author  wenzelm 
Fri, 05 May 2006 21:59:48 +0200  
changeset 19580  c878a09fb849 
parent 19482  9f11af8f7ef9 
child 19615  e3ab6cd838a4 
permissions  rwrr 
6134  1 
(* Title: Pure/General/graph.ML 
2 
ID: $Id$ 

15759  3 
Author: Markus Wenzel and Stefan Berghofer, TU Muenchen 
6134  4 

5 
Directed graphs. 

6 
*) 

7 

8 
signature GRAPH = 

9 
sig 

10 
type key 

11 
type 'a T 

9321  12 
exception DUP of key 
13 
exception DUPS of key list 

19029  14 
exception SAME 
15 
exception UNDEF of key 

6134  16 
val empty: 'a T 
6659  17 
val keys: 'a T > key list 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

18 
val dest: 'a T > (key * key list) list 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

19 
val minimals: 'a T > key list 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

20 
val maximals: 'a T > key list 
6142  21 
val map_nodes: ('a > 'b) > 'a T > 'b T 
17767  22 
val fold_nodes: (key * 'b > 'a > 'a) > 'b T > 'a > 'a 
17580  23 
val fold_map_nodes: (key * 'b > 'a > 'c * 'a) > 'b T > 'a > 'c T * 'a 
15759  24 
val get_node: 'a T > key > 'a (*exception UNDEF*) 
6142  25 
val map_node: key > ('a > 'a) > 'a T > 'a T 
17767  26 
val map_node_yield: key > ('a > 'b * 'a) > 'a T > 'b * 'a T 
6142  27 
val imm_preds: 'a T > key > key list 
28 
val imm_succs: 'a T > key > key list 

6134  29 
val all_preds: 'a T > key list > key list 
30 
val all_succs: 'a T > key list > key list 

14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

31 
val strong_conn: 'a T > key list list 
17912  32 
val subgraph: key list > 'a T > 'a T 
15759  33 
val new_node: key * 'a > 'a T > 'a T (*exception DUP*) 
17179  34 
val default_node: key * 'a > 'a T > 'a T 
15759  35 
val del_nodes: key list > 'a T > 'a T (*exception UNDEF*) 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

36 
val is_edge: 'a T > key * key > bool 
6134  37 
val add_edge: key * key > 'a T > 'a T 
6152  38 
val del_edge: key * key > 'a T > 'a T 
15759  39 
val merge: ('a * 'a > bool) > 'a T * 'a T > 'a T (*exception DUPS*) 
19029  40 
val join: (key > 'a * 'a > 'a) (*exception DUP/SAME*) > 
41 
'a T * 'a T > 'a T (*exception DUPS*) 

19580
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

42 
val irreducible_paths: 'a T > key * key > key list list 
6142  43 
exception CYCLES of key list list 
15759  44 
val add_edge_acyclic: key * key > 'a T > 'a T (*exception CYCLES*) 
45 
val add_deps_acyclic: key * key list > 'a T > 'a T (*exception CYCLES*) 

46 
val merge_acyclic: ('a * 'a > bool) > 'a T * 'a T > 'a T (*exception CYCLES*) 

47 
val add_edge_trans_acyclic: key * key > 'a T > 'a T (*exception CYCLES*) 

48 
val merge_trans_acyclic: ('a * 'a > bool) > 'a T * 'a T > 'a T (*exception CYCLES*) 

6134  49 
end; 
50 

51 
functor GraphFun(Key: KEY): GRAPH = 

52 
struct 

53 

54 
(* keys *) 

55 

56 
type key = Key.key; 

57 

18970  58 
val eq_key = is_equal o Key.ord; 
6134  59 

18921  60 
val member_key = member eq_key; 
15759  61 
val remove_key = remove eq_key; 
6152  62 

6134  63 

64 
(* tables and sets of keys *) 

65 

66 
structure Table = TableFun(Key); 

67 
type keys = unit Table.table; 

68 

6142  69 
val empty_keys = Table.empty: keys; 
70 

18921  71 
fun member_keys tab = Table.defined (tab: keys); 
72 
fun insert_keys x tab = Table.insert (K true) (x, ()) (tab: keys); 

6134  73 

74 

6142  75 
(* graphs *) 
6134  76 

77 
datatype 'a T = Graph of ('a * (key list * key list)) Table.table; 

78 

9321  79 
exception DUP = Table.DUP; 
80 
exception DUPS = Table.DUPS; 

19029  81 
exception UNDEF = Table.UNDEF; 
82 
exception SAME = Table.SAME; 

6134  83 

84 
val empty = Graph Table.empty; 

6659  85 
fun keys (Graph tab) = Table.keys tab; 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

86 
fun dest (Graph tab) = map (fn (x, (_, (_, succs))) => (x, succs)) (Table.dest tab); 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

