53628 | 15405540288e | 
| child 54775 | 2d3df8633dad | 
| permissions | -rw-r--r-- | 
| 53572 | 1 | (* Author: John Harrison | 
| 2 | Author: Robert Himmelmann, TU Muenchen (translation from HOL light) | |
| 3 | *) | |
| 36432 | 4 | |
| 53572 | 5 | header {* Fashoda meet theorem *}
 | 
| 36432 | 6 | |
| 7 | theory Fashoda | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 8 | imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space | 
| 36432 | 9 | begin | 
| 10 | ||
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 11 | (* move *) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 12 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 13 | lemma cart_eq_inner_axis: "a $ i = a \<bullet> axis i 1" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 14 | by (simp add: inner_axis) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 15 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 16 | lemma axis_in_Basis: "a \<in> Basis \<Longrightarrow> axis i a \<in> Basis" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 17 | by (auto simp add: Basis_vec_def axis_eq_axis) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 18 | |
| 53572 | 19 | |
| 20 | subsection {* Fashoda meet theorem *}
 | |
| 36432 | 21 | |
| 53572 | 22 | lemma infnorm_2: | 
| 23 | fixes x :: "real^2" | |
| 24 | shows "infnorm x = max (abs (x$1)) (abs (x$2))" | |
| 25 | unfolding infnorm_cart UNIV_2 by (rule cSup_eq) auto | |
| 36432 | 26 | |
| 53572 | 27 | lemma infnorm_eq_1_2: | 
| 28 | fixes x :: "real^2" | |
| 29 | shows "infnorm x = 1 \<longleftrightarrow> | |
| 30 | abs (x$1) \<le> 1 \<and> abs (x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1)" | |
| 36432 | 31 | unfolding infnorm_2 by auto | 
| 32 | ||
| 53572 | 33 | lemma infnorm_eq_1_imp: | 
| 34 | fixes x :: "real^2" | |
| 35 | assumes "infnorm x = 1" | |
| 36 | shows "abs (x$1) \<le> 1" and "abs (x$2) \<le> 1" | |
| 36432 | 37 | using assms unfolding infnorm_eq_1_2 by auto | 
| 38 | ||
| 53572 | 39 | lemma fashoda_unit: | 
| 40 | fixes f g :: "real \<Rightarrow> real^2" | |
| 41 |   assumes "f ` {- 1..1} \<subseteq> {- 1..1}"
 | |
| 42 |     and "g ` {- 1..1} \<subseteq> {- 1..1}"
 | |
| 43 |     and "continuous_on {- 1..1} f"
 | |
| 44 |     and "continuous_on {- 1..1} g"
 | |
| 45 | and "f (- 1)$1 = - 1" | |
| 46 | and "f 1$1 = 1" "g (- 1) $2 = -1" | |
| 47 | and "g 1 $2 = 1" | |
| 48 |   shows "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. f s = g t"
 | |
| 49 | proof (rule ccontr) | |
| 50 | assume "\<not> ?thesis" | |
| 51 | note as = this[unfolded bex_simps,rule_format] | |
| 36432 | 52 | def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z" | 
| 53572 | 53 | def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2" | 
| 54 | have lem1: "\<forall>z::real^2. infnorm (negatex z) = infnorm z" | |
| 36432 | 55 | unfolding negatex_def infnorm_2 vector_2 by auto | 
| 53572 | 56 | have lem2: "\<forall>z. z \<noteq> 0 \<longrightarrow> infnorm (sqprojection z) = 1" | 
| 57 | unfolding sqprojection_def | |
| 58 | unfolding infnorm_mul[unfolded scalar_mult_eq_scaleR] | |
| 59 | unfolding abs_inverse real_abs_infnorm | |
| 53628 | 60 | apply (subst infnorm_eq_0[symmetric]) | 
| 53572 | 61 | apply auto | 
| 62 | done | |
| 63 | let ?F = "\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w" | |
| 64 |   have *: "\<And>i. (\<lambda>x::real^2. x $ i) ` {- 1..1} = {- 1..1::real}"
 | |
| 65 | apply (rule set_eqI) | |
| 66 | unfolding image_iff Bex_def mem_interval_cart | |
| 67 | apply rule | |
| 68 | defer | |
| 69 | apply (rule_tac x="vec x" in exI) | |
| 70 | apply auto | |
| 71 | done | |
| 72 |   {
 | |
| 73 | fix x | |
| 74 |     assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` {- 1..1::real^2}"
 | |
| 36432 | 75 | then guess w unfolding image_iff .. note w = this | 
| 53572 | 76 | then have "x \<noteq> 0" | 
| 77 | using as[of "w$1" "w$2"] | |
| 78 | unfolding mem_interval_cart | |
| 79 | by auto | |
| 80 | } note x0 = this | |
| 81 | have 21: "\<And>i::2. i \<noteq> 1 \<Longrightarrow> i = 2" | |
| 82 | using UNIV_2 by auto | |
| 83 |   have 1: "{- 1<..<1::real^2} \<noteq> {}"
 | |
| 84 | unfolding interval_eq_empty_cart by auto | |
| 85 |   have 2: "continuous_on {- 1..1} (negatex \<circ> sqprojection \<circ> ?F)"
 | |
| 86 | apply (intro continuous_on_intros continuous_on_component) | |
| 87 | unfolding * | |
| 88 | apply (rule assms)+ | |
| 89 | apply (subst sqprojection_def) | |
| 90 | apply (intro continuous_on_intros) | |
| 91 | apply (simp add: infnorm_eq_0 x0) | |
| 92 | apply (rule linear_continuous_on) | |
| 93 | proof - | |
| 94 | show "bounded_linear negatex" | |
| 95 | apply (rule bounded_linearI') | |
| 96 | unfolding vec_eq_iff | |
| 97 | proof (rule_tac[!] allI) | |
| 98 | fix i :: 2 | |
| 99 | fix x y :: "real^2" | |
| 100 | fix c :: real | |
| 101 | show "negatex (x + y) $ i = | |
| 102 | (negatex x + negatex y) $ i" "negatex (c *\<^sub>R x) $ i = (c *\<^sub>R negatex x) $ i" | |
| 103 | apply - | |
| 104 | apply (case_tac[!] "i\<noteq>1") | |
| 105 | prefer 3 | |
| 106 | apply (drule_tac[1-2] 21) | |
| 107 | unfolding negatex_def | |
| 108 | apply (auto simp add:vector_2) | |
| 109 | done | |
| 110 | qed | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 111 | qed | 
| 53572 | 112 |   have 3: "(negatex \<circ> sqprojection \<circ> ?F) ` {- 1..1} \<subseteq> {- 1..1}"
 | 
| 113 | unfolding subset_eq | |
| 114 | apply rule | |
| 115 | proof - | |
| 116 | case goal1 | |
| 117 | then guess y unfolding image_iff .. note y=this | |
| 118 | have "?F y \<noteq> 0" | |
| 119 | apply (rule x0) | |
| 120 | using y(1) | |
| 121 | apply auto | |
| 122 | done | |
| 123 | then have *: "infnorm (sqprojection (?F y)) = 1" | |
| 53628 | 124 | unfolding y o_def | 
| 125 | by - (rule lem2[rule_format]) | |
| 53572 | 126 | have "infnorm x = 1" | 
| 53628 | 127 | unfolding *[symmetric] y o_def | 
| 128 | by (rule lem1[rule_format]) | |
