| author | wenzelm | 
| Sat, 28 Jun 2008 22:52:01 +0200 | |
| changeset 27387 | 6adb9e6a649d | 
| parent 25538 | 58e8ba3b792b | 
| child 28183 | 7d5103454520 | 
| permissions | -rw-r--r-- | 
| 6134 | 1 | (* Title: Pure/General/graph.ML | 
| 2 | ID: $Id$ | |
| 15759 | 3 | Author: Markus Wenzel and Stefan Berghofer, TU Muenchen | 
| 6134 | 4 | |
| 5 | Directed graphs. | |
| 6 | *) | |
| 7 | ||
| 8 | signature GRAPH = | |
| 9 | sig | |
| 10 | type key | |
| 11 | type 'a T | |
| 9321 | 12 | exception DUP of key | 
| 19029 | 13 | exception SAME | 
| 14 | exception UNDEF of key | |
| 6134 | 15 | val empty: 'a T | 
| 6659 | 16 | val keys: 'a T -> key list | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 17 | val dest: 'a T -> (key * key list) list | 
| 19615 | 18 |   val fold: (key * ('a * (key list * key list)) -> 'b -> 'b) -> 'a T -> 'b -> 'b
 | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 19 | val minimals: 'a T -> key list | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 20 | val maximals: 'a T -> key list | 
| 21935 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 21 | val subgraph: (key -> bool) -> 'a T -> 'a T | 
| 6142 | 22 |   val map_nodes: ('a -> 'b) -> 'a T -> 'b T
 | 
| 19615 | 23 | val fold_map_nodes: (key * 'a -> 'b -> 'c * 'b) -> 'a T -> 'b -> 'c T * 'b | 
| 15759 | 24 | val get_node: 'a T -> key -> 'a (*exception UNDEF*) | 
| 6142 | 25 |   val map_node: key -> ('a -> 'a) -> 'a T -> 'a T
 | 
| 17767 | 26 |   val map_node_yield: key -> ('a -> 'b * 'a) -> 'a T -> 'b * 'a T
 | 
| 6142 | 27 | val imm_preds: 'a T -> key -> key list | 
| 28 | val imm_succs: 'a T -> key -> key list | |
| 6134 | 29 | val all_preds: 'a T -> key list -> key list | 
| 30 | val all_succs: 'a T -> key list -> key list | |
| 14161 
73ad4884441f
Added function strong_conn for computing the strongly connected components
 berghofe parents: 
12451diff
changeset | 31 | val strong_conn: 'a T -> key list list | 
| 15759 | 32 | val new_node: key * 'a -> 'a T -> 'a T (*exception DUP*) | 
| 17179 | 33 | val default_node: key * 'a -> 'a T -> 'a T | 
| 15759 | 34 | val del_nodes: key list -> 'a T -> 'a T (*exception UNDEF*) | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 35 | val is_edge: 'a T -> key * key -> bool | 
| 6134 | 36 | val add_edge: key * key -> 'a T -> 'a T | 
| 6152 | 37 | val del_edge: key * key -> 'a T -> 'a T | 
| 23655 
d2d1138e0ddc
replaced exception TableFun/GraphFun.DUPS by TableFun/GraphFun.DUP;
 wenzelm parents: 
21935diff
changeset | 38 |   val merge: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T                 (*exception DUP*)
 | 
| 19029 | 39 | val join: (key -> 'a * 'a -> 'a) (*exception DUP/SAME*) -> | 
| 23655 
d2d1138e0ddc
replaced exception TableFun/GraphFun.DUPS by TableFun/GraphFun.DUP;
 wenzelm parents: 
21935diff
changeset | 40 | 'a T * 'a T -> 'a T (*exception DUP*) | 
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 41 | val irreducible_paths: 'a T -> key * key -> key list list | 
| 20679 | 42 | val all_paths: 'a T -> key * key -> key list list | 
| 6142 | 43 | exception CYCLES of key list list | 
| 15759 | 44 | val add_edge_acyclic: key * key -> 'a T -> 'a T (*exception CYCLES*) | 
| 45 | val add_deps_acyclic: key * key list -> 'a T -> 'a T (*exception CYCLES*) | |
| 46 |   val merge_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T         (*exception CYCLES*)
 | |
| 23964 | 47 | val topological_order: 'a T -> key list | 
| 15759 | 48 | val add_edge_trans_acyclic: key * key -> 'a T -> 'a T (*exception CYCLES*) | 
| 49 |   val merge_trans_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T   (*exception CYCLES*)
 | |
| 6134 | 50 | end; | 
| 51 | ||
| 52 | functor GraphFun(Key: KEY): GRAPH = | |
| 53 | struct | |
| 54 | ||
| 55 | (* keys *) | |
| 56 | ||
| 57 | type key = Key.key; | |
| 58 | ||
| 18970 | 59 | val eq_key = is_equal o Key.ord; | 
| 6134 | 60 | |
| 18921 | 61 | val member_key = member eq_key; | 
| 15759 | 62 | val remove_key = remove eq_key; | 
| 6152 | 63 | |
| 6134 | 64 | |
| 65 | (* tables and sets of keys *) | |
| 66 | ||
| 67 | structure Table = TableFun(Key); | |
| 68 | type keys = unit Table.table; | |
| 69 | ||