87 

16445  88 
fun minimals (Graph tab) = Table.fold (fn (m, (_, ([], _))) => cons m  _ => I) tab []; 
89 
fun maximals (Graph tab) = Table.fold (fn (m, (_, (_, []))) => cons m  _ => I) tab []; 

6134  90 

6142  91 
fun get_entry (Graph tab) x = 
17412  92 
(case Table.lookup tab x of 
15531  93 
SOME entry => entry 
94 
 NONE => raise UNDEF x); 

6134  95 

17412  96 
fun map_entry x f (G as Graph tab) = Graph (Table.update (x, f (get_entry G x)) tab); 
19290  97 

17767  98 
fun map_entry_yield x f (G as Graph tab) = 
99 
let val (a, node') = f (get_entry G x) 

100 
in (a, Graph (Table.update (x, node') tab)) end; 

6134  101 

102 

6142  103 
(* nodes *) 
104 

105 
fun map_nodes f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab); 

6134  106 

19290  107 
fun fold_nodes f (Graph tab) = Table.fold (fn (k, (i, ps)) => f (k, i)) tab; 
17767  108 

19290  109 
fun fold_map_nodes f (Graph tab) = 
110 
apfst Graph o Table.fold_map (fn (k, (i, ps)) => f (k, i) #> apfst (rpair ps)) tab; 

17580  111 

6142  112 
fun get_node G = #1 o get_entry G; 
18133  113 

6142  114 
fun map_node x f = map_entry x (fn (i, ps) => (f i, ps)); 
19290  115 

17767  116 
fun map_node_yield x f = map_entry_yield x (fn (i, ps) => 
117 
let val (a, i') = f i in (a, (i', ps)) end); 

6142  118 

18133  119 

6142  120 
(* reachability *) 
121 

6659  122 
(*nodes reachable from xs  topologically sorted for acyclic graphs*) 
6142  123 
fun reachable next xs = 
6134  124 
let 
18006
535de280c812
reachable  abandoned foldl_map in favor of fold_map
haftmann
parents:
17912
diff
changeset

125 
fun reach x (rs, R) = 
18921  126 
if member_keys R x then (rs, R) 
127 
else apfst (cons x) (fold reach (next x) (rs, insert_keys x R)) 

18006
535de280c812
reachable  abandoned foldl_map in favor of fold_map
haftmann
parents:
17912
diff
changeset

128 
in fold_map (fn x => reach x o pair []) xs empty_keys end; 
6134  129 

6142  130 
(*immediate*) 
131 
fun imm_preds G = #1 o #2 o get_entry G; 

132 
fun imm_succs G = #2 o #2 o get_entry G; 

6134  133 

6142  134 
(*transitive*) 
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
19409
diff
changeset

135 
fun all_preds G = flat o fst o reachable (imm_preds G); 
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
19409
diff
changeset

136 
fun all_succs G = flat o fst o reachable (imm_succs G); 
14161
73ad4884441f
Added function strong_conn for computing the strongly connected components
berghofe
parents:
12451
diff
changeset

137 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

138 
(*strongly connected components; see: David King and John Launchbury, 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

139 
"Structuring Depth First Search Algorithms in Haskell"*) 
18006
535de280c812
reachable  abandoned foldl_map in favor of fold_map
haftmann
parents:
17912
diff
changeset

140 
fun strong_conn G = filter_out null (fst (reachable (imm_preds G) 
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
19409
diff
changeset

141 
(flat (rev (fst (reachable (imm_succs G) (keys G))))))); 
6134  142 

17912  143 
(*subgraph induced by node subset*) 
144 
fun subgraph keys (Graph tab) = 

145 
let 

146 
val select = member eq_key keys; 

19409  147 
fun subg (k, (i, (preds, succs))) = 
148 
K (select k) ? Table.update (k, (i, (filter select preds, filter select succs))); 

17912  149 
in Table.empty > Table.fold subg tab > Graph end; 
6134  150 

18133  151 

9321  152 
(* nodes *) 
6134  153 

6152  154 
fun new_node (x, info) (Graph tab) = 
17412  155 
Graph (Table.update_new (x, (info, ([], []))) tab); 
6134  156 

17179  157 
fun default_node (x, info) (Graph tab) = 
158 
Graph (Table.default (x, (info, ([], []))) tab); 

17140  159 

6659  160 
fun del_nodes xs (Graph tab) = 
15759  161 
Graph (tab 
162 
> fold Table.delete xs 

163 
> Table.map (fn (i, (preds, succs)) => 

164 
(i, (fold remove_key xs preds, fold remove_key xs succs)))); 

6659  165 

6152  166 

9321  167 
(* edges *) 
168 

18921  169 
fun is_edge G (x, y) = member_key (imm_succs G x) y handle UNDEF _ => false; 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