| 53572 | 129 |     then show "x \<in> {- 1..1}"
 | 
| 130 | unfolding mem_interval_cart infnorm_2 | |
| 131 | apply - | |
| 132 | apply rule | |
| 133 | proof - | |
| 134 | case goal1 | |
| 135 | then show ?case | |
| 136 | apply (cases "i = 1") | |
| 137 | defer | |
| 138 | apply (drule 21) | |
| 139 | apply auto | |
| 140 | done | |
| 141 | qed | |
| 142 | qed | |
| 143 | guess x | |
| 144 |     apply (rule brouwer_weak[of "{- 1..1::real^2}" "negatex \<circ> sqprojection \<circ> ?F"])
 | |
| 145 | apply (rule compact_interval convex_interval)+ unfolding interior_closed_interval | |
| 146 | apply (rule 1 2 3)+ | |
| 147 | done | |
| 148 | note x=this | |
| 149 | have "?F x \<noteq> 0" | |
| 150 | apply (rule x0) | |
| 151 | using x(1) | |
| 152 | apply auto | |
| 153 | done | |
| 154 | then have *: "infnorm (sqprojection (?F x)) = 1" | |
| 53628 | 155 | unfolding o_def | 
| 156 | by (rule lem2[rule_format]) | |
| 53572 | 157 | have nx: "infnorm x = 1" | 
| 53628 | 158 | apply (subst x(2)[symmetric]) | 
| 159 | unfolding *[symmetric] o_def | |
| 53572 | 160 | apply (rule lem1[rule_format]) | 
| 161 | done | |
| 162 | have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)" | |
| 163 | and "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)" | |
| 164 | apply - | |
| 165 | apply (rule_tac[!] allI impI)+ | |
| 166 | proof - | |
| 167 | fix x :: "real^2" | |
| 168 | fix i :: 2 | |
| 169 | assume x: "x \<noteq> 0" | |
| 170 | have "inverse (infnorm x) > 0" | |
| 53628 | 171 | using x[unfolded infnorm_pos_lt[symmetric]] by auto | 
| 53572 | 172 | then show "(0 < sqprojection x $ i) = (0 < x $ i)" | 
| 173 | and "(sqprojection x $ i < 0) = (x $ i < 0)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44136diff
changeset | 174 | unfolding sqprojection_def vector_component_simps vector_scaleR_component real_scaleR_def | 
| 53572 | 175 | unfolding zero_less_mult_iff mult_less_0_iff | 
| 176 | by (auto simp add: field_simps) | |
| 177 | qed | |
| 36432 | 178 | note lem3 = this[rule_format] | 
| 53572 | 179 |   have x1: "x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}"
 | 
| 180 | using x(1) unfolding mem_interval_cart by auto | |
| 181 | then have nz: "f (x $ 1) - g (x $ 2) \<noteq> 0" | |
| 182 | unfolding right_minus_eq | |
| 183 | apply - | |
| 184 | apply (rule as) | |
| 185 | apply auto | |
| 186 | done | |
| 187 | have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" | |
| 188 | using nx unfolding infnorm_eq_1_2 by auto | |
| 189 | then show False | |
| 190 | proof - | |
| 191 | fix P Q R S | |
| 192 | presume "P \<or> Q \<or> R \<or> S" | |
| 193 | and "P \<Longrightarrow> False" | |
| 194 | and "Q \<Longrightarrow> False" | |
| 195 | and "R \<Longrightarrow> False" | |
| 196 | and "S \<Longrightarrow> False" | |
| 197 | then show False by auto | |
| 198 | next | |
| 199 | assume as: "x$1 = 1" | |
| 200 | then have *: "f (x $ 1) $ 1 = 1" | |
| 201 | using assms(6) by auto | |
| 36432 | 202 | have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 203 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 53572 | 204 | unfolding as negatex_def vector_2 | 
| 205 | by auto | |
| 206 | moreover | |
| 207 |     from x1 have "g (x $ 2) \<in> {- 1..1}"
 | |
| 208 | apply - | |
| 209 | apply (rule assms(2)[unfolded subset_eq,rule_format]) | |
| 210 | apply auto | |
| 211 | done | |
| 212 | ultimately show False | |
| 213 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 214 | apply (erule_tac x=1 in allE) | |
| 215 | apply auto | |
| 216 | done | |
| 217 | next | |
| 218 | assume as: "x$1 = -1" | |
| 219 | then have *: "f (x $ 1) $ 1 = - 1" | |
| 220 | using assms(5) by auto | |
| 36432 | 221 | have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 222 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 53572 | 223 | unfolding as negatex_def vector_2 | 
| 224 | by auto | |
| 225 | moreover | |
| 226 |     from x1 have "g (x $ 2) \<in> {- 1..1}"
 | |
| 227 | apply - | |
| 228 | apply (rule assms(2)[unfolded subset_eq,rule_format]) | |
| 229 | apply auto | |
| 230 | done | |
| 231 | ultimately show False | |
| 232 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 233 | apply (erule_tac x=1 in allE) | |
| 234 | apply auto | |
| 235 | done | |
| 236 | next | |
| 237 | assume as: "x$2 = 1" | |
| 238 | then have *: "g (x $ 2) $ 2 = 1" | |
| 239 | using assms(8) by auto | |
| 36432 | 240 | have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 241 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] | 
| 53572 | 242 | unfolding as negatex_def vector_2 | 
| 243 | by auto | |
| 244 | moreover | |
| 245 |     from x1 have "f (x $ 1) \<in> {- 1..1}"
 | |
| 246 | apply - | |
| 247 | apply (rule assms(1)[unfolded subset_eq,rule_format]) | |
| 248 | apply auto | |
| 249 | done | |
| 250 | ultimately show False | |
| 251 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 252 | apply (erule_tac x=2 in allE) | |
| 253 | apply auto | |
| 254 | done | |
| 255 | next | |
| 256 | assume as: "x$2 = -1" | |
| 257 | then have *: "g (x $ 2) $ 2 = - 1" | |
| 258 | using assms(7) by auto | |
| 36432 | 259 | have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 260 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] | 
| 53572 | 261 | unfolding as negatex_def vector_2 | 
| 262 | by auto | |
| 263 | moreover | |
| 264 |     from x1 have "f (x $ 1) \<in> {- 1..1}"
 | |
| 265 | apply - | |
| 266 | apply (rule assms(1)[unfolded subset_eq,rule_format]) | |
| 267 | apply auto | |
| 268 | done | |
| 269 | ultimately show False | |
| 270 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 271 | apply (erule_tac x=2 in allE) | |
| 272 | apply auto | |
| 273 | done | |
| 274 | qed auto | |
| 275 | qed | |
| 36432 | 276 | |
| 53572 | 277 | lemma fashoda_unit_path: | 
| 278 | fixes f g :: "real \<Rightarrow> real^2" | |
| 279 | assumes "path f" | |
| 280 | and "path g" | |