| 6142 | 70 | val empty_keys = Table.empty: keys; | 
| 71 | ||
| 18921 | 72 | fun member_keys tab = Table.defined (tab: keys); | 
| 73 | fun insert_keys x tab = Table.insert (K true) (x, ()) (tab: keys); | |
| 6134 | 74 | |
| 75 | ||
| 6142 | 76 | (* graphs *) | 
| 6134 | 77 | |
| 78 | datatype 'a T = Graph of ('a * (key list * key list)) Table.table;
 | |
| 79 | ||
| 9321 | 80 | exception DUP = Table.DUP; | 
| 19029 | 81 | exception UNDEF = Table.UNDEF; | 
| 82 | exception SAME = Table.SAME; | |
| 6134 | 83 | |
| 84 | val empty = Graph Table.empty; | |
| 6659 | 85 | fun keys (Graph tab) = Table.keys tab; | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 86 | fun dest (Graph tab) = map (fn (x, (_, (_, succs))) => (x, succs)) (Table.dest tab); | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 87 | |
| 19615 | 88 | fun fold_graph f (Graph tab) = Table.fold f tab; | 
| 89 | ||
| 90 | fun minimals G = fold_graph (fn (m, (_, ([], _))) => cons m | _ => I) G []; | |
| 91 | fun maximals G = fold_graph (fn (m, (_, (_, []))) => cons m | _ => I) G []; | |
| 6134 | 92 | |
| 21935 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 93 | fun subgraph P G = | 
| 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 94 | let | 
| 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 95 | fun subg (k, (i, (preds, succs))) = | 
| 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 96 | if P k then Table.update (k, (i, (filter P preds, filter P succs))) else I; | 
| 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 97 | in Graph (fold_graph subg G Table.empty) end; | 
| 
4e20a5397b57
renamed project to subgraph, improved presentation, avoided unnecessary evaluation of predicate;
 wenzelm parents: 
21565diff
changeset | 98 | |
| 6142 | 99 | fun get_entry (Graph tab) x = | 
| 17412 | 100 | (case Table.lookup tab x of | 
| 15531 | 101 | SOME entry => entry | 
| 102 | | NONE => raise UNDEF x); | |
| 6134 | 103 | |
| 17412 | 104 | fun map_entry x f (G as Graph tab) = Graph (Table.update (x, f (get_entry G x)) tab); | 
| 19290 | 105 | |
| 17767 | 106 | fun map_entry_yield x f (G as Graph tab) = | 
| 107 | let val (a, node') = f (get_entry G x) | |
| 108 | in (a, Graph (Table.update (x, node') tab)) end; | |
| 6134 | 109 | |
| 110 | ||
| 6142 | 111 | (* nodes *) | 
| 112 | ||
| 113 | fun map_nodes f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab); | |
| 6134 | 114 | |
| 19290 | 115 | fun fold_map_nodes f (Graph tab) = | 
| 116 | apfst Graph o Table.fold_map (fn (k, (i, ps)) => f (k, i) #> apfst (rpair ps)) tab; | |
| 17580 | 117 | |
| 6142 | 118 | fun get_node G = #1 o get_entry G; | 
| 18133 | 119 | |
| 6142 | 120 | fun map_node x f = map_entry x (fn (i, ps) => (f i, ps)); | 
| 19290 | 121 | |
| 17767 | 122 | fun map_node_yield x f = map_entry_yield x (fn (i, ps) => | 
| 123 | let val (a, i') = f i in (a, (i', ps)) end); | |
| 6142 | 124 | |
| 18133 | 125 | |
| 6142 | 126 | (* reachability *) | 
| 127 | ||
| 6659 | 128 | (*nodes reachable from xs -- topologically sorted for acyclic graphs*) | 
| 6142 | 129 | fun reachable next xs = | 
| 6134 | 130 | let | 
| 18006 
535de280c812
reachable - abandoned foldl_map in favor of fold_map
 haftmann parents: 
17912diff
changeset | 131 | fun reach x (rs, R) = | 
| 18921 | 132 | if member_keys R x then (rs, R) | 
| 133 | else apfst (cons x) (fold reach (next x) (rs, insert_keys x R)) | |
| 23964 | 134 | in fold_map (fn x => fn X => reach x ([], X)) xs empty_keys end; | 
| 6134 | 135 | |
| 6142 | 136 | (*immediate*) | 
| 137 | fun imm_preds G = #1 o #2 o get_entry G; | |
| 138 | fun imm_succs G = #2 o #2 o get_entry G; | |
| 6134 | 139 | |
| 6142 | 140 | (*transitive*) | 
| 19482 
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
 wenzelm parents: 
19409diff
changeset | 141 | fun all_preds G = flat o fst o reachable (imm_preds G); | 
| 
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
 wenzelm parents: 
19409diff
changeset | 142 | fun all_succs G = flat o fst o reachable (imm_succs G); | 
| 14161 
73ad4884441f
Added function strong_conn for computing the strongly connected components
 berghofe parents: 
12451diff
