5078
|
1 |
(* Title: HOL/Integ/Lagrange.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1996 TU Muenchen
|
|
5 |
|
|
6 |
|
|
7 |
The following lemma essentially shows that all composite natural numbers are
|
|
8 |
sums of fours squares, provided all prime numbers are. However, this is an
|
|
9 |
abstract thm about commutative rings and has a priori nothing to do with nat.
|
|
10 |
*)
|
|
11 |
|
|
12 |
Goalw [Lagrange.sq_def] "!!x1::'a::cring. \
|
|
13 |
\ (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = \
|
|
14 |
\ sq(x1*y1 - x2*y2 - x3*y3 - x4*y4) + \
|
|
15 |
\ sq(x1*y2 + x2*y1 + x3*y4 - x4*y3) + \
|
|
16 |
\ sq(x1*y3 - x2*y4 + x3*y1 + x4*y2) + \
|
|
17 |
\ sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)";
|
|
18 |
(*Takes up to three minutes...*)
|
|
19 |
by (cring_tac 1);
|
|
20 |
qed "Lagrange_lemma";
|
|
21 |
|
|
22 |
(* A challenge by John Harrison.
|
|
23 |
Takes forever because of the naive bottom-up strategy of the rewriter.
|
|
24 |
|
|
25 |
Goalw [Lagrange.sq_def] "!!p1::'a::cring.\
|
|
26 |
\ (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * \
|
|
27 |
\ (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) \
|
|
28 |
\ = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + \
|
|
29 |
\ sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +\
|
|
30 |
\ sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +\
|
|
31 |
\ sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +\
|
|
32 |
\ sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +\
|
|
33 |
\ sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +\
|
|
34 |
\ sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +\
|
|
35 |
\ sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)";
|
|
36 |
|
|
37 |
*)
|