| 281 |     and "path_image f \<subseteq> {- 1..1}"
 | |
| 282 |     and "path_image g \<subseteq> {- 1..1}"
 | |
| 283 | and "(pathstart f)$1 = -1" | |
| 284 | and "(pathfinish f)$1 = 1" | |
| 285 | and "(pathstart g)$2 = -1" | |
| 286 | and "(pathfinish g)$2 = 1" | |
| 287 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 288 | proof - | |
| 36432 | 289 | note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def] | 
| 290 | def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)" | |
| 53572 | 291 |   have isc: "iscale ` {- 1..1} \<subseteq> {0..1}"
 | 
| 292 | unfolding iscale_def by auto | |
| 293 |   have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t"
 | |
| 294 | proof (rule fashoda_unit) | |
| 36432 | 295 |     show "(f \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}" "(g \<circ> iscale) ` {- 1..1} \<subseteq> {- 1..1}"
 | 
| 296 | using isc and assms(3-4) unfolding image_compose by auto | |
| 53572 | 297 |     have *: "continuous_on {- 1..1} iscale"
 | 
| 298 | unfolding iscale_def by (rule continuous_on_intros)+ | |
| 36432 | 299 |     show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
 | 
| 53572 | 300 | apply - | 
| 301 | apply (rule_tac[!] continuous_on_compose[OF *]) | |
| 302 | apply (rule_tac[!] continuous_on_subset[OF _ isc]) | |
| 303 | apply (rule assms)+ | |
| 304 | done | |
| 305 | have *: "(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" | |
| 306 | unfolding vec_eq_iff by auto | |
| 307 | show "(f \<circ> iscale) (- 1) $ 1 = - 1" | |
| 308 | and "(f \<circ> iscale) 1 $ 1 = 1" | |
| 309 | and "(g \<circ> iscale) (- 1) $ 2 = -1" | |
| 310 | and "(g \<circ> iscale) 1 $ 2 = 1" | |
| 311 | unfolding o_def iscale_def | |
| 312 | using assms | |
| 313 | by (auto simp add: *) | |
| 314 | qed | |
| 36432 | 315 | then guess s .. from this(2) guess t .. note st=this | 
| 53572 | 316 | show thesis | 
| 53628 | 317 | apply (rule_tac z = "f (iscale s)" in that) | 
| 318 |     using st `s \<in> {- 1..1}`
 | |
| 53572 | 319 | unfolding o_def path_image_def image_iff | 
| 320 | apply - | |
| 321 | apply (rule_tac x="iscale s" in bexI) | |
| 322 | prefer 3 | |
| 323 | apply (rule_tac x="iscale t" in bexI) | |
| 324 | using isc[unfolded subset_eq, rule_format] | |
| 325 | apply auto | |
| 326 | done | |
| 327 | qed | |
| 36432 | 328 | |
| 53627 | 329 | lemma fashoda: | 
| 330 | fixes b :: "real^2" | |
| 331 | assumes "path f" | |
| 332 | and "path g" | |
| 333 |     and "path_image f \<subseteq> {a..b}"
 | |
| 334 |     and "path_image g \<subseteq> {a..b}"
 | |
| 335 | and "(pathstart f)$1 = a$1" | |
| 336 | and "(pathfinish f)$1 = b$1" | |
| 337 | and "(pathstart g)$2 = a$2" | |
| 338 | and "(pathfinish g)$2 = b$2" | |
| 339 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 340 | proof - | |
| 341 | fix P Q S | |
| 342 | presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" and "Q \<Longrightarrow> thesis" and "S \<Longrightarrow> thesis" | |
| 343 | then show thesis | |
| 344 | by auto | |
| 345 | next | |
| 346 |   have "{a..b} \<noteq> {}"
 | |
| 347 | using assms(3) using path_image_nonempty by auto | |
| 348 | then have "a \<le> b" | |
| 349 | unfolding interval_eq_empty_cart less_eq_vec_def by (auto simp add: not_less) | |
| 350 | then show "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" | |
| 351 | unfolding less_eq_vec_def forall_2 by auto | |
| 352 | next | |
| 353 | assume as: "a$1 = b$1" | |
| 354 | have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" | |
| 355 | apply (rule connected_ivt_component_cart) | |
| 356 | apply (rule connected_path_image assms)+ | |
| 357 | apply (rule pathstart_in_path_image) | |
| 358 | apply (rule pathfinish_in_path_image) | |
| 36432 | 359 | unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"] | 
| 53627 | 360 | unfolding pathstart_def | 
| 361 | apply (auto simp add: less_eq_vec_def) | |
| 362 | done | |
| 363 | then guess z .. note z=this | |
| 364 |   have "z \<in> {a..b}"
 | |
| 365 | using z(1) assms(4) | |
| 366 | unfolding path_image_def | |
| 367 | by blast | |
| 368 | then have "z = f 0" | |
| 369 | unfolding vec_eq_iff forall_2 | |
| 370 | unfolding z(2) pathstart_def | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 371 | using assms(3)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "f 0" 1] | 
| 53627 | 372 | unfolding mem_interval_cart | 
| 373 | apply (erule_tac x=1 in allE) | |
| 374 | using as | |
| 375 | apply auto | |
| 376 | done | |
| 377 | then show thesis | |
| 378 | apply - | |
| 379 | apply (rule that[OF _ z(1)]) | |
| 380 | unfolding path_image_def | |
| 381 | apply auto | |
| 382 | done | |
| 383 | next | |
| 384 | assume as: "a$2 = b$2" | |
| 385 | have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" | |
| 386 | apply (rule connected_ivt_component_cart) | |
| 387 | apply (rule connected_path_image assms)+ | |
| 388 | apply (rule pathstart_in_path_image) | |
| 389 | apply (rule pathfinish_in_path_image) | |
| 390 | unfolding assms | |
| 391 | using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"] | |
| 392 | unfolding pathstart_def | |
| 393 | apply (auto simp add: less_eq_vec_def) | |
| 394 | done | |
| 395 | then guess z .. note z=this | |
| 396 |   have "z \<in> {a..b}"
 | |
| 397 | using z(1) assms(3) | |
| 398 | unfolding path_image_def | |
| 399 | by blast | |
| 400 | then have "z = g 0" | |
| 401 | unfolding vec_eq_iff forall_2 | |
| 402 | unfolding z(2) pathstart_def | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 403 | using assms(4)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "g 0" 2] | 
| 53627 | 404 | unfolding mem_interval_cart | 
| 405 | apply (erule_tac x=2 in allE) | |
| 406 | using as | |
| 407 | apply auto | |
| 408 | done | |
| 409 | then show thesis | |
| 410 | apply - | |
| 411 | apply (rule that[OF z(1)]) | |
| 412 | unfolding path_image_def | |
| 413 | apply auto | |
| 414 | done | |
| 415 | next | |
| 416 | assume as: "a $ 1 < b $ 1 \<and> a $ 2 < b $ 2" | |