changeset | 143 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 144 | (*strongly connected components; see: David King and John Launchbury, | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 145 | "Structuring Depth First Search Algorithms in Haskell"*) | 
| 18006 
535de280c812
reachable - abandoned foldl_map in favor of fold_map
 haftmann parents: 
17912diff
changeset | 146 | fun strong_conn G = filter_out null (fst (reachable (imm_preds G) | 
| 19482 
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
 wenzelm parents: 
19409diff
changeset | 147 | (flat (rev (fst (reachable (imm_succs G) (keys G))))))); | 
| 6134 | 148 | |
| 18133 | 149 | |
| 9321 | 150 | (* nodes *) | 
| 6134 | 151 | |
| 6152 | 152 | fun new_node (x, info) (Graph tab) = | 
| 17412 | 153 | Graph (Table.update_new (x, (info, ([], []))) tab); | 
| 6134 | 154 | |
| 17179 | 155 | fun default_node (x, info) (Graph tab) = | 
| 156 | Graph (Table.default (x, (info, ([], []))) tab); | |
| 17140 | 157 | |
| 6659 | 158 | fun del_nodes xs (Graph tab) = | 
| 15759 | 159 | Graph (tab | 
| 160 | |> fold Table.delete xs | |
| 161 | |> Table.map (fn (i, (preds, succs)) => | |
| 162 | (i, (fold remove_key xs preds, fold remove_key xs succs)))); | |
| 6659 | 163 | |
| 6152 | 164 | |
| 9321 | 165 | (* edges *) | 
| 166 | ||
| 18921 | 167 | fun is_edge G (x, y) = member_key (imm_succs G x) y handle UNDEF _ => false; | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 168 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 169 | fun add_edge (x, y) G = | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 170 | if is_edge G (x, y) then G | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 171 | else | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 172 | G |> map_entry y (fn (i, (preds, succs)) => (i, (x :: preds, succs))) | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 173 | |> map_entry x (fn (i, (preds, succs)) => (i, (preds, y :: succs))); | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 174 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 175 | fun del_edge (x, y) G = | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 176 | if is_edge G (x, y) then | 
| 15759 | 177 | G |> map_entry y (fn (i, (preds, succs)) => (i, (remove_key x preds, succs))) | 
| 178 | |> map_entry x (fn (i, (preds, succs)) => (i, (preds, remove_key y succs))) | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 179 | else G; | 
| 9321 | 180 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 181 | fun diff_edges G1 G2 = | 
| 19482 
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
 wenzelm parents: 
19409diff
changeset | 182 | flat (dest G1 |> map (fn (x, ys) => ys |> map_filter (fn y => | 
| 15531 | 183 | if is_edge G2 (x, y) then NONE else SOME (x, y)))); | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 184 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 185 | fun edges G = diff_edges G empty; | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 186 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 187 | |
| 18126 | 188 | (* join and merge *) | 
| 189 | ||
| 18133 | 190 | fun no_edges (i, _) = (i, ([], [])); | 
| 191 | ||
| 192 | fun join f (Graph tab1, G2 as Graph tab2) = | |
| 19029 | 193 | let fun join_node key ((i1, edges1), (i2, _)) = (f key (i1, i2), edges1) | 
| 18133 | 194 | in fold add_edge (edges G2) (Graph (Table.join join_node (tab1, Table.map no_edges tab2))) end; | 
| 6152 | 195 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 196 | fun gen_merge add eq (Graph tab1, G2 as Graph tab2) = | 
| 18133 | 197 | let fun eq_node ((i1, _), (i2, _)) = eq (i1, i2) | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 198 | in fold add (edges G2) (Graph (Table.merge eq_node (tab1, Table.map no_edges tab2))) end; | 
| 6152 | 199 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 200 | fun merge eq GG = gen_merge add_edge eq GG; | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 201 | |
| 18133 | 202 | |
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 203 | (* irreducible paths -- Hasse diagram *) | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 204 | |