170 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

171 
fun add_edge (x, y) G = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

172 
if is_edge G (x, y) then G 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

173 
else 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

174 
G > map_entry y (fn (i, (preds, succs)) => (i, (x :: preds, succs))) 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

175 
> map_entry x (fn (i, (preds, succs)) => (i, (preds, y :: succs))); 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

176 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

177 
fun del_edge (x, y) G = 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

178 
if is_edge G (x, y) then 
15759  179 
G > map_entry y (fn (i, (preds, succs)) => (i, (remove_key x preds, succs))) 
180 
> map_entry x (fn (i, (preds, succs)) => (i, (preds, remove_key y succs))) 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

181 
else G; 
9321  182 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

183 
fun diff_edges G1 G2 = 
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
19409
diff
changeset

184 
flat (dest G1 > map (fn (x, ys) => ys > map_filter (fn y => 
15531  185 
if is_edge G2 (x, y) then NONE else SOME (x, y)))); 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

186 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

187 
fun edges G = diff_edges G empty; 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

188 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

189 

18126  190 
(* join and merge *) 
191 

18133  192 
fun no_edges (i, _) = (i, ([], [])); 
193 

194 
fun join f (Graph tab1, G2 as Graph tab2) = 

19029  195 
let fun join_node key ((i1, edges1), (i2, _)) = (f key (i1, i2), edges1) 
18133  196 
in fold add_edge (edges G2) (Graph (Table.join join_node (tab1, Table.map no_edges tab2))) end; 
6152  197 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

198 
fun gen_merge add eq (Graph tab1, G2 as Graph tab2) = 
18133  199 
let fun eq_node ((i1, _), (i2, _)) = eq (i1, i2) 
14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

200 
in fold add (edges G2) (Graph (Table.merge eq_node (tab1, Table.map no_edges tab2))) end; 
6152  201 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

202 
fun merge eq GG = gen_merge add_edge eq GG; 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

203 

18133  204 

19580
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

205 
(* irreducible paths  Hasse diagram *) 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

206 

c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

207 
fun irreducible_preds G X path z = 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

208 
let 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

209 
fun red x x' = is_edge G (x, x') andalso not (eq_key (x', z)); 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

210 
fun irreds [] xs' = xs' 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

211 
 irreds (x :: xs) xs' = 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

212 
if not (member_keys X x) orelse eq_key (x, z) orelse member_key path x orelse 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

213 
exists (red x) xs orelse exists (red x) xs' 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

214 
then irreds xs xs' 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

215 
else irreds xs (x :: xs'); 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

216 
in irreds (imm_preds G z) [] end; 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

217 

c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

218 
fun irreducible_paths G (x, y) = 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

219 
let 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

220 
val (_, X) = reachable (imm_succs G) [x]; 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

221 
fun paths path z = 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

222 
if eq_key (x, z) then cons (z :: path) 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

223 
else fold (paths (z :: path)) (irreducible_preds G X path z); 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

224 
in if eq_key (x, y) andalso not (is_edge G (x, x)) then [[]] else paths [] y [] end; 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

225 

c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

226 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

227 
(* maintain acyclic graphs *) 
6142  228 

229 
exception CYCLES of key list list; 

6134  230 

231 
fun add_edge_acyclic (x, y) G = 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

232 
if is_edge G (x, y) then G 
9347  233 
else 
19580
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
wenzelm
parents:
19482
diff
changeset

234 
(case irreducible_paths G (y, x) of 
9347  235 
[] => add_edge (x, y) G 
236 
 cycles => raise CYCLES (map (cons x) cycles)); 

6134  237 

15759  238 
fun add_deps_acyclic (y, xs) = fold (fn x => add_edge_acyclic (x, y)) xs; 
9321  239 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

240 
fun merge_acyclic eq GG = gen_merge add_edge_acyclic eq GG; 
9321  241 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

242 

32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

243 
(* maintain transitive acyclic graphs *) 
9321  244 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

245 
fun add_edge_trans_acyclic (x, y) G = 
19290  246 
add_edge_acyclic (x, y) G 
247 
> fold add_edge (Library.product (all_preds G [x]) (all_succs G [y])); 

9321  248 

14793
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
wenzelm
parents:
14161
diff
changeset

249 
fun merge_trans_acyclic eq (G1, G2) = 
19290  250 
merge_acyclic eq (G1, G2) 
251 
> fold add_edge_trans_acyclic (diff_edges G1 G2) 

252 
> fold add_edge_trans_acyclic (diff_edges G2 G1); 

6134  253 

254 
end; 

255 

256 

257 
(*graphs indexed by strings*) 

16810  258 
structure Graph = GraphFun(type key = string val ord = fast_string_ord); 