| 417 |   have int_nem: "{- 1..1::real^2} \<noteq> {}"
 | |
| 418 | unfolding interval_eq_empty_cart by auto | |
| 419 | guess z | |
| 420 | apply (rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"]) | |
| 36432 | 421 | unfolding path_def path_image_def pathstart_def pathfinish_def | 
| 53627 | 422 | apply (rule_tac[1-2] continuous_on_compose) | 
| 423 | apply (rule assms[unfolded path_def] continuous_on_interval_bij)+ | |
| 424 | unfolding subset_eq | |
| 425 | apply(rule_tac[1-2] ballI) | |
| 426 | proof - | |
| 427 | fix x | |
| 428 |     assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 429 | then guess y | |
| 430 | unfolding image_iff .. note y=this | |
| 431 |     show "x \<in> {- 1..1}"
 | |
| 432 | unfolding y o_def | |
| 433 | apply (rule in_interval_interval_bij) | |
| 434 | using y(1) | |
| 435 | using assms(3)[unfolded path_image_def subset_eq] int_nem | |
| 436 | apply auto | |
| 437 | done | |
| 438 | next | |
| 439 | fix x | |
| 440 |     assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 36432 | 441 | then guess y unfolding image_iff .. note y=this | 
| 53627 | 442 |     show "x \<in> {- 1..1}"
 | 
| 443 | unfolding y o_def | |
| 444 | apply (rule in_interval_interval_bij) | |
| 445 | using y(1) | |
| 446 | using assms(4)[unfolded path_image_def subset_eq] int_nem | |
| 447 | apply auto | |
| 448 | done | |
| 449 | next | |
| 450 | show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1" | |
| 451 | and "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1" | |
| 452 | and "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1" | |
| 453 | and "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 454 | using assms as | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 455 | by (simp_all add: axis_in_Basis cart_eq_inner_axis pathstart_def pathfinish_def interval_bij_def) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 456 | (simp_all add: inner_axis) | 
| 53627 | 457 | qed | 
| 458 | note z=this | |
| 36432 | 459 | from z(1) guess zf unfolding image_iff .. note zf=this | 
| 460 | from z(2) guess zg unfolding image_iff .. note zg=this | |
| 53627 | 461 | have *: "\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" | 
| 462 | unfolding forall_2 | |
| 463 | using as | |
| 464 | by auto | |
| 465 | show thesis | |
| 466 | apply (rule_tac z="interval_bij (- 1,1) (a,b) z" in that) | |
| 467 | apply (subst zf) | |
| 468 | defer | |
| 469 | apply (subst zg) | |
| 470 | unfolding o_def interval_bij_bij_cart[OF *] path_image_def | |
| 471 | using zf(1) zg(1) | |
| 472 | apply auto | |
| 473 | done | |
| 474 | qed | |
| 36432 | 475 | |
| 53627 | 476 | |
| 477 | subsection {* Some slightly ad hoc lemmas I use below *}
 | |
| 36432 | 478 | |
| 53627 | 479 | lemma segment_vertical: | 
| 480 | fixes a :: "real^2" | |
| 481 | assumes "a$1 = b$1" | |
| 482 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 483 | x$1 = a$1 \<and> x$1 = b$1 \<and> (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2)" | |
| 484 | (is "_ = ?R") | |
| 485 | proof - | |
| 36432 | 486 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 487 |   {
 | 
| 488 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 489 | then show ?thesis | |
| 490 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 491 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 492 | by blast | 
| 493 | } | |
| 494 |   {
 | |
| 495 | assume ?L | |
| 496 | then guess u by (elim exE conjE) note u=this | |
| 497 |     { fix b a
 | |
| 498 | assume "b + u * a > a + u * b" | |
| 499 | then have "(1 - u) * b > (1 - u) * a" | |
| 500 | by (auto simp add:field_simps) | |
| 501 | then have "b \<ge> a" | |
| 502 | apply (drule_tac mult_less_imp_less_left) | |
| 503 | using u | |
| 504 | apply auto | |
| 505 | done | |
| 506 | then have "u * a \<le> u * b" | |
| 507 | apply - | |
| 508 | apply (rule mult_left_mono[OF _ u(3)]) | |
| 509 | using u(3-4) | |
| 510 | apply (auto simp add: field_simps) | |
| 511 | done | |
| 512 | } note * = this | |
| 513 |     {
 | |
| 514 | fix a b | |
| 515 | assume "u * b > u * a" | |
| 516 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 517 | apply - | |
| 518 | apply (rule mult_left_mono) | |
| 519 | apply (drule mult_less_imp_less_left) | |
| 520 | using u | |
| 521 | apply auto | |
| 522 | done | |
| 523 | then have "a + u * b \<le> b + u * a" | |
| 524 | by (auto simp add: field_simps) | |
| 525 | } note ** = this | |
| 526 | then show ?R | |
| 527 | unfolding u assms | |
| 528 | using u | |
| 529 | by (auto simp add:field_simps not_le intro: * **) | |
| 530 | } | |
| 531 |   {
 | |
| 532 | assume ?R | |
| 533 | then show ?L | |
| 534 | proof (cases "x$2 = b$2") | |
| 535 | case True | |
| 536 | then show ?L | |
| 537 | apply (rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) | |
| 538 | unfolding assms True | |
| 539 | using `?R` | |
| 540 | apply (auto simp add: field_simps) | |
| 541 | done | |
| 542 | next | |
| 543 | case False | |
| 544 | then show ?L | |
| 545 | apply (rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) | |
| 546 | unfolding assms | |
| 547 | using `?R` | |
| 548 | apply (auto simp add: field_simps) | |
| 549 | done | |
| 550 | qed | |
| 551 | } | |
| 552 | qed | |
| 36432 | 553 | |
| 53627 | 554 | lemma segment_horizontal: | 
| 555 | fixes a :: "real^2" | |
| 556 | assumes "a$2 = b$2" | |
| 557 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 558 | x$2 = a$2 \<and> x$2 = b$2 \<and> (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1)" | |
| 559 | (is "_ = ?R") | |
| 560 | proof - | |
| 36432 | 561 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 562 |   {
 | 
| 563 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 564 | then show ?thesis | |
| 565 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 566 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 567 | by blast | 
| 568 | } | |
| 569 |   {
 | |