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 205 | fun irreducible_preds G X path z = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 206 | let | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 207 | fun red x x' = is_edge G (x, x') andalso not (eq_key (x', z)); | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 208 | fun irreds [] xs' = xs' | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 209 | | irreds (x :: xs) xs' = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 210 | if not (member_keys X x) orelse eq_key (x, z) orelse member_key path x orelse | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 211 | exists (red x) xs orelse exists (red x) xs' | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 212 | then irreds xs xs' | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 213 | else irreds xs (x :: xs'); | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 214 | in irreds (imm_preds G z) [] end; | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 215 | |
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 216 | fun irreducible_paths G (x, y) = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 217 | let | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 218 | val (_, X) = reachable (imm_succs G) [x]; | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 219 | fun paths path z = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 220 | if eq_key (x, z) then cons (z :: path) | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 221 | else fold (paths (z :: path)) (irreducible_preds G X path z); | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 222 | in if eq_key (x, y) andalso not (is_edge G (x, x)) then [[]] else paths [] y [] end; | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 223 | |
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 224 | |
| 20736 | 225 | (* all paths *) | 
| 20679 | 226 | |
| 227 | fun all_paths G (x, y) = | |
| 228 | let | |
| 229 | val (_, X) = reachable (imm_succs G) [x]; | |
| 20736 | 230 | fun paths path z = | 
| 231 | if not (null path) andalso eq_key (x, z) then [z :: path] | |
| 232 | else if member_keys X z andalso not (member_key path z) | |
| 233 | then maps (paths (z :: path)) (imm_preds G z) | |
| 20679 | 234 | else []; | 
| 235 | in paths [] y end; | |
| 236 | ||
| 237 | ||
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 238 | (* maintain acyclic graphs *) | 
| 6142 | 239 | |
| 240 | exception CYCLES of key list list; | |
| 6134 | 241 | |
| 242 | fun add_edge_acyclic (x, y) G = | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 243 | if is_edge G (x, y) then G | 
| 9347 | 244 | else | 
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 245 | (case irreducible_paths G (y, x) of | 
| 9347 | 246 | [] => add_edge (x, y) G | 
| 247 | | cycles => raise CYCLES (map (cons x) cycles)); | |
| 6134 | 248 | |
| 15759 | 249 | fun add_deps_acyclic (y, xs) = fold (fn x => add_edge_acyclic (x, y)) xs; | 
| 9321 | 250 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 251 | fun merge_acyclic eq GG = gen_merge add_edge_acyclic eq GG; | 
| 9321 | 252 | |
| 23964 | 253 | fun topological_order G = minimals G |> all_succs G; | 
| 254 | ||
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 255 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 256 | (* maintain transitive acyclic graphs *) | 
| 9321 | 257 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 258 | fun add_edge_trans_acyclic (x, y) G = | 
| 19290 | 259 | add_edge_acyclic (x, y) G | 
| 25538 | 260 | |> fold_product (curry add_edge) (all_preds G [x]) (all_succs G [y]); | 
| 9321 | 261 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 262 | fun merge_trans_acyclic eq (G1, G2) = | 
| 19290 | 263 | merge_acyclic eq (G1, G2) | 
| 264 | |> fold add_edge_trans_acyclic (diff_edges G1 G2) | |
| 265 | |> fold add_edge_trans_acyclic (diff_edges G2 G1); | |
| 6134 | 266 | |
| 19615 | 267 | |
| 268 | (*final declarations of this structure!*) | |
| 269 | val fold = fold_graph; | |
| 270 | ||
| 6134 | 271 | end; | 
| 272 | ||
| 16810 | 273 | structure Graph = GraphFun(type key = string val ord = fast_string_ord); | 
| 19615 | 274 | structure IntGraph = GraphFun(type key = int val ord = int_ord); |