| 570 | assume ?L | |
| 571 | then guess u by (elim exE conjE) note u=this | |
| 572 |     {
 | |
| 573 | fix b a | |
| 574 | assume "b + u * a > a + u * b" | |
| 575 | then have "(1 - u) * b > (1 - u) * a" | |
| 53628 | 576 | by (auto simp add: field_simps) | 
| 53627 | 577 | then have "b \<ge> a" | 
| 578 | apply (drule_tac mult_less_imp_less_left) | |
| 579 | using u | |
| 580 | apply auto | |
| 581 | done | |
| 582 | then have "u * a \<le> u * b" | |
| 583 | apply - | |
| 584 | apply (rule mult_left_mono[OF _ u(3)]) | |
| 585 | using u(3-4) | |
| 586 | apply (auto simp add: field_simps) | |
| 587 | done | |
| 588 | } note * = this | |
| 589 |     {
 | |
| 590 | fix a b | |
| 591 | assume "u * b > u * a" | |
| 592 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 593 | apply - | |
| 594 | apply (rule mult_left_mono) | |
| 595 | apply (drule mult_less_imp_less_left) | |
| 596 | using u | |
| 597 | apply auto | |
| 598 | done | |
| 599 | then have "a + u * b \<le> b + u * a" | |
| 600 | by (auto simp add: field_simps) | |
| 601 | } note ** = this | |
| 602 | then show ?R | |
| 603 | unfolding u assms | |
| 604 | using u | |
| 605 | by (auto simp add: field_simps not_le intro: * **) | |
| 606 | } | |
| 607 |   {
 | |
| 608 | assume ?R | |
| 609 | then show ?L | |
| 610 | proof (cases "x$1 = b$1") | |
| 611 | case True | |
| 612 | then show ?L | |
| 613 | apply (rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) | |
| 614 | unfolding assms True | |
| 615 | using `?R` | |
| 616 | apply (auto simp add: field_simps) | |
| 617 | done | |
| 618 | next | |
| 619 | case False | |
| 620 | then show ?L | |
| 621 | apply (rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) | |
| 622 | unfolding assms | |
| 623 | using `?R` | |
| 624 | apply (auto simp add: field_simps) | |
| 625 | done | |
| 626 | qed | |
| 627 | } | |
| 628 | qed | |
| 36432 | 629 | |
| 53627 | 630 | |
| 631 | subsection {* Useful Fashoda corollary pointed out to me by Tom Hales *}
 | |
| 36432 | 632 | |
| 53627 | 633 | lemma fashoda_interlace: | 
| 634 | fixes a :: "real^2" | |
| 635 | assumes "path f" | |
| 636 | and "path g" | |
| 637 |     and "path_image f \<subseteq> {a..b}"
 | |
| 638 |     and "path_image g \<subseteq> {a..b}"
 | |
| 639 | and "(pathstart f)$2 = a$2" | |
| 640 | and "(pathfinish f)$2 = a$2" | |
| 641 | and "(pathstart g)$2 = a$2" | |
| 642 | and "(pathfinish g)$2 = a$2" | |
| 643 | and "(pathstart f)$1 < (pathstart g)$1" | |
| 644 | and "(pathstart g)$1 < (pathfinish f)$1" | |
| 645 | and "(pathfinish f)$1 < (pathfinish g)$1" | |
| 646 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 647 | proof - | |
| 648 |   have "{a..b} \<noteq> {}"
 | |
| 649 | using path_image_nonempty using assms(3) by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 650 | note ab=this[unfolded interval_eq_empty_cart not_ex forall_2 not_less] | 
| 53628 | 651 |   have "pathstart f \<in> {a..b}"
 | 
| 652 |     and "pathfinish f \<in> {a..b}"
 | |
| 653 |     and "pathstart g \<in> {a..b}"
 | |
| 654 |     and "pathfinish g \<in> {a..b}"
 | |
| 655 | using pathstart_in_path_image pathfinish_in_path_image | |
| 656 | using assms(3-4) | |
| 657 | by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 658 | note startfin = this[unfolded mem_interval_cart forall_2] | 
| 36432 | 659 | let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ | 
| 660 | linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ | |
| 661 | linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ | |
| 662 | linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" | |
| 663 | let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ | |
| 664 | linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ | |
| 665 | linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ | |
| 666 | linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" | |
| 667 | let ?a = "vector[a$1 - 2, a$2 - 3]" | |
| 668 | let ?b = "vector[b$1 + 2, b$2 + 3]" | |
| 53627 | 669 | have P1P2: "path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union> | 
| 36432 | 670 | path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union> | 
| 671 | path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union> | |
| 672 | path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" | |
| 673 | "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union> | |
| 674 | path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union> | |
| 675 | path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union> | |
| 676 | path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) | |
| 677 | by(auto simp add: path_image_join path_linepath) | |
| 53627 | 678 |   have abab: "{a..b} \<subseteq> {?a..?b}"
 | 
| 679 | by (auto simp add:less_eq_vec_def forall_2 vector_2) | |
| 680 | guess z | |
| 681 | apply (rule fashoda[of ?P1 ?P2 ?a ?b]) | |
| 682 | unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 | |
| 683 | proof - | |
| 53628 | 684 | show "path ?P1" and "path ?P2" | 
| 53627 | 685 | using assms by auto | 
| 686 |     have "path_image ?P1 \<subseteq> {?a .. ?b}"
 | |
| 687 | unfolding P1P2 path_image_linepath | |
| 688 | apply (rule Un_least)+ | |
| 689 | defer 3 | |
| 690 | apply (rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) | |
| 691 | unfolding mem_interval_cart forall_2 vector_2 | |
| 692 | using ab startfin abab assms(3) | |
| 693 | using assms(9-) | |
| 694 | unfolding assms | |
| 695 | apply (auto simp add: field_simps) | |
| 696 | done | |
| 53628 | 697 |     then show "path_image ?P1 \<subseteq> {?a .. ?b}" .
 | 
| 53627 | 698 |     have "path_image ?P2 \<subseteq> {?a .. ?b}"
 | 
| 699 | unfolding P1P2 path_image_linepath | |
| 700 | apply (rule Un_least)+ | |
| 701 | defer 2 | |
| 702 | apply (rule_tac[1-4] convex_interval(1)[unfolded convex_contains_segment,rule_format]) | |
| 703 | unfolding mem_interval_cart forall_2 vector_2 | |
| 704 | using ab startfin abab assms(4) | |
| 705 | using assms(9-) | |
| 706 | unfolding assms | |
| 707 | apply (auto simp add: field_simps) | |
| 708 | done | |
| 53628 | 709 |     then show "path_image ?P2 \<subseteq> {?a .. ?b}" .
 | 
| 53627 | 710 | show "a $ 1 - 2 = a $ 1 - 2" | 
| 711 | and "b $ 1 + 2 = b $ 1 + 2" | |
| 712 | and "pathstart g $ 2 - 3 = a $ 2 - 3" | |
| 713 | and "b $ 2 + 3 = b $ 2 + 3" | |
| 714 | by (auto simp add: assms) | |
| 53628 | 715 | qed | 
| 716 | note z=this[unfolded P1P2 path_image_linepath] | |
| 53627 | 717 | show thesis | 
| 718 | apply (rule that[of z]) | |
| 719 | proof - | |
| 36432 | 720 | have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or> | 
| 53627 | 721 | z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or> | 
| 722 | z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or> | |
| 723 | z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow> | |
| 724 | (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or> | |
| 725 | z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or> | |
| 726 | z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or> | |
| 727 | z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False" | |
| 728 | apply (simp only: segment_vertical segment_horizontal vector_2) | |
| 729 | proof - | |
| 730 | case goal1 note as=this | |
| 731 |       have "pathfinish f \<in> {a..b}"
 | |
| 732 | using assms(3) pathfinish_in_path_image[of f] by auto | |
| 53628 | 733 | then have "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" | 
| 53627 | 734 | unfolding mem_interval_cart forall_2 by auto | 
| 735 | then have "z$1 \<noteq> pathfinish f$1" | |
| 53628 | 736 | using as(2) | 
| 737 | using assms ab | |
| 738 | by (auto simp add: field_simps) | |
| 53627 | 739 |       moreover have "pathstart f \<in> {a..b}"
 | 
| 53628 | 740 | using assms(3) pathstart_in_path_image[of f] | 
| 741 | by auto | |
| 53627 | 742 | then have "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" | 
| 53628 | 743 | unfolding mem_interval_cart forall_2 | 
| 744 | by auto | |
| 53627 | 745 | then have "z$1 \<noteq> pathstart f$1" | 
| 53628 | 746 | using as(2) using assms ab | 
| 747 | by (auto simp add: field_simps) | |
| 53627 | 748 | ultimately have *: "z$2 = a$2 - 2" | 
| 53628 | 749 | using goal1(1) | 
| 750 | by auto | |
| 53627 | 751 | have "z$1 \<noteq> pathfinish g$1" | 
| 53628 | 752 | using as(2) | 
| 753 | using assms ab | |
| 754 | by (auto simp add: field_simps *) | |
| 53627 | 755 |       moreover have "pathstart g \<in> {a..b}"
 | 
| 53628 | 756 | using assms(4) pathstart_in_path_image[of g] | 
| 757 | by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 758 | note this[unfolded mem_interval_cart forall_2] | 
| 53627 | 759 | then have "z$1 \<noteq> pathstart g$1" | 
| 53628 | 760 | using as(1) | 
| 761 | using assms ab | |
| 762 | by (auto simp add: field_simps *) | |
| 36432 | 763 | ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1" | 
| 53628 | 764 | using as(2) | 
| 765 | unfolding * assms | |
| 766 | by (auto simp add: field_simps) | |
| 53627 | 767 | then show False | 
| 768 | unfolding * using ab by auto | |
| 769 | qed | |
| 770 | then have "z \<in> path_image f \<or> z \<in> path_image g" | |
| 771 | using z unfolding Un_iff by blast | |
| 772 |     then have z': "z \<in> {a..b}"
 | |
| 53628 | 773 | using assms(3-4) | 
| 774 | by auto | |
| 53627 | 775 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> | 
| 776 | z = pathstart f \<or> z = pathfinish f" | |
| 53628 | 777 | unfolding vec_eq_iff forall_2 assms | 
| 778 | by auto | |
| 53627 | 779 | with z' show "z \<in> path_image f" | 
| 780 | using z(1) | |
| 781 | unfolding Un_iff mem_interval_cart forall_2 | |
| 782 | apply - | |
| 783 | apply (simp only: segment_vertical segment_horizontal vector_2) | |
| 784 | unfolding assms | |
| 785 | apply auto | |
| 786 | done | |
| 787 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> | |
| 788 | z = pathstart g \<or> z = pathfinish g" | |
| 53628 | 789 | unfolding vec_eq_iff forall_2 assms | 
| 790 | by auto | |
| 53627 | 791 | with z' show "z \<in> path_image g" | 
| 792 | using z(2) | |
| 793 | unfolding Un_iff mem_interval_cart forall_2 | |
| 794 | apply (simp only: segment_vertical segment_horizontal vector_2) | |
| 795 | unfolding assms | |
| 796 | apply auto | |
| 797 | done | |
| 798 | qed | |
| 799 | qed | |
| 36432 | 800 | |
| 801 | (** The Following still needs to be translated. Maybe I will do that later. | |
| 802 | ||
| 803 | (* ------------------------------------------------------------------------- *) | |
| 804 | (* Complement in dimension N >= 2 of set homeomorphic to any interval in *) | |
| 805 | (* any dimension is (path-)connected. This naively generalizes the argument *) | |
| 806 | (* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *) | |
| 807 | (* fixed point theorem", American Mathematical Monthly 1984. *) | |
| 808 | (* ------------------------------------------------------------------------- *) | |
| 809 | ||
| 810 | let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove | |
| 811 | (`!p:real^M->real^N a b. | |
| 812 |         ~(interval[a,b] = {}) /\
 | |
| 813 | p continuous_on interval[a,b] /\ | |
| 814 | (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y) | |
| 815 | ==> ?f. f continuous_on (:real^N) /\ | |
| 816 | IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\ | |
| 817 | (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`, | |
| 818 | REPEAT STRIP_TAC THEN | |
| 819 | FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN | |
| 820 | DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN | |
| 821 | SUBGOAL_THEN `(q:real^N->real^M) continuous_on | |
| 822 | (IMAGE p (interval[a:real^M,b]))` | |
| 823 | ASSUME_TAC THENL | |
| 824 | [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]; | |
| 825 | ALL_TAC] THEN | |
| 826 | MP_TAC(ISPECL [`q:real^N->real^M`; | |
| 827 | `IMAGE (p:real^M->real^N) | |
| 828 | (interval[a,b])`; | |
| 829 | `a:real^M`; `b:real^M`] | |
| 830 | TIETZE_CLOSED_INTERVAL) THEN | |
| 831 | ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE; | |
| 832 | COMPACT_IMP_CLOSED] THEN | |
| 833 | ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
| 834 | DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN | |
| 835 | EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN | |
| 836 | REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN | |
| 837 | CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
| 838 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN | |
| 839 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] | |
| 840 | CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; | |
| 841 | ||
| 842 | let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove | |
| 843 | (`!s:real^N->bool a b:real^M. | |
| 844 | s homeomorphic (interval[a,b]) | |
| 845 | ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`, | |
| 846 | REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN | |
| 847 | REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
| 848 | MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN | |
| 849 | DISCH_TAC THEN | |
| 850 | SUBGOAL_THEN | |
| 851 | `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ | |
| 852 | (p:real^M->real^N) x = p y ==> x = y` | |
| 853 | ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
| 854 | FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN | |
| 855 | DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN | |
| 856 |   ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
 | |
| 857 | ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV; | |
| 858 | NOT_BOUNDED_UNIV] THEN | |
| 859 | ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN | |
| 860 | X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN | |
| 861 | SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
| 862 | SUBGOAL_THEN `bounded((path_component s c) UNION | |
| 863 | (IMAGE (p:real^M->real^N) (interval[a,b])))` | |
| 864 | MP_TAC THENL | |
| 865 | [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED; | |
| 866 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 867 | ALL_TAC] THEN | |
| 868 | DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN | |
| 869 | REWRITE_TAC[UNION_SUBSET] THEN | |
| 870 | DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN | |
| 871 | MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`] | |
| 872 | RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN | |
| 873 | ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN | |
| 874 | DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN | |
| 875 | DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC | |
| 876 | (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
| 877 | REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN | |
| 878 | ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN | |
| 879 | SUBGOAL_THEN | |
| 880 | `(q:real^N->real^N) continuous_on | |
| 881 | (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))` | |
| 882 | MP_TAC THENL | |
| 883 | [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN | |
| 884 | REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN | |
| 885 | REPEAT CONJ_TAC THENL | |
| 886 | [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN | |
| 887 | ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; | |
| 888 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 889 | ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; | |
| 890 | ALL_TAC] THEN | |
| 891 | X_GEN_TAC `z:real^N` THEN | |
| 892 | REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN | |
| 893 | STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
| 894 | MP_TAC(ISPECL | |
| 895 | [`path_component s (z:real^N)`; `path_component s (c:real^N)`] | |
| 896 | OPEN_INTER_CLOSURE_EQ_EMPTY) THEN | |
| 897 | ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL | |
| 898 | [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN | |
| 899 | ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; | |
| 900 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 901 | REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
| 902 | DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN | |
| 903 | GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN | |
| 904 | REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]]; | |
| 905 | ALL_TAC] THEN | |
| 906 | SUBGOAL_THEN | |
| 907 | `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) = | |
| 908 | (:real^N)` | |
| 909 | SUBST1_TAC THENL | |
| 910 | [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN | |
| 911 | REWRITE_TAC[CLOSURE_SUBSET]; | |
| 912 | DISCH_TAC] THEN | |
| 913 | MP_TAC(ISPECL | |
| 914 | [`(\x. &2 % c - x) o | |
| 915 | (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`; | |
| 916 | `cball(c:real^N,B)`] | |
| 917 | BROUWER) THEN | |
| 918 | REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN | |
| 919 | ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN | |
| 920 | SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL | |
| 921 | [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN | |
| 922 | REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN | |
| 923 | ASM SET_TAC[PATH_COMPONENT_REFL_EQ]; | |
| 924 | ALL_TAC] THEN | |
| 925 | REPEAT CONJ_TAC THENL | |
| 926 | [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
| 927 | SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN | |
| 928 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL | |
| 929 | [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN | |
| 930 | MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN | |
| 931 | MATCH_MP_TAC CONTINUOUS_ON_MUL THEN | |
| 932 | SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN | |
| 933 | REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN | |
| 934 | MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN | |
| 935 | MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN | |
| 936 | ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 937 | SUBGOAL_THEN | |
| 938 | `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)` | |
| 939 | SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN | |
| 940 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
| 941 | ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; | |
| 942 | CONTINUOUS_ON_LIFT_NORM]; | |
| 943 | REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN | |
| 944 | X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
| 945 | REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN | |
| 946 | REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN | |
| 947 | ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 948 | ASM_REAL_ARITH_TAC; | |
| 949 | REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN | |
| 950 | REWRITE_TAC[IN_CBALL; o_THM; dist] THEN | |
| 951 | X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
| 952 | REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN | |
| 953 | ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL | |
| 954 | [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN | |
| 955 | REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN | |
| 956 | ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 957 | ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN | |
| 958 | UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN | |
| 959 | REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB]; | |
| 960 | EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN | |
| 961 | REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN | |
| 962 | ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN | |
| 963 | SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL | |
| 964 | [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN | |
| 965 | ASM_REWRITE_TAC[] THEN | |
| 966 | MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN | |
| 967 | ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);; | |
| 968 | ||
| 969 | let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove | |
| 970 | (`!s:real^N->bool a b:real^M. | |
| 971 | 2 <= dimindex(:N) /\ s homeomorphic interval[a,b] | |
| 972 | ==> path_connected((:real^N) DIFF s)`, | |
| 973 | REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN | |
| 974 | FIRST_ASSUM(MP_TAC o MATCH_MP | |
| 975 | UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN | |
| 976 | ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN | |
| 977 | ABBREV_TAC `t = (:real^N) DIFF s` THEN | |
| 978 | DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN | |
| 979 | STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN | |
| 980 | REWRITE_TAC[COMPACT_INTERVAL] THEN | |
| 981 | DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN | |
| 982 | REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN | |
| 983 | X_GEN_TAC `B:real` THEN STRIP_TAC THEN | |
| 984 | SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\ | |
| 985 | (?v:real^N. v IN path_component t y /\ B < norm(v))` | |
| 986 | STRIP_ASSUME_TAC THENL | |
| 987 | [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN | |
| 988 | MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN | |
| 989 | CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
| 990 | MATCH_MP_TAC PATH_COMPONENT_SYM THEN | |
| 991 | MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN | |
| 992 | CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
| 993 | MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN | |
| 994 | EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL | |
| 995 | [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE | |
| 996 | `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN | |
| 997 | ASM_REWRITE_TAC[SUBSET; IN_CBALL_0]; | |
| 998 | MP_TAC(ISPEC `cball(vec 0:real^N,B)` | |
| 999 | PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN | |
| 1000 | ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN | |
| 1001 | REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN | |
| 1002 | DISCH_THEN MATCH_MP_TAC THEN | |
| 1003 | ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);; | |
| 1004 | ||
| 1005 | (* ------------------------------------------------------------------------- *) | |
| 1006 | (* In particular, apply all these to the special case of an arc. *) | |
| 1007 | (* ------------------------------------------------------------------------- *) | |
| 1008 | ||
| 1009 | let RETRACTION_ARC = prove | |
| 1010 | (`!p. arc p | |
| 1011 | ==> ?f. f continuous_on (:real^N) /\ | |
| 1012 | IMAGE f (:real^N) SUBSET path_image p /\ | |
| 1013 | (!x. x IN path_image p ==> f x = x)`, | |
| 1014 | REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN | |
| 1015 | MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 1016 | ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_CART_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);; | 
| 36432 | 1017 | |
| 1018 | let PATH_CONNECTED_ARC_COMPLEMENT = prove | |
| 1019 | (`!p. 2 <= dimindex(:N) /\ arc p | |
| 1020 | ==> path_connected((:real^N) DIFF path_image p)`, | |
| 1021 | REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN | |
| 1022 | MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`] | |
| 1023 | PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN | |
| 1024 | ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN | |
| 1025 | ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN | |
| 1026 | MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN | |
| 1027 | EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);; | |
| 1028 | ||
| 1029 | let CONNECTED_ARC_COMPLEMENT = prove | |
| 1030 | (`!p. 2 <= dimindex(:N) /\ arc p | |
| 1031 | ==> connected((:real^N) DIFF path_image p)`, | |
| 1032 | SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *) | |
| 1033 | ||
| 1034 | end |